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We define stochastic adding machines based on Cantor Systems of numeration. Our aim 
here is to compute the parts of spectra of the transition operators associated with these 
stochastic adding machines in different classical Banach spaces. We show that these spectra 
are connected to fibered Julia sets.
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r é s u m é

Nous définissons l’odomètre stochastique associé à un système de numération de Cantor. 
Nous calculons les parties du spectre de l’opérateur de transition associé à cet odométre 
dans différents espaces de Banach classiques. Nous montrons que le spectre est lié aux 
ensembles de Julia fibrés.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let us fix a sequence (di)i≥0 = d̄ of positive integers such that d0 = 1 and di ≥ 2 for i ≥ 1. It is known [4,6] by using 
a greedy algorithm that any non-negative integer n can be written in a unique way as n = ∑kn

j=1 a j(n)q j−1, where kn ∈
Z+, q j−1 = d0 . . .d j−1 and a j(n) ∈ {0, ..., d j − 1} for all j ≥ 1. This is referred to as the Cantor System of Numeration 
associated with d̄. A classical example is the base-10 expansion, where di = 10 for all i ≥ 1.

It is classical that there exists an algorithm, or adding machine in our case, that maps the digits of n into those of n + 1. 
This algorithm is defined as follows: put ζn = min{ j ≥ 1 : a j(n) �= d j − 1}, then
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a j(n + 1) =
⎧⎨
⎩

0 , j < ζn ,

a j(n) + 1 , j = ζn ,

a j(n) , j > ζn .

Now, we define the stochastic adding machine based on the following: Suppose that at the j-th step of the adding 
machine algorithm with some given probability, independently of any other step, we lose information about the counter 
that records the number of steps already performed by the algorithm and it stops. This implies that the outcome of the 
adding machine is a random variable. Formally, we fix a sequence (ξ j) j≥1 of independent random variables such that ξ j

has Bernoulli distribution with parameter p j , where (p j) j≥1 = p̄ is a sequence of strictly positive probabilities. Here ξ j = 0
means that the j-th step of the algorithm is not allowed to be performed. So define the random time τ = inf{ j : ξ j = 0}. 
Then the Adding Machine with Fallible Counter algorithm associated with (d̄, p̄), AMFCd̄,p̄ , is defined by applying the adding 
machine algorithm to n and stopping at the step τ ∧ ζn (this means that steps j ≥ τ are not performed when τ < ζn).

Fix an initial, possibly random, state X(0) ∈ Z+ . We apply recursively the AMFCd̄,p̄ algorithm to its successive outcomes 
starting at X(0) and using independent sequences of Bernoulli random variables at different times. These random sequences 
are associated with the same fixed sequence of probabilities (p j) j≥1. In this way, we generate a discrete time-homogeneous 
Markov chain (X(t))t≥0, where X(t) represents the outcome after t successive applications of the AMFCd̄,p̄ algorithm, which 
we call the AMFCd̄,p̄ stochastic machine.

The stochastic machine was introduced in the literature by Killeen and Taylor in [5] for the case d j = 2, p j = p ∈ (0, 1)

for all j ≥ 1. Among other things, the authors show that the spectrum of the transition operator of the stochastic machine 
acting on l∞ is the filled-in Julia set of the quadratic polynomial z2−(1−p)

p . Further spectral properties of the same transition 
operator and its dual acting on c0, c, lα , α ≥ 1, are considered by El Abdalaoui and Messaoudi in [1].

In [7], Messaoudi, Sester and Valle have introduced the stochastic machines associated with nonconstant sequences p̄ , 
and d̄ ≡ d constant. It is shown that the spectrum of its transition operator acting on l∞ is equal to the filled-in fibered 
Julia set E associated with a sequence of polynomial maps.

Motivated by [1] and [7], the aim of this note is the analysis of the different parts of the spectra for the transition 
operators of the more general AMFCd̄,p̄ stochastic machines acting in the usual Banach spaces (lα, ‖ · ‖α), 1 ≤ α ≤ ∞, 
(c0, ‖ · ‖∞) and (c, ‖ · ‖∞) and their connection with fibered Julia sets. All the results described here are strictly included in 
[8], where the extended proofs are given.

Recall that for w = (w(n))n≥0 ∈C
Z+ , we have:

‖w‖∞ = sup
n≥0

|w(n)| < ∞ , ‖w‖q =
(∑

n≥0

|w(n)|q
) 1

q
, 1 ≤ q < ∞ ,

and

l∞ = l∞(Z+) = {w ∈C
Z+ : ‖w‖∞ < ∞} ,

lq = lq(Z+) = {w ∈C
Z+ : ‖w‖q < ∞} ,

c = c(Z+) = {w ∈ l∞ : w is convergent} ,

c0 = c0(Z+) = {w ∈ c : lim
n→∞ w(n) = 0} .

2. Main results

Our first aim in this section is to describe the transition probabilities of (X(t))t≥0, which we denote s(n, m) =
sp̄,d̄(n, m) := P (X(t + 1) = m|X(t) = n). They can be obtained directly from the description of the chain: for every n ≥ 0, 
if n = akn . . .a1 (written in base (qn)), where 0 ≤ a1 < d1 − 1 (ζn = 1), then s(n, m) = p1 if m = n + 1, s(n, m) = 1 − p1 if 
m = n and s(n, m) = 0 otherwise. Now, if ζn ≥ 2 and n = akn . . .aζn (dζn−1 − 1) . . . (d1 − 1), then

s(n,m) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(1 − pr+1)
∏r

j=1 p j , m = n − ∑r
j=1(d j − 1)q j−1,

= akn . . .aζn (dζn−1 − 1) . . . (dr+1 − 1)0 . . . 0,

for somer ≤ ζn − 1,

1 − p1 , m = n ,∏ζn
j=1 p j , m = n + 1 = akn . . .aζn+1(aζn + 1)0 . . . 0 ,

0 , otherwise .

(1)

With the transition probabilities, we obtain the countable transition matrix of the AMFCd̄,p̄ stochastic machine S = Sd̄,p̄ =
(s(n, m))n,m≥0. As an example, the first entries of the matrix S associated with base 3 (d j = 3 for all j ≥ 1) are given below:
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − p1 p1 0 0 0 0 0 0 0 0 · · ·
0 1 − p1 p1 0 0 0 0 0 0 0 · · ·

p1(1 − p2) 0 1 − p1 p1 p2 0 0 0 0 0 0 · · ·
0 0 0 1 − p1 p1 0 0 0 0 0 · · ·
0 0 0 0 1 − p1 p1 0 0 0 0 · · ·
0 0 0 p1(1 − p2) 0 1 − p1 p1 p2 0 0 0 · · ·
0 0 0 0 0 0 1 − p1 p1 0 0 · · ·
0 0 0 0 0 0 0 1 − p1 p1 0 · · ·

p1 p2(1 − p3) 0 0 0 0 0 p1(1 − p2) 0 1 − p1 p1 p2 p3 · · ·
...

...
...

...
...

...
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that S is doubly stochastic if and only if 
∏+∞

j=1 p j = 0. In fact, S is stochastic and the sum of coefficients of every 
column is 1, except the first one, whose sum is 1 − ∏+∞

j=1 p j .

Given a sequence of nonnegative integers d̄ = (d j) j≥0, d0 = 1 and d j > 1 for j > 1, and of probabilities p̄ = (p j) j≥1, 
p j ∈ (0, 1], we can show that the AMFCd̄,p̄ chain is irreducible if and only if p j < 1 for infinitely many j’s. Moreover, when 
p j = 1 for every j ≥ 1, we have that the AMFCd̄,p̄ stochastic machine is the deterministic shift map n �→ n + 1 on Z+ .

We also have (analogous to [7]) that the AMFCd̄,p̄ Markov chain is null recurrent if and only if 
∏+∞

j=1 p j = 0; otherwise the 
chain is transient. The proof in [7] is for a constant base, di = d for every i ≥ 1, however the generalization is straightforward.

Let � ∈ {c0, c, lq, 1 ≤ q ≤ ∞}. We denote by �′ the dual of �. We also denote by σ(�, ̄d, p̄), σp(�, ̄d, p̄), σr(�, ̄d, p̄)

and σc(�, ̄d, p̄) respectively the spectrum, point spectrum, residual spectrum and continuous spectrum of Sd̄,p̄ acting as a 
linear operator on �. Recall that λ belongs to σ(�, ̄d, p̄) (resp. σp(�, ̄d, p̄)) if (S − λI) is not bijective (resp. not one to 
one). If (S − λI) is one to one and not onto, then λ ∈ σr(�, ̄d, p̄) if (S − λI)(�) is not dense in �, otherwise, we say that 
λ ∈ σc(�, ̄d, p̄).

For all j ≥ 1, let f j(z) :=
(

z−(1−p j)

p j

)d j
and f̃ j := f j ◦ ... ◦ f1. Also set f̃0 as the identity function on C and Ed̄,p̄ :=

{
z ∈ C :

( f̃ j(z)) j≥0 is bounded
}

. The set ∂ Ed̄,p̄ is what is called a fibered Julia set and Ed̄,p̄ the filled-in fibered Julia set associated 
with the sequence of maps ( f j) j≥1, see [9].

Theorem 2.1. Let p̄ = (pi)i≥0 ∈ (0, 1]N and d̄ = (di)i≥0 where d0 = 1 and (di)i≥1 ∈ {2, 3, 4, ...}N . Let � ∈ {c0, c, lα, 1 ≤ α ≤ ∞}. 
Then the spectrum of the AMFCd̄,p̄ transition operator acting on � is equal to the fibered Julia set Ed̄,p̄ , i.e. σ(�, ̄d, p̄) = Ed̄,p̄ .

Outline of the proof. Using the auto-similarity of the operator S , we can prove that for v = (vn)n≥0 ∈ C
∞ and λ ∈ C, we 

have that S v = λv , if and only if, for all n ≥ 1, vn = an v0 where an = ∏kn
r=1(ιλ(r))

br (n) for all n ≥ 1, br(n) is the r digit of n
in its expansion in base (qi)i≥0 and ιλ(r) = ι(r) satisfies:

ι(1) = λ

p1
− 1 − p1

p1
and ι( j + 1) = ι( j)d j

p j+1
− 1 − p j+1

p j+1
, ∀ j > 1. (2)

Now we consider first the case � = l∞ . Suppose that λ ∈ Ed̄,p̄ , then using triangle inequality, we can prove that | f̃n(λ)| ≤
1 for all n ≥ 1. Since ιλ(n) = ( hn ◦ f̃n−1 )(λ) where hn(z) = z

pn
− 1−pn

pn
, a simple computation yields that supn |ιλ(n)| ≤ 1 and 

supn |an| ≤ 1. Hence λ ∈ σp(�, ̄d, p̄). Therefore, we have proved that Ed̄,p̄ ⊂ σp(�, ̄d, p̄).

For the other inclusion, we first need to introduce a notation. Let d̄ j = (di+ j)i≥1 and define p̄ j analogously. Now consider 

S̃d̄,p̄ := Sd̄,p̄−(1−p1)I

p1
, which is also a stochastic operator acting on Z+ . We can prove that S̃d̄,p̄ is associated with a irreducible 

Markov chain with period d1. Thus S̃d1

d̄,p̄
has d1 communication classes (see [8] and [7] for the case di = d for all i > 1). It is 

straightforward to verify that the communication classes of S̃d1

d̄,p̄
are { j ∈ N : j = n mod d1}, 0 ≤ n ≤ d1 − 1. Furthermore, 

S̃d1

d̄,p̄
acts on each of these classes as a copy of Sd̄2,p̄2, . Therefore, the spectrum of S̃d1

d̄,p̄
is equal to the spectrum of Sd̄2,p̄2

. 

Since, S̃d1

d̄,p̄
= f̃1

(
Sd̄,p̄

)
, by the Spectral Mapping Theorem, we have that f̃1

(
σ(�, ̄d, p̄)

) = σ(�, ̄d2, p̄2). By induction, we have 

that f̃ j+1
(
σ(�, ̄d, p̄)

) = σ(�, ̄d j+1, p̄ j+1), for every j ≥ 1. Since Sd̄ j+1,p̄ j+1
is a stochastic operator, its spectrum is a subset 

of D(0,1). Therefore | f̃ j+1
(
λ
)| ≤ 1, for every j and λ ∈ σ(�, ̄d, p̄). This implies that σ(�, ̄d, p̄) ⊂ Ed̄,p̄ . Observe that the last 

inclusion is also true for all � ∈ {c0, c, lq, 1 ≤ q < ∞}.
Now, suppose that � ∈ {c0, c}. Since (�′)′ = l∞ , by duality and Phillips Theorem (see [10]), we obtain

σ(�, d̄, p̄) = σ ′(l1, d̄, p̄) = σ(l∞, d̄, p̄) = E ¯ .
d,p̄
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Now, if � = lq, q ≥ 1, then we can prove that if λ ∈ Ed̄,p̄ \ σp(�, ̄d, p̄), v(n) = (v(n)

k )k≥0 where v(n)

k = ak for k < n and 
v(n)

k = 0 for k ≥ n (ak defined above), then (S −λI)(v(n))/||v(n)||q converges to 0 (in lq) as n goes to infinity. Hence λ belongs 
to the approximate point spectrum of S and we are done. �
2.1. Residual spectrum

Theorem 2.2. 1. For � ∈ {c0, c, lq, 1 < q ≤ ∞}, we have that the residual spectrum of the AMFCd̄,p̄ transition operator acting on �
is empty, i.e. σr(�, ̄d, p̄) = ∅.

2. For � = l1 , if 
∏∞

i=1 pi = 0, then σr(�, ̄d, p̄) contains a countable subset X of the boundary of Ed̄,p̄ . Precisely X = ⋃+∞
n=1 f̃ −1

n {1} \⋃+∞
n=1 f̃ −1

n {0}.

Sketch of the proof. Fix the space � ∈ {c0, c, lq, q > 1}. From classical operator theory, we have that the residual spectrum 
of S is a subset of the point spectrum of the adjoint operator S ′ on the dual space �′ . Now if w = (wn)n≥1 ∈ �′ is 
such that w �= 0 and S ′w = λw , then we can prove (see [8]) that for all n ≥ 1, wn = 1

an
w0 where an is defined in the 

proof of Theorem 2.1. Since w ∈ l1 if � ∈ {c0, c} and w ∈ l
q

q−1 if � = lq, q > 1, we deduce that lim |an| = +∞. Hence 
lim |ι(n)| = lim |aqn | = +∞, this is a contradiction since λ ∈ σ(S), thus σr(�, ̄d, p̄) is empty.

Now, assume that � = l1 and 
∏∞

i=1 pi = 0. From usual results in operator theory (see [3]), we know that σr(l1, ̄d, p̄) ⊂
σ ′

p(l∞, ̄d, p̄) ⊂ σr(l1, ̄d, p̄) ∪ σp(l1, ̄d, p̄). Since 
∏∞

i=1 pi = 0, then we can prove (see [8]) that σp(l1, ̄d, p̄) = ∅. Thus 
σr(l1, ̄d, p̄) = σ ′

p(l∞, ̄d, p̄). We deduce that

σ ′
r (l

∞, d̄, p̄) ⊂ {
λ ∈C : (1/an)n≥1 is bounded

}
.

With this, we obtain that σr(l1, ̄d, p̄) ⊂ X . �
Remark 2.1. We can prove (see [8]) that: if 

∏∞
i=1 pi = 0, (dn)n≥0 is bounded and lim sup pn < 1, then σr(l1, ̄d, p̄) =⋃+∞

n=0 f̃ −1
n {1} \ ⋃+∞

n=1 f̃ −1
n {0}.

If 
∏∞

i=1 pi > 0, then σr(l1, ̄d, p̄) ∩ ⋃+∞
n=1 f̃ −1

n {1} = ∅. In this case, we conjecture that σr(l1, ̄d, p̄) is empty.

2.2. Point spectrum

Theorem 2.3. The following results hold:
1. For � ∈ {c0, lq, q ≥ 1}, if (pi)i≥0 does not converge to 1, then the point spectrum of the AMFCd̄,p̄ transition operator acting on �

is empty, i.e. σp(�, ̄d, p̄) = ∅.
2. If lim j→∞ p j = 1, then σp(c0, ̄d, p̄) is not empty. Moreover if p j ≥ 2(

√
2 − 1) for every j ≥ 1, then 0 ∈ Ed̄,p̄ and σp(c0, ̄d, p̄) is 

equal to the connected component of int(Ed̄,p̄) that contains 0.

Sketch of the proof. 1. Suppose that there exists λ ∈ σp(�, ̄d, p̄). Since � ⊂ l∞ , we have that an eigenvector v = (vi)i≥0 in �, 
associated with λ, satisfies vn = an v0 for all n ≥ 1 where an is given in Theorem 2.1 Hence limn→∞ ιλ(n) = limn→∞ aqn = 0. 
By (2), we deduce that (pi)i≥1 converges to 1. Thus if (pi)i≥1 does not converge to 1, σp(�, ̄d, p̄) = ∅.

2. Put ρ = 2(
√

2 − 1) and O  = B(0, ρ/2) ⊂ C, the ball of radius ρ/2 centered at 0. We can show the following assertion 
(see [8]): if lim j→∞ p j = 1 and if there exists j0 such that inf j≥ j0 p j ≥ ρ and ιλ( j0) ∈ O , then lim j→∞ |ιλ( j)| = 0. Here is 
worth to point out where the choice of ρ came from. For r = ρ/2 we have that

r = r2

ρ
+ 1 − ρ

ρ
,

then |ι( j)| ≤ r and p j ≥ ρ implies that

|ι( j + 1)| ≤ |ιλ( j)|d j

p j+1
+ 1 − p j+1

p j+1
≤ r2

ρ
+ 1 − ρ

ρ
= r .

Thus if |ι( j)| ≤ r and p j ≥ ρ for every sufficiently large j, we can keep the sequence (ι( j)) bounded away from one.
Since lim j→∞ |ιλ( j)| = 0 implies that λ ∈ σp(c0, ̄d, p̄), we have that g−1

j

(
O

) ⊂ σp(c0, ̄d, p̄) for j ≥ j0, where g j(λ) = ιλ( j). 
Thus σp(c0, ̄d, p̄) �= ∅.

Now suppose that p j ≥ 2(
√

2 − 1) for every j ≥ 1. Therefore O  ⊂ Ed̄,p̄ , in particular 0 ∈ Ed̄,p̄ . Let V be the connected 
component of int(E ¯ ) that contains 0. Note that for any d ≥ 2 and p > ρ , we have that g(O ) ⊂ O where
d,p̄
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g(z) = zd

p
− 1 − p

p
.

Then, gn(O ) ⊂ O for all integer n ≥ 1.
It is easy to see that {λ ∈ C, limn→∞ gn(λ) = 0} = ⋃+∞

n=1 g−1
n (O ).

Let z0 be a critical point of gn, n ≥ 1. Since gn = hn ◦ f̃n−1, then f̃ ′
n−1(z0) = 0. By the chain rule for derivatives, we 

deduce that there exists 1 ≤ k ≤ n − 2 such that f̃k(z0) = 0. Hence gn(z0) = hn ◦ fn−1 ◦ . . . ◦ fk+1(0).
Since lim j→∞ p j = 1 and pi ≥ ρ = 2(

√
2 − 1) for all i ≥ 1, then we can prove that z0 ∈ g−1

n (O ) for all n ≥ 1. Thus we 
deduce by Riemann–Hurwitz formula, that g−1

n (O ) is connected for any integer n ≥ 1. Since g−1
n (O ), n ≥ 1, is a sequence of 

increasing sets, we deduce that 
⋃+∞

n=1 g−1
n (O ) is a connected set. Hence {λ ∈ C, limn→∞ gn(λ) = 0} ⊂ V .

On the other hand, (gn)n≥1 is a uniformly bounded sequence of holomorphic functions defined on an open subset V ⊂
int(Ed̄,p̄). Hence, we deduce by the Arzelà–Ascoli Theorem that (gn)n≥1 is normal in V . That is, there exists a subsequence 
(gnk )k≥1 of (gn)n≥1 such that gnk converges to a function g on every compact subset of V .

Since gn converges uniformly on O to 0, we have that gn converges uniformly on compact sets in V to g = 0. Hence 
V ⊂ {λ ∈C, limn→∞ gn(λ) = 0} and we are done. �
Remark 2.2. We can prove (see [8]) that if q ≥ 1 and 

∑∞
j=1(1 − p j)

q = ∞, then σp(lq, ̄d, p̄) = ∅. Moreover, if (pi)i≥0 is 
monotone increasing, p j ≥ 2(

√
2 − 1) for every j ≥ 1 and 

∑∞
j=1(1 − p j)

q < ∞, then σp(lq, ̄d, p̄) equals the connected 
component of int(Ed̄,p̄) that contains 0. In particular, in l1, transience is equivalent to the fact that σp(l1, ̄d, p̄) is not empty.

2.3. Comparison with other systems of numeration, open problems and other relevant connections

Analogous results to Theorems 2.1 and 2.2 were obtained in [1], in the case dn = 2 for all n > 1 and 0 < pi = p < 1 for 
all i ≥ 1. The extension of these two results for Cantor systems of numeration is hard and non-trivial.

In [7], we studied the case dn = d > 2 for all n > 1 and 0 < pi = p < 1 for i ≥ 1. We obtained a result similar to 
Theorem 2.1 just for � = l∞ .

Theorem 2.3 was not obtained for any other system of numeration. For instance, many of the questions answered here 
remain open for Fibonacci-type bases also discussed in [1].

Just to mention an important connection, the study of these spectra gives information about the dynamical properties of 
transition operators acting on separable Banach spaces (see for instance [2]). For example, if the operator S of the AMFCd̄,p̄
acting on a separable Banach space � is topologically transitive, then the point spectrum of the adjoint S ′ acting in the 
dual space �′ is empty, and hence the residual spectrum of S acting on � is empty. Another characterization is that if S is 
topologically transitive, then any connected component of the spectrum intersects the unit circle. However, we do not aim 
here to the study of the dynamical properties of the transition operators of the AMFC Markov chains.
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