Mathematical analysis

Periods of L^{2}-forms in an infinite-connected planar domain

Périodes de formes L^{2} dans un domaine plan infiniment connexe
 Mikhail Dubashinskiy ${ }^{1,2}$
 Chebyshev Laboratory, St. Petersburg State University, 14th Line 29b, Vasilyevsky Island, Saint Petersburg 199178, Russia

A R T I C L E I N F O

Article history:

Received 29 January 2016
Accepted 14 September 2016
Available online 28 September 2016
Presented by Gilles Pisier

Abstract

Let $\Omega \subset \mathbb{R}^{2}$ be a countably-connected domain. In Ω, consider closed differential forms of degree 1 with components in $L^{2}(\Omega)$. Further, consider sequences of periods of such forms around holes in Ω, i.e. around bounded connected components of $\mathbb{R}^{2} \backslash \Omega$. For which domains Ω the collection of such a period sequences coincides with ℓ^{2} ? We give an answer in terms of metric properties of holes in Ω.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Soit $\Omega \subset \mathbb{R}^{2}$ un domaine infiniment connexe. Considérons des formes différentielles fermées dans Ω de degré 1 et à composantes dans $L^{2}(\Omega)$. Considérons de plus les suites de périodes de formes telles autour de trous dans le domaine Ω, c'est-à-dire autour des composantes connexes bornées de $\mathbb{R}^{2} \backslash \Omega$. Quels sont les domaines Ω tels que l'ensemble de ces suites de periodes coïncide avec ℓ^{2} ? On obtient un critère en termes de propriétés métriques des trous dans Ω.
© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Statement of the problem

In this paper, we announce a result to be published later [2]. Let us start with some definitions.

1.1. Interpolation of forms by their periods

Let \mathbb{D} be the unit disk in the plane $\mathbb{C} \simeq \mathbb{R}^{2}$. Suppose that connected compact sets $B_{1}, B_{2}, \cdots \subset \mathbb{D}$ are pairwise disjoint and accumulate only to unit circle \mathbb{T}. Also we assume that each B_{j} does not separate the plane. Consider a planar countably

[^0]connected domain $\Omega:=\mathbb{D} \backslash \bigcup_{j=1}^{\infty} B_{j}$; sets B_{1}, B_{2}, \ldots are called holes in Ω (unbounded connected component of $\mathbb{R}^{2} \backslash \Omega$ will have a special status).

Consider the following Hilbert space of real differential forms of degree 1 in Ω :

$$
L_{c}^{2,1}(\Omega)=\left\{\omega \text { - 1-form in } \Omega,\|\omega\|_{L_{c}^{2,1}(\Omega)}^{2}:=\int_{\Omega}|\omega|^{2} \mathrm{~d} \lambda_{2}<+\infty, \mathrm{d} \omega=0 \text { in the sense of distributions }\right\}
$$

Here, if $\omega=\omega_{x} \mathrm{~d} x+\omega_{y} \mathrm{~d} y$, then $|\omega|:=\sqrt{\omega_{x}^{2}+\omega_{y}^{2}} ; \lambda_{2}$ is the Lebesgue measure in \mathbb{R}^{2}.
For any $j=1,2, \ldots$, pick a closed oriented curve γ_{j} in Ω such that γ_{j} winds around hole B_{j} once in the positive direction and does not wind around other holes $B_{j^{\prime}}, j^{\prime} \neq j$. Period functional $\operatorname{Per}_{j}: L_{c}^{2,1}(\Omega) \rightarrow \mathbb{R}, \operatorname{Per}_{j}(\omega):=\int_{\gamma_{j}} \omega$ is well defined and continuous in $L_{c}^{2,1}(\Omega)$ (see, e.g., [3]). Now, define the period operator: for $\omega \in L_{c}^{2,1}(\Omega)$ put $\operatorname{Per} \omega:=\left\{\operatorname{Per}_{j}(\omega)\right\}_{j=1}^{\infty}$.

Definition 1. We say that domain Ω has complete interpolation property if operator Per: $L_{c}^{2,1}(\Omega) \rightarrow \ell^{2}$ is bounded and surjective.

The problem of interpolation by periods is to describe domains Ω possessing the complete interpolation property in terms of the metric characteristics of the layout of holes B_{j} in Ω. By change of variable, we ensure that our problem is invariant under the action of a conformal mapping that does not turn Ω inside out.

1.2. Equilibrium currents

The question of interpolation by periods is motivated by the following higher-dimensional problem on the equilibrium current (see [6]). Consider a multiply-connected compact subset K, say, in \mathbb{R}^{3}. Let S_{1}, S_{2}, \ldots be some sequence of, say, smooth compact surfaces (sections) with boundaries with $\partial S_{j} \cap K=\varnothing, S_{j} \cap K \neq \varnothing, j=1,2, \ldots$. Let us search for an electric current \vec{I} supported on K such that $\operatorname{div} \vec{I}=0$, the flows $\int_{S_{j}} \vec{I}_{n}$ have prescribed values, and the current \vec{I} minimizes the energy $\int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{\langle\vec{I}(x), \vec{I}(y)\rangle \mathrm{d} x \mathrm{~d} y}{|x-y|}$ among all such currents. This is a certain analog of a classical problem on the equilibrium charge on a compact set, but the condition $\operatorname{div} \vec{I}=0$ makes these two problems non-equivalent. We would like to work with such a statement for arbitrarily non-smooth compact subsets K (one of the questions is, for example, in what amount the minimum of energy depends on the choice of the sections).

With an electric current \vec{I}, one associates its Biot-Savart magnetic field $\mathrm{BS}^{\vec{I}}:=\operatorname{curl}(\vec{I} \star 1 /|x|)$, where \star is the convolution. If $\vec{f}=\mathrm{BS}^{\vec{l}}$, then, in terms of such \vec{f}, we have the following problem of interpolation in the exterior domain: to find a field \vec{f} in $\mathbb{R}^{3} \backslash K$ such that curl $\vec{f}=0$, circulations $\int_{\partial S_{j}} \vec{f}_{\tau}$ have prescribed values and $\|\vec{f}\|_{L^{2}\left(\mathbb{R}^{3} \backslash K\right)}$ is minimal under these conditions. To the author's knowledge, the planar version of the interpolation by periods problem was not studied before.

Before we state a metric criterion for complete interpolation property, let us give some of its equivalent reformulations.

1.3. Interpolation in the Bergman space

Let $\mathscr{A}^{2}(\Omega)$ be the usual (unweighted) Bergman space in Ω. If $f \in \mathscr{A}^{2}(\Omega)$ and curves γ_{j} are as in the above, then we may define the complex period operator $\operatorname{Per}^{\mathbb{C}}$ as $\operatorname{Per}^{\mathbb{C}} f=\left\{\oint_{\gamma_{j}} f(\zeta) d \zeta\right\}_{j=1}^{\infty}$. The interpolation problem in the Bergman space is stated as in $L_{c}^{2,1}(\Omega)$ (just replace Per by $\operatorname{Per}^{\mathbb{C}}$). Domain Ω has the complete interpolation property for forms if and only if it has this property for Bergman functions. This follows from the fact that minimizers of $\|\omega\|_{L_{c}^{2,1}(\Omega)}$ under given periods are harmonic forms in Ω and can be understood as analytic functions. Recall that a form ω is called harmonic if $\mathrm{d} \omega=0, d * \omega=0$, where * is the Hodge star operator.

1.4. Estimates of harmonic functions

In this paragraph, we assume for simplicity that any B_{j} is a closure of a domain with C^{∞}-smooth boundary. Let $\stackrel{\circ}{W}^{1,2}(\mathbb{D})$ be the Sobolev space of functions $u: \Omega \rightarrow \mathbb{R}$ with $\|u\|_{\mathcal{W}^{1,2}(\mathbb{D})}:=\left(\int_{\mathbb{D}}|\nabla u|^{2} \mathrm{~d} \lambda_{2}\right)^{1 / 2}<+\infty$ and $u=0$ on \mathbb{T}. The complete interpolation property of Ω turns out to be equivalent to the following condition: for any $\left\{a_{j}\right\}_{j=1}^{\infty} \in \ell^{2}$, there exists a function $u \in \mathscr{W}^{1,2}(\mathbb{D})$ with $\Delta u=0$ in $\Omega,\left.u\right|_{B_{j}}=a_{j}$ almost everywhere for any $j=1,2, \ldots$, and

$$
\begin{equation*}
C_{1} \cdot\left\|\left\{a_{j}\right\}_{j=1}^{\infty}\right\|_{\ell^{2}} \leq\|u\|_{\mathcal{W}^{1,2}(\mathbb{D})} \leq C_{2} \cdot\left\|\left\{a_{j}\right\}_{j=1}^{\infty}\right\|_{\ell^{2}} \tag{1}
\end{equation*}
$$

with some $C_{1}, C_{2} \in(0,+\infty)$ not depending on $\left\{a_{j}\right\}_{j=1}^{\infty}$. This is clear from the explicit form of reproducing kernels (see below) and Riesz basis condition for these kernels.

1.5. Riesz basis in Hilbert homologies

We may define the L^{2}-cohomology space in Ω as

$$
H_{L^{2}}^{1}(\Omega):=L_{c}^{2,1}(\Omega) /\left\{\omega \in L_{c}^{2,1}(\Omega): \omega=\mathrm{d} u \text { for some } u \in W_{\operatorname{loc}}^{1,2}(\Omega)\right\}
$$

and let $H_{1, L^{2}}(\Omega)$ be the dual of its space; this is the space of Hilbert homologies in Ω. Any curve $\gamma_{j}, j=1,2, \ldots$, can be understood as an element of $H_{1, L^{2}}(\Omega)$. In this language, the complete interpolation property is equivalent to the following: system $\left\{\gamma_{j}\right\}_{j=1}^{\infty}$ is a Riesz basis (see, e.g., [4]) in $H_{1, L^{2}}(\Omega)$.

2. A criterion

To state a necessary and sufficient condition of complete interpolation, let us give some definitions.
We say that holes B_{j} are separated if, for any $j, j^{\prime}=1,2, \ldots, j \neq j^{\prime}$, we have $\operatorname{dist}\left(B_{j}, B_{j^{\prime}}\right) \geq \varepsilon \cdot \min \left\{\operatorname{diam} B_{j}\right.$, $\left.\operatorname{diam} B_{j^{\prime}}\right\}$ with some $\varepsilon>0$ not depending on j and j^{\prime} (symbols dist and diam denote distance and diameter in Euclidean metric).

Denote by $\mathcal{B}_{H}(z, r)$ the open disk of radius $r>0$ in hyperbolic metric $\frac{2|\mathrm{~d} z|}{1-|z|^{2}}$ in \mathbb{D} and centered in some $z \in \mathbb{D}$. Let us say that the holes in domain Ω are uniformly locally finite if there exists $N=N(\Omega)<+\infty$ such that any disk of the form $\mathcal{B}_{H}(z, 1)$ $(z \in \mathbb{D})$ intersects no more than N of holes $B_{j}, j=1,2, \ldots$.

Now, for $S<+\infty$, define a graph $G(\Omega, S)$. Its vertices are sets $B_{j}, j=1,2, \ldots$, and also set $\mathbb{R}^{2} \backslash \mathbb{D}$. If E_{1}, E_{2} are two of such sets, then join them with an edge in $G(\Omega, S)$ if $\operatorname{dist}\left(E_{1}, E_{2}\right) \leq S \cdot \min \left\{\operatorname{diam} E_{1}\right.$, diam $\left.E_{2}\right\}$. (One may also use the condenser capacity to define this graph.) The distance between two vertices in $G(\Omega, S)$ in the graph metric is the number of edges of the shortest path connecting these vertices.

Theorem 2 (Complete interpolation criterion). Domain Ω possesses the complete interpolation property if and only if the following conditions are satisfied.

1. Family of holes $\left\{B_{j}\right\}_{j=1}^{\infty}$ is uniformly locally finite.
2. Holes B_{j} are separated; also, $\sup \left\{\operatorname{diam}_{H}\left(B_{j}\right) \mid j \in \mathbb{N}\right\}<+\infty$, where diam_{H} is the hyperbolic diameter.
3. For some $S<+\infty$, the graph $G(\Omega, S)$ is connected and its diameter in the graph metric is finite.

3. About the proofs

In this section, we assume that each B_{j} is a closure of a domain with C^{∞}-smooth boundary. Theorem 2 in the case of non-smooth holes is obtained by approximation of such holes by smooth ones.

3.1. Reproducing kernels

Let us point out period reproducing kernels (see also [1]).
Proposition 3. For any $j=1,2, \ldots$, there exists a function $\mathfrak{v}_{j} \in \mathscr{W}^{1,2}(\mathbb{D})$ for which $\Delta \mathfrak{v}_{j}=0$ in $\Omega, \mathfrak{v}_{j}=1$ almost everywhere in B_{j} and $\mathfrak{v}_{j}=0$ almost everywhere on $B_{j^{\prime}}$ for any $j^{\prime} \neq j$.

The form $\kappa_{j}=-\left(* d \mathfrak{v}_{j}\right)$ is a period reproducing kernel, i.e. $\left\langle\kappa_{j}, \omega\right\rangle_{L_{c}^{2,1}(\Omega)}=\operatorname{Per}_{j}(\omega)$ for any $\omega \in L_{c}^{2,1}(\Omega)$.
It turns out that $\left\langle\kappa_{j}, \kappa_{j^{\prime}}\right\rangle_{L_{c}^{2,1}(\Omega)}<0$ if $j, j^{\prime}=1,2, \ldots, j \neq j^{\prime}$. This implies, in particular, that the operator Per is bounded provided that $\sup _{j \in \mathbb{N}}\left\|\operatorname{Per}_{j}\right\|_{\left(L_{c}^{2,1}(\Omega)\right)^{*}}<+\infty$. We make essential use of the latter inequality; note that this estimate is equivalent to the following one:

$$
\begin{equation*}
\sup _{j \in \mathbb{N}} \operatorname{Cap}_{2}\left(B_{j}, \mathbb{R}^{2} \backslash\left(\Omega \cup B_{j}\right)\right)<+\infty \tag{2}
\end{equation*}
$$

Here $\mathrm{Cap}_{2}(\cdot, \cdot)$ is the capacity of a condenser with two plates defined as, e.g., in [5].

3.2. Uniform local finiteness

The most difficult part of Theorem 2 is to derive the uniform local finiteness of holes from the complete interpolation property of Ω. We make use of inequality (1) by constructing a function $u \in \mathscr{W}^{1,2}(\mathbb{D})$ with the following properties: for each $j=1,2, \ldots$, the function u is constant almost everywhere in $B_{j},\|u\|_{\mathcal{W}^{1,2}(\mathbb{D})}$ is not large, whereas the values $\left.u\right|_{B_{j}}$ are not very small; then it remains to put into (1) a function $v \in{ }^{\circ}{ }^{1,2}(\mathbb{D})$, which is harmonic in Ω and coincides with u in $\mathbb{D} \backslash \Omega$.

In order to construct such u, we consider a (degenerated) metric $1_{\Omega}|\mathrm{d} z|$ in \mathbb{R}^{2}. Let $\rho(\cdot, \cdot)$ be the inner metric generated by $1_{\Omega}|\mathrm{d} z|$. Define $u(z), z \in \mathbb{R}^{2}$, as the distance in the metric ρ from z to \mathbb{T}. Then $u \in \mathscr{W}^{1,2}(\mathbb{D})$ since $|\nabla u| \leq 1$ almost everywhere, and $u=0$ on \mathbb{T}. Also, all the holes B_{j} collapse into points in metric ρ and hence u is constant on any hole.

It remains to estimate $\left.u\right|_{B_{j}}$ from below. The following inequality easily provides uniform local finiteness:

$$
\begin{equation*}
\left.u\right|_{B_{j}} \geq c_{1} \cdot \operatorname{dist}\left(B_{j}, \mathbb{T}\right) \tag{3}
\end{equation*}
$$

for any $j=1,2, \ldots$, and some $c_{1}>0$ not depending on j. To prove this, we have, according to the definition of u, to estimate $\mathcal{H}^{1}(\Gamma \cap \Omega)$ from below for any parameterized curve Γ starting in B_{j} and ending on \mathbb{T} (\mathcal{H}^{1} is Hausdorff measure).

Under some technical assumptions on Γ, a simple stepwise process leads to the following lemma.

Lemma 4. There exist a sequence of points $z_{0}, w_{0}, \xi_{0}, z_{1}, w_{1}, \xi_{1}, \ldots$ on curve Γ ordered in the direction of increase of parameter of Γ and also a sequence of distinct indices $j_{0}, j_{1}, \ldots \in \mathbb{N}$ such that:

1. for $m=0,1, \ldots$, an arc of curve Γ starting in z_{m} and ending in w_{m} lies entirely in hole $B_{j_{m}}$; point w_{m} is the point of exit of Γ from $B_{j_{m}} ; \Gamma$ does not return to $B_{j_{m}}$ after w_{m};
2. $\left|\xi_{m}-w_{m}\right|=\left|z_{m}-w_{m}\right|$ for $m=0,1, \ldots$;
3. if $\Gamma_{m}, m=0,1, \ldots$, is the arc of Γ from z_{m} to ξ_{m} then $\Gamma \cap\left(\mathbb{R}^{2} \backslash \Omega\right) \subset \underset{m=0,1, \ldots}{\bigcup} \Gamma_{m}$.

If Ω has the complete interpolation property, then estimate (2) for $j=j_{m}$ and the Cauchy-Schwartz inequality imply that $\mathcal{H}^{1}\left(\Gamma_{m} \cap \Omega\right) \geq c_{2} \cdot\left|\xi_{m}-z_{m}\right|$, with some $c_{2}>0$ depending only on $\|\operatorname{Per}\|_{L_{c}^{2,1}(\Omega) \rightarrow \ell^{2}}$. This leads to (3), what was desired.

3.3. Boundedness of Per: poset structure

There is a partial order structure on the set of holes, which expresses the essence of the continuity of operator Per. Denote by $U_{t}(E)$ the open Euclidean t-neighbourhood $(t>0)$ of a set $E \subset \mathbb{R}^{2}$.

Lemma 5. Under the first and second conditions of Theorem 2, it is possible to define a partial order relation \succeq on the set of holes B_{j} and also to associate a set $A_{j} \subset \Omega$ with each hole B_{j}, such that:

1. for each $j=1,2, \ldots$, the set A_{j} is of the form $U_{s_{j}}\left(B_{j}\right) \backslash U_{t_{j}}\left(B_{j}\right)$ for some $t_{j}, s_{j}\left(s_{j}>t_{j}\right)$. Also, $s_{j}-t_{j} \geq c_{2} \cdot$ diam B_{j}, $s_{j} \leq$ $c_{1} \cdot \operatorname{diam} B_{j}$ where $c_{1}, c_{2}>0$ do not depend on j. The overlapness multiplicity of sets A_{j} is bounded from above;
2. $B_{j^{\prime}} \preceq B_{j}$ if and only if $B_{j^{\prime}} \subset U_{t_{j}}\left(B_{j}\right)$. For a fixed j_{0}, the number of indices j for which $B_{j} \preceq B_{j_{0}}$ does not exceed some constant C. In particular, lengths of chains in order \succeq are bounded uniformly. If $B_{j_{1}}, B_{j_{2}} \succeq B_{j}$, then either $B_{j_{1}} \succeq B j_{j_{2}}$ or $B_{j_{2}} \succeq B_{j_{1}}$.

We may force c_{1} to be small; thence, roughly speaking, $B_{k} \prec B_{j}(k \neq j)$ if $\operatorname{diam} B_{k} \ll \operatorname{diam} B_{j}$ and $\operatorname{dist}\left(B_{j}, B_{k}\right) \ll \operatorname{diam} B_{j}$.
Now suppose that all A_{j} are annular domains (this may not, in general, be true). By the first assertion of Lemma 5, A_{j} is wide enough in the sense of extremal length. In this case, for any $j=1,2, \ldots$, we have estimates

$$
\int_{A_{j}}|\omega|^{2} \mathrm{~d} \lambda_{2} \geq c \cdot\left(\sum_{j^{\prime}: B_{j^{\prime}} \leq B_{j}} \operatorname{Per}_{j^{\prime}} \omega\right)^{2}
$$

with some $c>0$ not depending on $\omega \in L_{c}^{2,1}(\Omega)$ and j. Consecutive application of these estimates starting from the minimal holes in sense of order \preceq up to maximal ones gives us the continuity of operator Per.

3.4. Surjectivity of Per

This property is provided by the first and third conditions in Theorem 2. The lower estimate on $\int_{\Omega}|\nabla u|^{2} \mathrm{~d} \lambda_{2}$ in (1) is responsible for the surjectivity of Per. To prove this inequality, we implement the connectivity of $G(\Omega, S)$ in the plane. Namely, if some holes B_{j} and B_{k} are adjacent in $G(\Omega, S)$, then we may construct a wide "road" $R_{j k}$ joining B_{j} and B_{k} in \mathbb{R}^{2}. This road is a planar set such that, if some function u is constant on B_{j} and on B_{k}, then $\int_{R_{j k}}|\nabla u|^{2} \mathrm{~d} \lambda_{2} \geq c \cdot\left|\left(\left.u\right|_{B_{j}}\right)-\left(\left.u\right|_{B_{k}}\right)\right|^{2}$ with some $c>0$ not depending on j and k. Also, the overlapness multiplicity of almost all of these roads is bounded from above. This allows us, for u as in (1), to estimate $\|u\|_{\mathcal{W}^{1,2}(\mathbb{D})}$ from below by passing graph $G(\Omega, S)$ in breadth-first order and starting from its vertices adjacent to $\mathbb{R}^{2} \backslash \mathbb{D}$. The estimates of $\left.u\right|_{B_{j}}$ for the latter vertices are obtained by use of the boundedness of Hardy's average operator.

4. An open question

Our problem is not completely geometrically invariant. For example, an inversion with a center in one of the holes turns domain Ω inside out and throws the problem out of the studied class. Let us give a statement free of such a disadvantage.

If Ω is some domain in \mathbb{R}^{2} (or even a Riemann surface), then consider the following property of Ω.
(\dagger) In the space $H_{1, L^{2}}(\Omega)$, there exists a Riesz basis consisting of integer homologies.
Here $H_{1, L^{2}}(\Omega)$ is defined as above. By an integer homology, we mean a functional of the kind $\omega \mapsto \int_{\beta} \omega$ (ω is a closed 1 -form) delivered by some closed loop $\beta \subset \Omega$. The question is to describe domains (or Riemann surfaces) Ω having property (\dagger).

Let H be an abstract Hilbert space and $\left\{x_{j}\right\}_{j=1}^{\infty}$ be a countable system of vectors in H. Consider the following property of this system:
(\ddagger) space H has a Riesz basis whose elements are linear combinations of vectors $x_{j}, j=1,2, \ldots$, with integer coefficients.
If planar domain Ω and curves γ_{j} are as in Section 1, then the property (\dagger) of Ω is equivalent to the property (\ddagger) of the system $\left\{\gamma_{j}\right\}_{j=1}^{\infty}$ in $H_{1, L^{2}}(\Omega)$.

We do not know any investigation on such integer Riesz bases theory. Let us only note that if $\left\{e_{j}\right\}_{j=1}^{\infty}$ is an orthonormal basis in the Hilbert space H, then it is easy to see that system of the kind $\left\{a_{j} e_{j}\right\}_{j=1}^{\infty}$ with $a_{j} \xrightarrow{j \rightarrow \infty}+\infty$ does not possess the property (\ddagger) in H. This observation allows us to construct domains Ω not having property (\dagger). We thus may conclude that the property (\dagger) is a non-trivial quasiconformal invariant of countably-connected Riemann surfaces.

References

[1] R.D.M. Accola, Differentials and extremal length on Riemann surfaces, Proc. Math. Acad. Sci. USA 46 (4) (1960) 540-543.
[2] M. Dubashinskiy, Interpolation by periods in planar domain, http://arxiv.org/abs/1511.07015, submitted for publication in St. Petersburg Math. J.
[3] B. Fuglede, Extremal Length and Closed Extensions of Partial Differential Operators, Gjellerup, Copenhagen, 1960.
[4] N.K. Nikol'skii, Treatise on the Shift Operator: Spectral Function Theory, Grundlehren Math. Wiss., 1986.
[5] Yu.G. Reshetnyak, Space Mappings with Bounded Distortion, Transl. Math. Monogr., vol. 73, American Mathematical Society, Providence, RI, USA, 1989.
[6] H. Yamaguchi, Equilibrium vector potentials in \mathbb{R}^{3}, Hokkaido Math. J. 25 (1) (1996) 1-53.

[^0]: E-mail address: mikhail.dubashinskiy@gmail.com.
 ${ }^{1}$ Fax: +7 (812) 3636871.
 2 The work is supported by the Russian Science Foundation grant 14-21-00035.

