

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Dynamical systems

On the Anosov character of the Pappus–Schwartz representations

Sur le caractère Anosov des représentations de Pappus-Schwartz

Viviane Pardini Valério

Universidade Federal de Minas Gerais – ICEx – Departamento de Matemática, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, CEP 31.270-901, Caixa Postal 702, Brazil

ARTICLE INFO

Article history: Received 16 April 2016 Accepted after revision 13 September 2016 Available online 19 September 2016

Presented by Claire Voisin

ABSTRACT

In the paper *Pappus's Theorem and The Modular Group* (1993) [4], R.E. Schwartz observed that the classical Pappus theorem gives rise to an action of the modular group on the space of *marked boxes*. He inferred from this a 2-dimensional family of faithful representations of the modular group into the group of projective symmetries. These representations have a dynamical behavior very similar to the one of *Anosov representations*, even if they are never Anosov themselves. In this note, we announce the main result of V. Pardini Valério (2016) [3], which elucidates this Anosov character of the Schwartz representations by proving that their restrictions to the index-2 subgroup are limits of Anosov representations.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Dans l'article *Pappus's Theorem and The Modular Group* (1993) [4], R.E. Schwartz a mis en évidence le fait que le théorème classique de Pappus définit une action intéressante du groupe modulaire sur l'espace des *boîtes marquées*. Ceci lui a permis de construire une famille à deux paramètres de représentations fidèles du groupe modulaire dans le groupe de symétries projectives. Ces représentations ont un comportement dynamique très similaire à celui des représentations d'Anosov, bien que ne l'étant pas elles-mêmes. Dans cette note, nous annonçons le résultat principal de V. Pardini Valério (2016) [3], qui élucide ce caractère Anosov des représentations de Schwartz, en montrant que leurs restrictions au sous-groupe d'indice 2 sont chacune des limites des représentations d'Anosov.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

E-mail address: vivipardini@ufmg.br.

http://dx.doi.org/10.1016/j.crma.2016.09.005

¹⁶³¹⁻⁰⁷³X/© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Pappus theorem and marked boxes

Let *V* be a 3-dimensional vector space and $\mathbb{P}(V)$ the associated projective spaces with *V*.

Theorem 1.1 (*Pappus*). If the points a_1 , a_2 , a_3 are colinear and the points b_1 , b_2 , b_3 are colinear in $\mathbb{P}(V)$, then the points $c_3 = a_1b_2 \cap a_2b_1$, $c_2 = a_1b_3 \cap a_3b_1$, $c_1 = a_2b_3 \cap a_3b_2$ are also colinear in $\mathbb{P}(V)$.

An important fact is that the Pappus Theorem, on certain conditions, can be iterated infinitely many times (see Fig. 1).

Fig. 1. Iteration of the Pappus Theorem; marked box Θ in $\mathbb{P}(V)$.

A **marked box**¹ Θ is a special pair of 6-tuples having the incidences relatives shown in Fig. 1. If $\Theta = ((p, q, r, s; t, b), (P, Q, R, S; T, B))$, then $p, q, r, s, t, b \in \mathbb{P}(V)$, $P, Q, R, S, T, B \in \mathbb{P}(V^*)$, $T \cap B \notin \{p, q, r, s, t, b\}$, S = bp, R = bq, P = ts, Q = tr, T = pq and B = rs. Let *CM* be the set of marked boxes.

The marked box $\Theta = ((p, q, r, s; t, b), (P, Q, R, S; T, B))$ is **convex** if the following two conditions hold: *p* and *q* separate *t* and $T \cap B$ on the line *T*, and *r* and *s* separate *b* and $T \cap B$ on the line *B*. The **convex interior** of Θ is the open convex quadrilateral whose vertices, in cyclic order, are *p*, *q*, *r* and *s* (for more details, see [3, section 2.2]). We denote it by Θ .

1.1. The action of the group of projective symmetries on CM

Let *V* be a 3-dimensional vector space and *V*^{*} its dual vector space. Projective transformations and dualities generate the group \mathcal{G} of projective symmetries of the flag variety \mathcal{F} . Projective transformations alone define an index-2 subgroup $\mathcal{H} \cong PGL(3, \mathbb{R})$ of \mathcal{G} .

Given a projective transformation \mathcal{T} , and using the notation $\hat{x} = \mathcal{T}(x)$ for every point or line x in $\mathbb{P}(V)$, and for any marked box $\Theta = ((p, q, r, s; t, b), (P, Q, R, S; T, B))$, define (see Fig. 1):

$$\mathcal{T}(\Theta) = ((\hat{p}, \hat{q}, \hat{r}, \hat{s}; \hat{t}, \hat{b}), (\hat{P}, \hat{Q}, \hat{R}, \hat{S}; \hat{T}, \hat{B})) \in CM.$$

Similarly, given a duality \mathcal{D} , and denoting $x^* = \mathcal{D}(x)$ for $x \in \mathbb{P}(V)$, and $X^* = \mathcal{D}^*(X)$ for X being a projective line, define (pay attention to the maybe surprising Schwartz re-ordering):

 $\mathcal{D}(\Theta) = ((P^*, Q^*, S^*, R^*; T^*, B^*), (q^*, p^*, r^*, s^*; t^*, b^*)) \in CM.$

1.2. The group of elementary transformations of marked boxes

Let $\Theta = ((p, q, r, s, t, b), (P, Q, R, S, T, B)) \in CM$. Pappus' Theorem gives us two new elements of *CM* that are images of Θ by two special permutations τ_1 and τ_2 on *CM* (see Fig. 2). These permutations are defined by

 $\tau_1(\Theta) = ((p, q, QR, PS; t, (qs)(pr)), (P, Q, qs, pr; T, (QR)(PS))),$

 $\tau_2(\Theta) = ((Q R, PS, s, r; (qs)(pr), b), (pr, qs, S, R; (Q R)(PS), B)).$

¹ In this brief note, we abusively do not distinguish overmarked boxes from marked boxes as in [3] and [4].

Fig. 2. Permutations τ_1 and τ_2 ; convex interiors of $\tau_1(\Theta)$ and $\tau_2(\Theta)$ in $\mathbb{P}(V)$ when Θ is convex.

There is also a natural involution, denoted by i, on the set of marked boxes, which gives us another new box (see Fig. 3). This involution is defined by

 $i(\Theta) = ((s, r, p, q; b, t), (R, S, Q, P; B, T)).$

Fig. 3. Permutation *i* and convex interior of $i(\Theta)$ in $\mathbb{P}(V)$ when Θ is convex.

Let S(CM) be the group of permutations on CM. The elements *i*, τ_1 , τ_2 of S(CM) generate a group \mathfrak{G} that we call **group** of elementary transformations of marked boxes.

In [4], it is proved that the action of \mathfrak{G} on *CM* is free. In particular, \mathfrak{G} is isomorphic to the modular group $PSL(2, \mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/3\mathbb{Z}$.

2. Schwartz representations

2.1. Construction of Schwartz representations

Remark 1. If Θ is a convex marked box, $\tau_1(\Theta)$ and $\tau_2(\Theta)$ are two new marked boxes with convex interiors contained in the convex interior of Θ . On the other hand, the marked box $i(\Theta)$ does not have convex interior contained in the interior of Θ . Arising this, Schwartz observed that the convexity of Θ ensures the nesting property of the marked boxes of \mathfrak{G} -orbit of Θ (for more details, see [3, section 2.5.2]); thus combinatorics of \mathfrak{G} -orbit of Θ are nicely described by the Farey graph and its associated PSL(2, \mathbb{Z})-invariant triangulation \mathcal{L}_o of \mathbb{H}^2 : the oriented leaves (geodesics) of \mathcal{L}_o can be labeled by elements of the \mathfrak{G} -orbit, giving rise to an action of $\mathfrak{G} \cong PSL(2, \mathbb{Z})$ commuting with the action of PSL(2, \mathbb{Z}) by isometries.

Theorem 2.1 (Schwartz representation theorem). Let Θ be a convex marked box. Then, there is a faithful representation ρ_{Θ} : PSL $(2, \mathbb{Z}) \to \mathcal{G}$ which takes isometries of PSL $(2, \mathbb{Z})$ to projective symmetries of \mathcal{G} respecting the labeling of \mathcal{L}_0 ; i.e., such that for every Farey geodesic e and every $\gamma \in PSL(2, \mathbb{Z})$, we have:

 $\Theta(\gamma e) = \rho_{\Theta}(\gamma)(\Theta(e))$ (ρ_{Θ} -equivariant property).

Proof. The proof follows basically from the fact that the actions of $PSL(2, \mathbb{Z})$ and \mathfrak{G} on \mathcal{L}_o commute with each other (Remark 1), even if the actions of \mathfrak{G} and \mathcal{G} on *CM* commute with each other (see [4, Theorem 2.4] and, for more details, [3, Lemma 3.1, Theorem 3.2]). Already the fact that $\rho_{\Theta} : PSL(2, \mathbb{Z}) \to \mathcal{G}$ is a faithful representation follows from the fact that the action of $PSL(2, \mathbb{Z})$ on \mathcal{L}_o is free. \Box

2.2. The Schwartz map

Two Farey geodesics have the same tail in $\partial \mathbb{H}^2$ if and only if their labels are marked boxes with the same top point. Therefore, it defines a map $\varphi : \mathbb{Q} \cup \{\infty\} \to \mathbb{P}(V)$ that can be extended to an injective ρ_{Θ} -equivariant continuous map $\varphi_o : \partial \mathbb{H}^2 \to \mathbb{P}(V)$ (see [4, Theorem 3.2]). Similarly, there is an injective ρ_{Θ} -equivariant continuous map $\varphi_o^* : \partial \mathbb{H}^2 \to \mathbb{P}(V^*)$. The maps φ_o and φ_o^* combine to form a ρ_{Θ} -equivariant map:

$$\Phi := (\varphi_0, \varphi_0^*) : \partial \mathbb{H}^2 \to \mathcal{F} \subset \mathbb{P}(V) \times \mathbb{P}(V^*),$$

where \mathcal{F} is the flag variety. We call the composition of Φ with the canonical projection of $\partial PSL(2, \mathbb{Z})$ into $(\partial \mathbb{H}^2)$ the **Schwartz map**, where $\partial PSL(2, \mathbb{Z})$ is the Gromov boundary.

3. Anosov representations

The Anosov representation theory was introduced by François Labourie in [2] for representations of closed surface groups. It does not apply directly to the modular group $PSL(2, \mathbb{Z})$. However $PSL(2, \mathbb{Z})$ is Gromov-hyperbolic. Hence we use here a formulation inspired from [1], in the simple case of convex cocompact subgroups of $PSL(2, \mathbb{R})$.

3.1. Definition of Anosov representations

Given $x \in \mathbb{P}(V)$, let $Q_x(V)$ be the space of norms on tangent space $T_x\mathbb{P}(V)$ at x. Similarly, given $X \in \mathbb{P}(V^*)$, let $Q_X(V^*)$ be the space of norms on tangent space $T_X\mathbb{P}(V^*)$ at X. We denote by Q(V) the bundle of base $\mathbb{P}(V)$ with fiber $Q_x(V)$ on $x \in \mathbb{P}(V)$. Similarly, we denote by $Q(V^*)$ the bundle of base $\mathbb{P}(V^*)$ with fiber $Q_X(V^*)$ on $X \in \mathbb{P}(V^*)$. Let $\Omega(\phi^t)$ be the nonwandering set of the geodesic flow ϕ^t on $T^1(\Gamma \setminus \mathbb{H}^2)$.

Definition 3.1. Let Γ be a convex cocompact discrete subgroup of $PSL(2, \mathbb{R})$ with limit set Λ_{Γ} . A homomorphism $\rho : \Gamma \to \mathcal{H} \cong PGL(3, \mathbb{R})$ is an **Anosov representation** if there are

(*i*) a Γ -equivariant map

$$\Phi = (\varphi, \varphi^*) : \Lambda_{\Gamma} \to \mathcal{F} \subset \mathbb{P}(V) \times \mathbb{P}(V^*).$$

- (*ii*) two maps $\nu_+ : \Omega(\phi^t) \to Q(V)$ and $\nu_- : \Omega(\phi^t) \subset \to Q(V^*)$ such that, for every nonwandering geodesic $c : \mathbb{R} \to \mathbb{H}^2$ with extremities $c_-, c_+ \in \Lambda_{\Gamma}$ we have that
 - for all $v \in T_{\varphi(c_+)}\mathbb{P}(V)$ the size of v for the norm $v_+(c(t), c'(t))$, increases exponentially with t;
 - for all $v \in T_{\varphi^*(c_-)} \mathbb{P}(V^*)$ the size of v for the norm $v_-(c(t), c'(t))$, decreases exponentially with t.

The group Γ of this definition is a Gromov-hyperbolic group. Since it is convex cocompact, its Gromov boundary $\partial\Gamma$ is Γ -equivariantly homeomorphic to its limit set Λ_{Γ} .

In the sequel, we will consider Anosov representations of a finite index subgroup of $PSL(2, \mathbb{Z})$, which is not convex cocompact. But we replace simply $PSL(2, \mathbb{Z})$ by a convex cocompact discrete subgroup of $PSL(2, \mathbb{R})$ obtained by "opening the cusps", thus we build an example on a 3-fold symmetric 3-punctured sphere having geodesic boundaries of small length.

3.2. Schwartz representations are not Anosov

The Schwartz representation ρ_{Θ} preserves a topological circle in the flag variety, on which it is topologically conjugated to the usual action of PSL(2, \mathbb{Z}) on the conformal boundary of the hyperbolic plane. This property is very similar to the one associated with Anosov representations of surface groups into PGL(3, \mathbb{R}). However, ρ_{Θ} cannot be Anosov since the Gromov boundary of PSL(2, \mathbb{Z}) is a Cantor set and not a circle. Thus the Schwartz maps φ and φ^* cease to be injective, contradicting a property of Anosov representations.

4. A new family of representations

In order to show that Schwartz representations are limits of Anosov representations, we define a new group of transformations of *CM*.

4.1. A new group of transformations of CM

Let $\Theta = ((p, q, r, s; t, b), (P, Q, R, S; T, B))$ be a convex marked box. Let us consider the unique affine chart in P(V) such that Θ is seen as the "special square" where p = (-1, 1), q = (1, 1), r = (1, -1) and s = (-1, -1). Let λ and μ be real numbers. Let $\sigma_{(\lambda,\mu)} : CM \to CM$ be a new transformation of marked boxes such that the image of Θ is given by applying the matrix $\Sigma_{(\lambda,\mu)} = \begin{pmatrix} e^{\lambda} & 0 \\ 0 & e^{\mu} \end{pmatrix}$ to this special square in $\mathbb{P}(V)$. This new transformation has some interesting properties:

- (1) it commutes with elements of \mathcal{H} (projective transformations), but **it does not** commute with elements of $\mathcal{G} \setminus \mathcal{H}$ (dualities) acting on *CM*.
- (2) considering the particular case where $\mu = 2\lambda$ and let $\sigma_{\lambda} := \sigma_{(\lambda, 2\lambda)}$, then the relation $i\sigma_{\lambda} = \sigma_{\lambda}^{-1}i$ holds.

Let us define three more new transformations on CM as follows:

$$i^{\lambda} := \sigma_{\lambda} i \qquad \tau_1^{\lambda} := \sigma_{\lambda} \tau_1 \qquad \tau_2^{\lambda} := \sigma_{\lambda} \tau_2.$$

The semigroup \mathfrak{G}^{λ} of S(CM), generated by i^{λ} , τ_1^{λ} and τ_2^{λ} , is also an isomorphic group to the modular group (PSL(2, \mathbb{Z}) $\cong \mathfrak{G}^{\lambda} \mathfrak{G} \mathfrak{G}^{\lambda}$) and, for $\lambda = 0$, of course $\mathfrak{G}^{\lambda} = \mathfrak{G}$.

4.2. New representations

Given a convex marked box Θ and a real number λ , again let us consider the Farey lamination \mathcal{L}_0 of \mathbb{H}^2 introduced in Remark 1; and the new group \mathfrak{G}^{λ} of transformations of *CM*. In order to circumvent the inconvenient of \mathfrak{G}^{λ} not commuting with dualities acting on *CM*, we restrict to the unique index 2 subgroup $PSL(2, \mathbb{Z})_0$ of $PSL(2, \mathbb{Z})$, isomorphic to $\mathbb{Z}_3 * \mathbb{Z}_3$. The main Theorem announced in this note is:

Theorem 4.1. Let Θ be a convex marked box and let $\lambda \in \mathbb{R}$. There is a representation $\rho_{\Theta}^{\lambda} : \text{PSL}(2, \mathbb{Z})_0 \to \mathcal{H} \triangleleft \mathcal{G}$ such that for every leaf e of \mathcal{L}_0 and every $\gamma \in \text{PSL}(2, \mathbb{Z})_0$ we have:

$$[\Theta](\gamma e) = \rho_{\Theta}^{\lambda}(\gamma)([\Theta](e))$$

Moreover, if λ is negative, then ρ_{Θ}^{λ} is Anosov.

The key point of the our construction is: if $\lambda \leq 0$, then for any convex marked box Θ , we have $\tau_1^{\hat{\lambda}}(\Theta) \subsetneq \hat{\Theta}$, $\tau_2^{\hat{\lambda}}(\Theta) \subsetneq \hat{\Theta}$,

and $i^{\lambda}(\Theta) \cup \overset{\circ}{\Theta} = \emptyset$ in $\mathbb{P}(V)$. Furthermore, if λ is negative, then we have the same properties, but now for the **closures** of the interiors of the marked boxes. The Anosov character of the representations ρ_{Θ}^{λ} , for $\lambda < 0$, is a consequence of this stronger property.

Remark 2. When the marked box Θ is symmetric, i.e. when t = (0, 1) and b = (0, -1) on the special affine chart, the Schwartz representation, restricted to the index 2 subgroup $PSL(2, \mathbb{Z})_o$, is the one arising by the inclusion $PSL(2, \mathbb{Z})_o \subset PSL(2, \mathbb{R}) \subset PGL(3, \mathbb{Z})$ where the last inclusion is reducible, i.e. is such that $PSL(2, \mathbb{R})$ preserves a splitting of *V* as a sum of a line and a plane. The representation ρ_{Θ}^{λ} , for $\lambda < 0$, corresponds to the deformation of $PSL(2, \mathbb{Z})_o$ inside $PSL(2, \mathbb{R})$ consisting in opening up the cusp.

5. Conclusion

In summary, since the space of marked boxes up to projective transformations is 2-dimensional, we have defined a 3-dimensional family of representations ρ_{Θ}^{λ} : PSL $(2, \mathbb{Z})_{o} \rightarrow$ PGL $(3, \mathbb{R})$ where λ is a real parameter. When λ vanishes, ρ_{Θ}^{λ} is the restriction of the Schwartz representation ρ_{Θ} to PSL $(2, \mathbb{Z})_{o}$, and when λ is negative, ρ_{Θ}^{λ} is Anosov. In particular, the Schwartz representations are limits of the Anosov representations in the space of all representations of PSL $(2, \mathbb{Z})_{o}$ into PGL $(3, \mathbb{R})$.

Acknowledgements

I would like to thank Professor Thierry Barbot, my doctoral supervisor, for his valuable teachings. I would also like to thank the *Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)* and the *Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)* for their financial support during the realization of this work.

References

- [1] O. Guichard, A. Wienhard, Anosov representations: domains of discontinuity and applications, Invent. Math. 190 (2) (2012) 357-438.
- [2] F. Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math. 165 (1) (2006) 51-114.

[4] R.E. Schwartz, Pappus's theorem and the modular group, Publ. Math. Inst. Hautes Études Sci. 78 (1993) 187-206.

 ^[3] V. Pardini Valério, Teorema de Pappus, Representções de Schwartz e Representações Anosov, PhD thesis, UFMG, Brazil, January 2016, http://www.mat. ufmg.br/intranet-atual/pgmat/TesesDissertacoes/uploaded/Tese68.pdf.