Dynamical systems

On the Anosov character of the Pappus-Schwartz representations

Sur le caractère Anosov des représentations de Pappus-Schwartz

Viviane Pardini Valério
Universidade Federal de Minas Gerais - ICEx - Departamento de Matemática, Av. Antônio Carlos, 6627, Belo Horizonte, Minas Gerais, CEP 31.270-901, Caixa Postal 702, Brazil

A R T I CLE IN F O

Article history:

Received 16 April 2016
Accepted after revision 13 September 2016
Available online 19 September 2016
Presented by Claire Voisin

Abstract

In the paper Pappus's Theorem and The Modular Group (1993) [4], R.E. Schwartz observed that the classical Pappus theorem gives rise to an action of the modular group on the space of marked boxes. He inferred from this a 2-dimensional family of faithful representations of the modular group into the group of projective symmetries. These representations have a dynamical behavior very similar to the one of Anosov representations, even if they are never Anosov themselves. In this note, we announce the main result of V. Pardini Valério (2016) [3], which elucidates this Anosov character of the Schwartz representations by proving that their restrictions to the index-2 subgroup are limits of Anosov representations. © 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Dans l'article Pappus's Theorem and The Modular Group (1993) [4], R.E. Schwartz a mis en évidence le fait que le théorème classique de Pappus définit une action intéressante du groupe modulaire sur l'espace des boîtes marquées. Ceci lui a permis de construire une famille à deux paramètres de représentations fidèles du groupe modulaire dans le groupe de symétries projectives. Ces représentations ont un comportement dynamique très similaire à celui des représentations d'Anosov, bien que ne l'étant pas elles-mêmes. Dans cette note, nous annonçons le résultat principal de V. Pardini Valério (2016) [3], qui élucide ce caractère Anosov des représentations de Schwartz, en montrant que leurs restrictions au sous-groupe d'indice 2 sont chacune des limites des représentations d'Anosov.
© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

[^0]
1. Pappus theorem and marked boxes

Let V be a 3-dimensional vector space and $\mathbb{P}(V)$ the associated projective spaces with V.
Theorem 1.1 (Pappus). If the points a_{1}, a_{2}, a_{3} are colinear and the points b_{1}, b_{2}, b_{3} are colinear in $\mathbb{P}(V)$, then the points $c_{3}=$ $a_{1} b_{2} \cap a_{2} b_{1}, c_{2}=a_{1} b_{3} \cap a_{3} b_{1}, c_{1}=a_{2} b_{3} \cap a_{3} b_{2}$ are also colinear in $\mathbb{P}(V)$.

An important fact is that the Pappus Theorem, on certain conditions, can be iterated infinitely many times (see Fig. 1).

Fig. 1. Iteration of the Pappus Theorem; marked box Θ in $\mathbb{P}(V)$.
A marked box ${ }^{1} \Theta$ is a special pair of 6-tuples having the incidences relatives shown in Fig. 1. If $\Theta=((p, q, r, s ; t, b)$, $(P, Q, R, S ; T, B)$), then $p, q, r, s, t, b \in \mathbb{P}(V), P, Q, R, S, T, B \in \mathbb{P}\left(V^{*}\right), T \cap B \notin\{p, q, r, s, t, b\}, S=b p, R=b q, P=t s$, $Q=t r, T=p q$ and $B=r s$. Let $C M$ be the set of marked boxes.

The marked box $\Theta=((p, q, r, s ; t, b),(P, Q, R, S ; T, B))$ is convex if the following two conditions hold: p and q separate t and $T \cap B$ on the line T, and r and s separate b and $T \cap B$ on the line B. The convex interior of Θ is the open convex quadrilateral whose vertices, in cyclic order, are p, q, r and s (for more details, see [3, section 2.2]). We denote it by $\stackrel{\circ}{\Theta}$.

1.1. The action of the group of projective symmetries on $C M$

Let V be a 3-dimensional vector space and V^{*} its dual vector space. Projective transformations and dualities generate the group \mathcal{G} of projective symmetries of the flag variety \mathcal{F}. Projective transformations alone define an index-2 subgroup $\mathcal{H} \cong \operatorname{PGL}(3, \mathbb{R})$ of \mathcal{G}.

Given a projective transformation \mathcal{T}, and using the notation $\hat{x}=\mathcal{T}(x)$ for every point or line x in $\mathbb{P}(V)$, and for any marked box $\Theta=((p, q, r, s ; t, b),(P, Q, R, S ; T, B))$, define (see Fig. 1):

$$
\mathcal{T}(\Theta)=((\hat{p}, \hat{q}, \hat{r}, \hat{s} ; \hat{t}, \hat{b}),(\hat{P}, \hat{Q}, \hat{R}, \hat{S} ; \hat{T}, \hat{B})) \in C M
$$

Similarly, given a duality \mathcal{D}, and denoting $x^{*}=\mathcal{D}(x)$ for $x \in \mathbb{P}(V)$, and $X^{*}=\mathcal{D}^{*}(X)$ for X being a projective line, define (pay attention to the maybe surprising Schwartz re-ordering):

$$
\mathcal{D}(\Theta)=\left(\left(P^{*}, Q^{*}, S^{*}, R^{*} ; T^{*}, B^{*}\right),\left(q^{*}, p^{*}, r^{*}, s^{*} ; t^{*}, b^{*}\right)\right) \in C M .
$$

1.2. The group of elementary transformations of marked boxes

Let $\Theta=((p, q, r, s, t, b),(P, Q, R, S, T, B)) \in C M$. Pappus' Theorem gives us two new elements of $C M$ that are images of Θ by two special permutations τ_{1} and τ_{2} on $C M$ (see Fig. 2). These permutations are defined by

$$
\begin{aligned}
& \tau_{1}(\Theta)=((p, q, Q R, P S ; t,(q s)(p r)),(P, Q, q s, p r ; T,(Q R)(P S))) \\
& \tau_{2}(\Theta)=((Q R, P S, s, r ;(q s)(p r), b),(p r, q s, S, R ;(Q R)(P S), B))
\end{aligned}
$$

[^1]

Fig. 2. Permutations τ_{1} and τ_{2}; convex interiors of $\tau_{1}(\Theta)$ and $\tau_{2}(\Theta)$ in $\mathbb{P}(V)$ when Θ is convex.

There is also a natural involution, denoted by i, on the set of marked boxes, which gives us another new box (see Fig. 3). This involution is defined by

$$
i(\Theta)=((s, r, p, q ; b, t),(R, S, Q, P ; B, T))
$$

Fig. 3. Permutation i and convex interior of $i(\Theta)$ in $\mathbb{P}(V)$ when Θ is convex.

Let $S(C M)$ be the group of permutations on $C M$. The elements i, τ_{1}, τ_{2} of $S(C M)$ generate a group \mathfrak{G} that we call group of elementary transformations of marked boxes.

In [4], it is proved that the action of \mathfrak{G} on $C M$ is free. In particular, \mathfrak{G} is isomorphic to the modular group $\operatorname{PSL}(2, \mathbb{Z}) \cong$ $\mathbb{Z} / 2 \mathbb{Z} * \mathbb{Z} / 3 \mathbb{Z}$.

2. Schwartz representations

2.1. Construction of Schwartz representations

Remark 1. If Θ is a convex marked box, $\tau_{1}(\Theta)$ and $\tau_{2}(\Theta)$ are two new marked boxes with convex interiors contained in the convex interior of Θ. On the other hand, the marked box $i(\Theta)$ does not have convex interior contained in the interior of Θ. Arising this, Schwartz observed that the convexity of Θ ensures the nesting property of the marked boxes of \mathfrak{G}-orbit of Θ (for more details, see [3, section 2.5.2]); thus combinatorics of \mathfrak{G}-orbit of Θ are nicely described by the Farey graph and its associated $\operatorname{PSL}(2, \mathbb{Z})$-invariant triangulation \mathcal{L}_{0} of \mathbb{H}^{2} : the oriented leaves (geodesics) of \mathcal{L}_{0} can be labeled by elements of the \mathfrak{G}-orbit, giving rise to an action of $\mathfrak{G} \cong \operatorname{PSL}(2, \mathbb{Z})$ commuting with the action of $\operatorname{PSL}(2, \mathbb{Z})$ by isometries.

Theorem 2.1 (Schwartz representation theorem). Let Θ be a convex marked box. Then, there is a faithful representation ρ_{Θ} : $\operatorname{PSL}(2, \mathbb{Z}) \rightarrow \mathcal{G}$ which takes isometries of $\operatorname{PSL}(2, \mathbb{Z})$ to projective symmetries of \mathcal{G} respecting the labeling of \mathcal{L}_{0}; i.e., such that for every Farey geodesic e and every $\gamma \in \operatorname{PSL}(2, \mathbb{Z})$, we have:

$$
\Theta(\gamma e)=\rho_{\Theta}(\gamma)(\Theta(e)) \quad\left(\rho_{\Theta} \text {-equivariant property }\right)
$$

Proof. The proof follows basically from the fact that the actions of $\operatorname{PSL}(2, \mathbb{Z})$ and \mathfrak{G} on \mathcal{L}_{0} commute with each other (Remark 1), even if the actions of \mathfrak{G} and \mathcal{G} on $C M$ commute with each other (see [4, Theorem 2.4] and, for more details, [3, Lemma 3.1, Theorem 3.2]). Already the fact that $\rho_{\Theta}: \operatorname{PSL}(2, \mathbb{Z}) \rightarrow \mathcal{G}$ is a faithful representation follows from the fact that the action of $\operatorname{PSL}(2, \mathbb{Z})$ on \mathcal{L}_{o} is free.

2.2. The Schwartz map

Two Farey geodesics have the same tail in $\partial \mathbb{H}^{2}$ if and only if their labels are marked boxes with the same top point. Therefore, it defines a map $\varphi: \mathbb{Q} \cup\{\infty\} \rightarrow \mathbb{P}(V)$ that can be extended to an injective ρ_{Θ}-equivariant continuous map $\varphi_{0}: \partial \mathbb{H}^{2} \rightarrow \mathbb{P}(V)$ (see [4, Theorem 3.2]). Similarly, there is an injective ρ_{Θ}-equivariant continuous map $\varphi_{0}^{*}: \partial \mathbb{H}^{2} \rightarrow \mathbb{P}\left(V^{*}\right)$. The maps φ_{o} and φ_{o}^{*} combine to form a ρ_{Θ}-equivariant map:

$$
\Phi:=\left(\varphi_{0}, \varphi_{0}^{*}\right): \partial \mathbb{H}^{2} \rightarrow \mathcal{F} \subset \mathbb{P}(V) \times \mathbb{P}\left(V^{*}\right)
$$

where \mathcal{F} is the flag variety. We call the composition of Φ with the canonical projection of $\operatorname{\partial PSL}(2, \mathbb{Z})$ into ($\partial \mathbb{H}^{2}$) the Schwartz map, where $\partial \operatorname{PSL}(2, \mathbb{Z})$ is the Gromov boundary.

3. Anosov representations

The Anosov representation theory was introduced by François Labourie in [2] for representations of closed surface groups. It does not apply directly to the modular group $\operatorname{PSL}(2, \mathbb{Z})$. However $\operatorname{PSL}(2, \mathbb{Z})$ is $\operatorname{Gromov-hyperbolic.~Hence~we~use~here~a~}$ formulation inspired from [1], in the simple case of convex cocompact subgroups of $\operatorname{PSL}(2, \mathbb{R})$.

3.1. Definition of Anosov representations

Given $x \in \mathbb{P}(V)$, let $Q_{x}(V)$ be the space of norms on tangent space $T_{x} \mathbb{P}(V)$ at x. Similarly, given $X \in \mathbb{P}\left(V^{*}\right)$, let $Q_{X}\left(V^{*}\right)$ be the space of norms on tangent space $T_{X} \mathbb{P}\left(V^{*}\right)$ at X. We denote by $Q(V)$ the bundle of base $\mathbb{P}(V)$ with fiber $Q_{x}(V)$ on $x \in \mathbb{P}(V)$. Similarly, we denote by $Q\left(V^{*}\right)$ the bundle of base $\mathbb{P}\left(V^{*}\right)$ with fiber $Q_{X}\left(V^{*}\right)$ on $X \in \mathbb{P}\left(V^{*}\right)$. Let $\Omega\left(\phi^{t}\right)$ be the nonwandering set of the geodesic flow ϕ^{t} on $T^{1}\left(\Gamma \backslash \mathbb{H}^{2}\right)$.

Definition 3.1. Let Γ be a convex cocompact discrete subgroup of $\operatorname{PSL}(2, \mathbb{R})$ with limit set Λ_{Γ}. A homomorphism $\rho: \Gamma \rightarrow$ $\mathcal{H} \cong \operatorname{PGL}(3, \mathbb{R})$ is an Anosov representation if there are
(i) a Γ-equivariant map

$$
\Phi=\left(\varphi, \varphi^{*}\right): \Lambda_{\Gamma} \rightarrow \mathcal{F} \subset \mathbb{P}(V) \times \mathbb{P}\left(V^{*}\right)
$$

(ii) two maps $\nu_{+}: \Omega\left(\phi^{t}\right) \rightarrow Q(V)$ and $\nu_{-}: \Omega\left(\phi^{t}\right) \subset \rightarrow Q\left(V^{*}\right)$ such that, for every nonwandering geodesic $c: \mathbb{R} \rightarrow \mathbb{H}^{2}$ with extremities $c_{-}, c_{+} \in \Lambda_{\Gamma}$ we have that

- for all $v \in T_{\varphi\left(c_{+}\right)} \mathbb{P}(V)$ the size of v for the norm $v_{+}\left(c(t), c^{\prime}(t)\right)$, increases exponentially with t;
- for all $v \in T_{\varphi^{*}\left(c_{-}\right)} \mathbb{P}\left(V^{*}\right)$ the size of v for the norm $v_{-}\left(c(t), c^{\prime}(t)\right)$, decreases exponentially with t.

The group Γ of this definition is a Gromov-hyperbolic group. Since it is convex cocompact, its Gromov boundary $\partial \Gamma$ is Γ-equivariantly homeomorphic to its limit set Λ_{Γ}.

In the sequel, we will consider Anosov representations of a finite index subgroup of $\operatorname{PSL}(2, \mathbb{Z})$, which is not convex cocompact. But we replace simply $\operatorname{PSL}(2, \mathbb{Z})$ by a convex cocompact discrete subgroup of $\operatorname{PSL}(2, \mathbb{R})$ obtained by "opening the cusps", thus we build an example on a 3-fold symmetric 3-punctured sphere having geodesic boundaries of small length.

3.2. Schwartz representations are not Anosov

The Schwartz representation ρ_{Θ} preserves a topological circle in the flag variety, on which it is topologically conjugated to the usual action of $\operatorname{PSL}(2, \mathbb{Z})$ on the conformal boundary of the hyperbolic plane. This property is very similar to the one associated with Anosov representations of surface groups into $\operatorname{PGL}(3, \mathbb{R})$. However, ρ_{Θ} cannot be Anosov since the Gromov boundary of $\operatorname{PSL}(2, \mathbb{Z})$ is a Cantor set and not a circle. Thus the Schwartz maps φ and φ^{*} cease to be injective, contradicting a property of Anosov representations.

4. A new family of representations

In order to show that Schwartz representations are limits of Anosov representations, we define a new group of transformations of $C M$.

4.1. A new group of transformations of $C M$

Let $\Theta=((p, q, r, s ; t, b),(P, Q, R, S ; T, B))$ be a convex marked box. Let us consider the unique affine chart in $P(V)$ such that Θ is seen as the "special square" where $p=(-1,1), q=(1,1), r=(1,-1)$ and $s=(-1,-1)$. Let λ and μ be real numbers. Let $\sigma_{(\lambda, \mu)}: C M \rightarrow C M$ be a new transformation of marked boxes such that the image of Θ is given by applying the matrix $\Sigma_{(\lambda, \mu)}=\left(\begin{array}{cc}\mathrm{e}^{\lambda} & 0 \\ 0 & \mathrm{e}^{\mu}\end{array}\right)$ to this special square in $\mathbb{P}(V)$. This new transformation has some interesting properties:
(1) it commutes with elements of \mathcal{H} (projective transformations), but it does not commute with elements of $\mathcal{G} \backslash \mathcal{H}$ (dualities) acting on $C M$.
(2) considering the particular case where $\mu=2 \lambda$ and let $\sigma_{\lambda}:=\sigma_{(\lambda, 2 \lambda)}$, then the relation $i \sigma_{\lambda}=\sigma_{\lambda}^{-1} i$ holds.

Let us define three more new transformations on $C M$ as follows:

$$
i^{\lambda}:=\sigma_{\lambda} i \quad \tau_{1}^{\lambda}:=\sigma_{\lambda} \tau_{1} \quad \tau_{2}^{\lambda}:=\sigma_{\lambda} \tau_{2}
$$

The semigroup \mathfrak{G}^{λ} of $S(C M)$, generated by i^{λ}, τ_{1}^{λ} and τ_{2}^{λ}, is also an isomorphic group to the modular group $(\operatorname{PSL}(2, \mathbb{Z}) \cong$ $\mathfrak{G} \cong \mathfrak{G}^{\lambda}$) and, for $\lambda=0$, of course $\mathfrak{G}^{\lambda}=\mathfrak{G}$.

4.2. New representations

Given a convex marked box Θ and a real number λ, again let us consider the Farey lamination \mathcal{L}_{0} of \mathbb{H}^{2} introduced in Remark 1; and the new group \mathfrak{G}^{λ} of transformations of $C M$. In order to circumvent the inconvenient of \mathfrak{G}^{λ} not commuting with dualities acting on $C M$, we restrict to the unique index 2 subgroup $\operatorname{PSL}(2, \mathbb{Z})_{o}$ of $\operatorname{PSL}(2, \mathbb{Z})$, isomorphic to $\mathbb{Z}_{3} * \mathbb{Z}_{3}$. The main Theorem announced in this note is:

Theorem 4.1. Let Θ be a convex marked box and let $\lambda \in \mathbb{R}$. There is a representation $\rho_{\Theta}^{\lambda}: \operatorname{PSL}(2, \mathbb{Z})_{o} \rightarrow \mathcal{H} \triangleleft \mathcal{G}$ such that for every leaf e of \mathcal{L}_{0} and every $\gamma \in \operatorname{PSL}(2, \mathbb{Z})_{o}$ we have:

$$
[\Theta](\gamma e)=\rho_{\Theta}^{\lambda}(\gamma)([\Theta](e))
$$

Moreover, if λ is negative, then ρ_{Θ}^{λ} is Anosov.

The key point of the our construction is: if $\lambda \leq 0$, then for any convex marked box Θ, we have $\tau_{1}^{\lambda}(\Theta) \subsetneq \stackrel{\circ}{\Theta}, \tau_{2}^{\lambda}(\Theta) \subsetneq \stackrel{\circ}{\Theta}$, and $i^{\lambda}(\Theta) \cup \stackrel{\circ}{\Theta}=\emptyset$ in $\mathbb{P}(V)$. Furthermore, if λ is negative, then we have the same properties, but now for the closures of the interiors of the marked boxes. The Anosov character of the representations ρ_{Θ}^{λ}, for $\lambda<0$, is a consequence of this stronger property.

Remark 2. When the marked box Θ is symmetric, i.e. when $t=(0,1)$ and $b=(0,-1)$ on the special affine chart, the Schwartz representation, restricted to the index 2 subgroup $\operatorname{PSL}(2, \mathbb{Z})_{o}$, is the one arising by the inclusion $\operatorname{PSL}(2, \mathbb{Z})_{o} \subset$ $\operatorname{PSL}(2, \mathbb{R}) \subset \operatorname{PGL}(3, \mathbb{Z})$ where the last inclusion is reducible, i.e. is such that $\operatorname{PSL}(2, \mathbb{R})$ preserves a splitting of V as a sum of a line and a plane. The representation ρ_{Θ}^{λ}, for $\lambda<0$, corresponds to the deformation of $\operatorname{PSL}(2, \mathbb{Z})_{o}$ inside $\operatorname{PSL}(2, \mathbb{R})$ consisting in opening up the cusp.

5. Conclusion

In summary, since the space of marked boxes up to projective transformations is 2 -dimensional, we have defined a 3-dimensional family of representations $\rho_{\Theta}^{\lambda}: \operatorname{PSL}(2, \mathbb{Z})_{o} \rightarrow \operatorname{PGL}(3, \mathbb{R})$ where λ is a real parameter. When λ vanishes, ρ_{Θ}^{λ} is the restriction of the Schwartz representation ρ_{Θ} to $\operatorname{PSL}(2, \mathbb{Z})_{o}$, and when λ is negative, ρ_{Θ}^{λ} is Anosov. In particular, the Schwartz representations are limits of the Anosov representations in the space of all representations of $\operatorname{PSL}(2, \mathbb{Z})_{o}$ into $\operatorname{PGL}(3, \mathbb{R})$.

Acknowledgements

I would like to thank Professor Thierry Barbot, my doctoral supervisor, for his valuable teachings. I would also like to thank the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and the Coordenação de Aperfeiçoamento de Pessoal de Nivel Superior (CAPES) for their financial support during the realization of this work.

References

[1] O. Guichard, A. Wienhard, Anosov representations: domains of discontinuity and applications, Invent. Math. 190 (2) (2012) $357-438$.
[2] F. Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math. 165 (1) (2006) 51-114.
[3] V. Pardini Valério, Teorema de Pappus, Representções de Schwartz e Representações Anosov, PhD thesis, UFMG, Brazil, January 2016, http://www.mat. ufmg.br/intranet-atual/pgmat/TesesDissertacoes/uploaded/Tese68.pdf.
[4] R.E. Schwartz, Pappus's theorem and the modular group, Publ. Math. Inst. Hautes Études Sci. 78 (1993) 187-206.

[^0]: E-mail address: vivipardini@ufmg.br.
 http://dx.doi.org/10.1016/j.crma.2016.09.005
 1631-073X/© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

[^1]: ${ }^{1}$ In this brief note, we abusively do not distinguish overmarked boxes from marked boxes as in [3] and [4].

