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We consider the variational formulation of the Griffith fracture model in two spatial 
dimensions and prove the existence of strong minimizers, that is deformation fields that 
are continuously differentiable outside a closed jump set and that minimize the relevant 
energy. To this aim, we show that minimizers of the weak formulation of the problem, 
set in the function space G S B D2 and whose existence is well known, are actually strong 
minimizers following the approach developed by De Giorgi, Carriero, and Leaci in the 
corresponding scalar setting of the Mumford–Shah problem.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous considérons la formulation variationnelle du modèle de fracture de Griffith en 
dimension spatiale 2. Nous montrons l’existence de champs de déformation continûment 
différentiables hors d’un ensemble fermé de sauts, minimisant l’énergie relevante. Pour ce 
faire, nous montrons que les déformations minimisant la formulation faible du problème, 
dont l’existence est bien connue, placés dans l’espace des fonctions G S B D2, minimisent 
de fait la formulation forte. Nous suivons l’approche développée par De Giorgi, Carriero et 
Leach dans le cadre scalaire correspondant du problème de Mumford–Shah.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The study of brittle fracture in solids is based on the Griffith model, which combines elasticity with a term proportional 
to the surface area opened by the fracture. In its variational formulation, energy
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E[u,�] :=
∫

�\�

(1

2
Ce(u) · e(u) + κ |u − g|2

)
dx + βHn−1(�) (1)

is minimized over all closed sets � ⊂ � and all deformations u ∈ C1(� \�, Rn) subject to suitable boundary and irreversibil-
ity conditions. Here � ⊂ R

n is the reference configuration, the function g ∈ L∞(Rn;Rn) represents external volume forces, 
e(u) = (∇u + ∇uT)/2 is the elastic strain, C ∈ R

(n×n)×(n×n) is the matrix of elastic coefficients, β > 0 the surface energy, 
κ ≥ 0 a parameter. The evolutionary problem of fracture can be modelled as a sequence of variational problems, in which 
one minimizes (1) subject to varying loads with a kinematic restriction representing the irreversibility of fracture, see [6,19]
and the references therein.

Mathematically, (1) is a vectorial free discontinuity problem. Much better understood is its scalar version, in which one 
replaces the elastic energy by the Dirichlet integral,

EMS[u,�] :=
∫

�\�

(1

2
|Du|2 + κ |u − g|2

)
dx + βHn−1(�) , (2)

and one minimizes over all closed sets � ⊂ � and maps u ∈ C1(� \�, R). This scalar reduction coincides with the Mumford–
Shah functional of image segmentation, which has been widely studied analytically and numerically [1,3,15,25]. By taking 
into account the structure of energy (2), it is natural to introduce the space S B V (�) of special functions of bounded vari-
ation, by imposing that the distributional derivative Du is a bounded measure, i.e. u ∈ B V (�), which can be written as 
Du = ∇uLn � + [u]νuHn−1 Ju , with ∇u the approximate gradient of u, [u] the jump of u, Ju the (n − 1)-rectifiable 
jump set of u, νu its normal. Therefore, the relaxation of (2) is

E∗
MS[u] :=

∫

�

(1

2
|∇u|2dx + κ |u − g|2

)
+ βHn−1( Ju) , (3)

and it is finite provided that u belongs to the subspace S B V 2(�) of functions in S B V (�) with approximate gradient 
∇u ∈ L2(�; Rn) and Hn−1( Ju) < ∞. The existence of minimizers for the relaxed problem E∗

MS follows then from the general 
compactness properties of S B V 2, see [3] and the references therein.

The breakthrough in the quest for an existence theory for the Mumford–Shah functional (2) came with the proof by De 
Giorgi, Carriero, and Leaci in 1989 [16] of the fact that the jump set of minimizers u is essentially closed, in the sense that 
minimizers of the relaxed functional E∗

MS obey

Hn−1(( Ju \ Ju)∩�) = 0, or equivalently Hn−1( Ju∩�) = Hn−1( Ju∩�). (4)

From this, elliptic regularity implies then that (u, Ju∩�) is a minimizer of the functional in the original formulation (2).
We address here the analogous existence issue for (1) in two spatial dimensions. We assume that C is a symmetric 

linear map from Rn×n to itself with the properties

C(z − zT) = 0 and Cz · z ≥ α|z + zT|2 for all z ∈R
n×n (5)

for some α > 0. Our main result is the following.

Theorem 1.1. Let � ⊂R
2 be a bounded Lipschitz set, g ∈ L∞(R2;R2), C obeys the positivity condition (5), κ ≥ 0. Then the functional 

(1) has a minimizer in the class

A := {(u,�) : � ⊂ � closed, u ∈ C1(� \ �,R2)}. (6)

The proof is sketched below and will be discussed in detail elsewhere [13]. In [13], we also consider generalizations of 
the basic model (1) with p-growth, p ∈ (1, ∞), which may be appropriate for the study of materials with defects, such as 
damage or dislocations, and are obtained by replacing the quadratic volume energy density with

fμ(ξ) := 1

p

((
Cξ · ξ + μ

)p
/

2 − μ
p
/

2
)

(7)

where μ ≥ 0 is a parameter.
This result is restricted to the two-dimensional case, because the approximation result in Proposition 2.2 below is only 

valid in two dimensions.
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2. Outline of the proof

Following the ideas by De Giorgi, Carriero, and Leaci in the scalar case, the key point in obtaining Theorem 1.1 consists 
in establishing a one-sided Alfhors regularity for the jump set of (local) minimizers of the relaxed functional (3), also known 
in the literature as density lower bound estimate (for the precise formulation, see Theorem 2.1 below).

In this perspective, we start off by considering the weak formulation of (1). The functional setting is provided by 
S B D2(�), the space of fields u ∈ L1(�, Rn) with symmetrized distributional derivative Eu := (Du + DuT)/2, which is a 
bounded measure of the form Eu = e(u)Ln � + [u] 	 νuHn−1 Ju , with [u] the jump of u, Ju the (n − 1)-rectifiable 
jump set of u, νu its normal, and with the properties e(u) ∈ L2(�, Rn×n) and Hn−1( Ju) < ∞. Here, a 	b = (a ⊗b +b ⊗a)/2. 
S B D2(�) is a subset of the space of functions with bounded deformation B D(�). The latter was introduced and investigated 
in [4,24,26–28] for the mathematical study of plasticity, damage, and fracture models in a geometrically linear framework. 
Instead, S B D2(�) provides the natural function space in the modelling of fracture in linear elasticity [2,5]. In fracture mod-
els, where the energy does not control the amplitude of the jump, one naturally resorts to generalized special functions of 
bounded variation (G S B V ) and to the recently introduced generalized special functions of bounded deformation (G S B D) 
[14]. The fine properties of B D , S B D2 and G S B D2 are much less understood than those of their scalar counterparts B V and 
S B V 2, respectively. Indeed, many standard technical tools are not available in this context, starting with basic ones such as 
truncation results and the coarea formula. Despite this, recently several contributions have improved the understanding of 
such spaces [7–9,11,18,20,21].

In view of the discussion above, the relaxation of (1) is

E∗
κ [u] :=

∫

�

(1

2
Ce(u) · e(u) + κ |u − g|2

)
dx + βHn−1( Ju) (8)

for u ∈ G S B D2(�). The density lower bound estimate for the jump set of minimizers in this setting is the content of the 
ensuing theorem.

Theorem 2.1 (Density lower bound). If u ∈ G S B D2(�) is a minimizer of the functional in (8), then there exist ϑ0 and R0 , depending 
only on C, g, κ , and β such that if 0 < ρ < R0 , x0 ∈ Ju∩�, and Bρ(x0) ⊂⊂ �, then

∫

Bρ(x0)

(1

2
Ce(u) · e(u) + κ |u − g|2

)
dx + βH1( Ju ∩ Bρ(x0)) ≥ ϑ0ρ. (9)

Therefore,

H1(( Ju \ Ju)∩�) = 0. (10)

Using this result, classical elliptic regularity yields that the minimizers u belong to C∞(� \ Ju, R2) if g is smooth (see 
for instance [22]), so that (u, Ju∩�) is a minimizer of the strong formulation of the problem in (1). This leads directly to 
the proof of Theorem 1.1.

The density lower bound estimate is a mild regularity result for the jump set of a minimizer u, therefore it is natural to 
analyze the infinitesimal behaviour of u in points x0 and, having selected a sequence ρh ↓ 0, investigate the asymptotic of

uh(x) := ρ
−1

/
2

h u(x0 + ρhx).

We notice that the prefactor ρ−1
/

2
h is needed to balance the different scaling of the volume and surface term in the energy 

E∗
0. Indeed, we have

E∗
0[uh; B1] = ρ−1

h E∗
0[u; Bρh (x0)];

in the formula above the domains of integration are indicated explicitly.
The original proof of the density lower bound in formula (9) in the scalar case is indirect [3,16] (see the more recent 

[17] for a direct proof in 2d). One first constructs truncations of the rescaled functions uh and estimates them in S B V using 
a Poincaré–Wirtinger-type inequality. Then, using Ambrosio’s S B V compactness theorem, one obtains the convergence of a 
subsequence, and shows that the limit is a local minimizer of the gradient term of the Mumford–Shah energy E∗

MS restricted 
to Sobolev spaces, i.e. it is an harmonic function, and in particular smooth. By a contradiction argument, one then shows 
that if in a ball the length of the jump set of a minimizer u of E∗

MS is sufficiently small and if u is not too far from being a 
(local) minimizer of the reduced functional

u �→
∫

1

2
|∇u|2dx + βHn−1( Ju) ,
�
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then in the corresponding dyadic balls such an energy decays as fast as the Dirichlet integral for harmonic functions. From 
this, one deduces that the base point x0 of the blow up process is not a jump point and the density lower bound follows at 
once.

The Poincaré–Wirtinger-type inequality proven by De Giorgi, Carriero, and Leaci states (in 2d) that if u ∈ S B V 2(B1) and 
H1( Ju) is small, then there are m ∈ R and a modified function ũ ∈ S B V 2(B1) such that ‖ũ − m‖L2(B1) ≤ c‖∇u‖L2(B1,R2) , 
|Dũ|(B1) ≤ 2‖∇u‖L1(B1,R2) , and ũ = u on most of B1, see [3, Th. 4.14] for details. The function ũ is obtained from u by 
truncation, setting ũ(x) = max{τ−, min{u(x), τ+}} for suitable τ± ∈ R chosen through the coarea formula, so that ũ auto-
matically fulfills |Dũ| ≤ |Du|. This procedure is not applicable to the vector-valued B D functions that appear in the Griffith 
model, since this space is not stable under truncation, and the coarea formula does not apply.

The key result to bypass such a problem is an approximation result for S B D p functions, p ∈ (1, ∞), with small jump set 
with W 1,p functions, stated below in the case of interest p = 2 and established in [12]. This property yields an equivalent 
Poincaré–Wirtinger-type inequality for S B D p functions, however restricted to two spatial dimensions.

Proposition 2.2 (Approximation of S B D2 fields). There exist universal constants c, η > 0 such that if u ∈ S B D2(Bρ), ρ > 0, satisfies

H1( Ju ∩ Bρ) < η (1 − s)
ρ

2

for some s ∈ (0, 1), then there are a countable family F = {B} of closed balls of radius rB < (1 −s)ρ/2 with finite overlap, ∪F B ⊂⊂ Bρ

and a field w ∈ S B D2(Bρ) such that

(i) ρ−1 ∑
F L2

(
B
) + ∑

F H1
(
∂ B

) ≤ c
/
ηH1( Ju ∩ Bρ);

(ii) H1
(

Ju ∩ ∪F∂ B
) =H1

(
( Ju ∩ Bsρ) \ ∪F B

) = 0;
(iii) w = u L2-a.e. on Bρ \ ∪F B;
(iv) w ∈ W 1,2(Bsρ, R2) and H1( J w \ Ju) = 0;
(v) If u ∈ L∞(Bρ, R2), then w ∈ L∞(Bρ, R2) with ‖w‖L∞(Bρ ,R2) ≤ ‖u‖L∞(Bρ ,R2);

(vi)

∫

B

|e(w)|2dx ≤ c

∫

B

|e(u)|2dx for each B ∈ F; (11)

(vii) There is a skew-symmetric matrix A such that

∫

Bsρ\∪F B

|∇u − A|2dx ≤ c

∫

Bρ

|e(u)|2dx. (12)

Related results have been recently obtained in [9,20,21].
Proposition 2.2 holds for any exponent p; it is however restricted to two spatial dimensions. Its proof is based on 

covering the jump set of u with balls such that the total length of the jump set contained in each of them is comparable 
(but significantly smaller than) the radius. Clearly, these balls cover a small part of Bρ , and u does not need to be modified 
outside them. In each one of the balls, then, a new function is constructed by a finite-element approximation, on a triangular 
grid that refines close to the boundary of the ball, as was done in [10] in the study of solid–solid phase transitions.

The key step is to show that one can choose such a grid with the property that all grid segments do not intersect the 
jump set of u. One then obtains an estimate of the oscillation of u along the segments, and hence on the corners of each 
of the triangles that constitute the grid. Linear interpolation gives then the desired extension. By convexity, the L∞ norm 
of w inside each triangle equals the value of |u| on one of the three vertices of the triangle; if all vertices are chosen as 
Lebesgue points for u, then one obtains ‖w‖L∞(T ) ≤ ‖u‖L∞(T ) for every triangle T , and hence property (v). We refer to 
[12] for the details of the proof. In higher dimension, the same procedure would require finding a grid such that the edges 
do not intersect the jump set. This is however not possible, at least with the strategy of [10,12], as was explained in those 
papers.

The second key ingredient is an approximation of G S B D2 functions by S B D2 functions, which was proven in [23]
generalizing a strategy by Chambolle [7].

Proposition 2.2 is used in the proof of Theorem 2.1 to replace the truncation procedure and the Poincaré–Wirtinger 
inequality. One then modifies the functions once more, subtracting not only a constant as in the B V case but also a linear 
function with skew-symmetric gradient, and obtains compactness. This permits to classify the blow-up limits of minimizers 
of (8) with vanishing length of the jump set and to show that they minimize a quadratic energy on Sobolev spaces, and 
therefore to conclude the proof of Theorem 2.1.
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