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r é s u m é

Nous considérons une modèle apériodique de vent dans des arbres et nous montrons que, 
pour une configuration générique (dans le sens de Baire), la dynamique de vent–arbre est 
ergodique dans presque toutes les directions.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In 1912, Paul et Tatyana Ehrenfest wrote a notable encyclopedia article on the foundations of statistical mechanics 
[7]. The first chapter of this article “The older formulation of statistico-mechanical investigations (Kineto-statistics of the 
molecule)” discusses the work of Boltzmann and Maxwell on gas dynamics. In the Appendix to Section 5 of this chapter, 
the Ehrenfests say that “it seems advisable to explain” the work of Maxwell–Boltzmann “on a much simplified model”. This 
model, now known as the Ehrenfest wind–tree model, is the subject of this article. In the Ehrenfest wind–tree model, a 
point particle (the “wind”) moves freely on the plane and collides with the usual law of geometric optics with an infinite 
number of irregularly placed identical square scatterers (the “trees”).

The second chapter of the Ehrenfests’ article “The modern formulation of statistico-mechanical investigation (Kineto-
statistics of the gas model)” can be viewed as the birth place of the term “ergodic”.1 Our main result is the study of the 
wind–tree model in the framework of (infinite) ergodic theory. There is a natural first integral of the model, if we fix the 
initial direction, then orbits take only four directions. We show that for almost every value of this first integral, the Ehren-
fest wind–tree is ergodic for generic (in the sense of Baire) configurations. This continues our previous work where we had 
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1 A nice discussion of the history of the birth of ergodic theory is given in the first chapter of the book [10].
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shown that the generic in the sense of Baire wind–tree model is recurrent [23], minimal in almost every direction, and has 
a dense set of periodic points [19].

The wind–tree model has been intensively studied by physicists, see for example [3,6,9,12,24,25], and the references 
therein. From the mathematically rigorous point of view, there have been many recent results about the dynamical prop-
erties of a periodic version of wind–tree models: scatterers are identical square obstacles, one obstacle centered at each 
lattice point. The periodic wind–tree model has been shown to be recurrent [11,15,1], to have abnormal diffusion [5,4], 
and to have an absence of ergodicity in almost every direction [8]; furthermore the periodic wind–tree model can not have 
a minimal direction.2 Periodic wind–tree models naturally yield infinite periodic translation surfaces; ergodicity in almost 
every direction for such surfaces has been obtained only in a few situations [13,14,21].

We work on the following setup: the plane is tiled by one-by-one cells with corners on the lattice Z2; inside each cell 
we place a square tree of a fixed size with the center chosen arbitrarily. Our main result is that for the generic in the sense 
of Baire wind–tree configuration, for almost all directions the wind–tree model is ergodic; this is in stark contrast to the 
situation for the periodic wind–tree model. This result can be viewed as the confirmation of the ergodic hypothesis in the 
framework of the Ehrenfest wind–tree model.

Our proofs hold in a more general setting than the one described above: for example, we can vary the size of the 
square, or use certain other polygonal trees; the class of possible extensions are the same as those discussed in [19] in the 
framework of generic minimality in almost every direction.

The method of proof is by approximation by finite wind–tree models where the dynamics is well understood. There 
is a long history of proving results about billiard dynamics by approximation, which began with the article of Katok and 
Zemlyakov [16]. This method was used in several of the results on wind–tree models mentioned above [15,1,23], see [22]
for a survey of some other usages in billiards. The idea of approximating infinite measure systems by compact systems was 
first studied in [18].

2. Definitions and main result

Consider the plane R2 tiled by one-by-one closed square cells with corners on the lattice Z2. Fix r ∈ [1/4, 1/2). We 
consider the set of 2r by 2r squares, with vertical and horizontal sides, centered at (a, b) contained in the unit cell [0, 1]2; 
this set is naturally parametrized by

A := {t = (a,b) : r ≤ a ≤ 1 − r, r ≤ b ≤ 1 − r}
with the usual topology inherited from R2. Our parameter space is AZ

2
with the product topology. It is a Baire space. 

Each parameter g = (ai, j, bi, j)(i, j)∈Z2 ∈AZ
2

corresponds to a wind–tree table in the plane in the following manner: the tree 
inside the cell corresponding to the lattice point (i, j) ∈ Z

2 is a 2r-by-2r square with its center at position (ai, j, bi, j) + (i, j). 
The wind–tree table B g is the plane R2 with the interiors of the union of these trees removed. Note that trees can intersect 
only at the boundary of cells.

The billiard flow φt is the unit speed free motion on the interior of B g with elastic collision from the boundary of B g

(the boundary of the union of the trees). The phase space �g of the billiard flow is thus the Cartesian product of B g × S
1

with inwards and outwards pointing unit vectors identified according to the elastic collision rule at the boundary of B g . The 
billiard flow φt on the phase space preserves the volume measure μ × λ, where μ is the area measure on B g and λ the 
length measure on S1. Note that μ is an infinite measure. See [20] for more details on billiards.

For each θ , let [θ] be the set of all possible directions under the billiard flow starting in direction θ , i.e. [θ] = {±θ, ±(π −
θ)}. We will refer to the billiard flow restrict to the set {(x, ψ) ∈ �g : ψ ∈ [θ]} as the billiard flow φθ

t in the direction θ ; it 
preserves the measure μ × d where d is the discrete measure on [θ].

A flow ψt preserving a measure m is called ergodic if for each Borel measurable A, m(ψt(A)�A) = 0 ∀t ∈R implies that 
m(A) = 0 or μ(Ac) = 0. A map T preserving a measure n is called ergodic if for each Borel measurable set A, n(T −1 A�A) = 0
implies that n(A) = 0 or n(Ac) = 0.

Theorem 2.1. There is a dense Gδ subset G of parameters AZ
2

such that for each g ∈ G there is a dense Gδ subset of directions H⊂ S
1

of full measure such that the billiard flow on �g in the direction θ is ergodic for every θ ∈H.

Our methods do not produce explicit results. We do not have explicit examples of configurations that are ergodic in 
almost every direction, not even an explicit configuration that is ergodic in a single fixed direction. We also do not know if 
a given explicit direction, such as the direction π/4, which interested the Ehrenfests, is ergodic for our configurations.

Note that we will use different cross sections than those used in [19]. Let Dn := {
(x, y) ∈ R

2 : max(|x|, |y|) = n
}

and 
D := ⋃

n≥1 Dn . We will consider various first return maps of the billiard flow on the wind–tree table associated with a 
parameter g ,

2 K. Frączek explained to us that this follows from arguments close to those in the article [2].
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Fig. 1. A 2-ringed configuration. Fig. 2. A small perturbation.

T g : D × S
1 → D × S

1 T g
θ : D × [θ] → D × [θ]

T g
n : Dn × S

1 → Dn × S
1 T g

n,θ : Dn × [θ] → Dn × [θ].
We will apply these definitions only in the cases where the Dn do not intersect any tree.

The advantage of these cross-sections is that the maps T g
θ and T g

n,θ have natural invariant length measures, which do 
not depend on the parameter g: ν and respectively νn . The measure ν is infinite, while the measures νn are finite, and we 
think of them as normalized.

For any positive integer N , we define RN to be the closed rhombus {(x, y) : |x| + |y| ≤ N + 1
2 }. Suppose that N is an 

integer satisfying N ≥ 2. We will call a parameter f N-tactful if for each cell inside the rhombus R N , the corresponding tree 
is contained in the interior of its cell. We will call an N-tactful parameter f N-ringed, if the boundary of R N is completely 
covered by trees (see Fig. 1). Let E N the set of pairs (i, j), so that the interior of the (i, j)-th cell is contained in RN .

For each tree t ∈ A, let U (t, ε) be the standard ε-neighborhood in R2 intersected with the interior of A in R2. For any 
parameter g = (ti, j) ∈AZ

2
, consider the open cylinder set U N (g, ε) = ∏

(i, j)∈EN
U (ti, j, ε).

3. Proofs

We start by reducing the question of the ergodicity of the flow to the ergodicity of first return maps T g
n,θ . This is done 

in the following lemma.

Lemma 3.1. Let g be a parameter that is N-tactful for all N ≥ 3. For θ irrational, the following conditions are equivalent:

(i)
(
φ

g
θ

)
t is ergodic

(ii) T g
θ is ergodic

(iii) T g
n,θ is ergodic for all n ≥ 1.

Proof. (i =⇒ ii) If B is a non-trivial T g
θ -invariant set, then 

⋃
t∈R

(
φ

g
θ

)
t(B) is a non-trivial 

(
φ

g
θ

)
t -invariant set.

(ii =⇒ i) Consider a non-trivial 
(
φ

g
θ

)
t invariant set C . Consider C ′ := ⋃

t∈R
(
φ

g
θ

)
t C , clearly μ(C ′�C) = 0 and C ′ is a (

φ
g
θ

)
t -invariant set. Since the flow is a flow built under a piece-wise continuous bounded function, C ′ ∩ D is a non-trivial 

T g
θ -invariant set.

(ii =⇒ iii) If A is a non-trivial T g
n,θ -invariant set, then 

⋃
k∈Z(T g

θ )k(A) is a non-trivial T g
θ -invariant set.

(iii =⇒ ii) Suppose B is a non-trivial T g
θ -invariant set. We claim that Bn := B ∩ Dn must be a non-trivial T g

n,θ -invariant 
set for some n. If not, then for each n, νn(Bn) = 0 or νn(Bc

n) = 0. Let I := {n ∈ N
∗ : νn(Bc

n) = 0}. Clearly I is non-empty since 
0 < ν(B) = ∑

n∈N∗ νn(Bn). Suppose n ∈ I , then since Bn has full measure in Dn × [θ], and since a set of positive measure of 
Dn × [θ] is mapped to Dn+1 × θ , we must have n + 1 ∈ I . If n ≥ 2 then the same holds for n − 1, thus I = N

∗ . This implies 
ν(Bc) = 0, a contradiction. Thus Bn is a non-trivial T g

n,θ -invariant set for some n, i.e. T g
n,θ is not ergodic for some n. �

Proof of Theorem 2.1. By Baire’s theorem, the set of configurations that are N-tactful for all N is dense since for each N the 
set of all N-tactful configurations is an open dense set. Thus we can consider a countable dense, set of parameters that are 
N-tactful for all N . By modifying the parameters, we can assume that each one is N-ringed for a certain N still maintaining 
the density. Call this countable dense set { f i}, with f i being Ni -ringed. We also assume Ni+1 > Ni . Suppose δi are strictly 
positive. Let

G :=
⋂

m≥1

⋃
i≥m

U Ni ( f i, δi).

See Fig. 2 for a configuration close to a 2-ringed configuration. Clearly G is a dense Gδ . We will show that the δi can be 
chosen in such a way that all the configurations in G are ergodic in almost every direction.
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Fig. 3. Xθ
n decomposes into eight “intervals”.

For each n ≥ 1 let Xn := Dn × S
1, Xθ

n := Dn × [θ], ν̂n := νn × λ and ν̂θ
n := νn . Let {h j} j≥1 be a countable collection of 

continuous functions in L1(X1, ̂ν1), for which the restriction to L1(Xθ
1 , ̂νθ

1 ) is dense for all θ . For each θ , the measure space 
(Xθ

n , ̂νn) is the union of eight isometric copies of the interval [0, 2n(| sin(θ)| + | cos(θ)|)] (cf. Fig. 3).
For any n we define hn

j ∈ L1(Xn, ̂νn) by hn
j (s, θ) := h j(s/n, θ) for s ∈ [0, 2n(| sin(θ)| + | cos(θ)|)]. For the sake of simplicity, 

we will drop the dependency on n and note h j = hn
j .

Now fix g ∈AZ
2

and let

S g
n,
h j(s, θ) = 1





−1∑
k=0

h j
((

T g
n,θ

)k
(s, θ)

)
.

By the Birkhoff ergodic theorem, the maps T g
n,θ are ergodic for all n and for almost every θ , if and only if for all n and for 

almost all θ , we have

S g
n,
h j(s, θ) →

∫

Xθ
n

h j(t)dν̂n(t)

as 
 goes to infinity for all j ≥ 1. Here the integral is over the set Xθ
n , thus we drop the θ dependence of the functions h j

from the notation.
Now fix i. Recall that f i is an Ni -ringed parameter. Let ni = ⌊ Ni−1

2

⌋
. For any 1 ≤ n ≤ ni , Dn is included inside the ring, 

and since f i is Ni tactful, Dn does not intersect the boundary of any tree. Because of the Kerckhoff–Masur–Smillie theorem 
[17], the billiard inside the ring is ergodic for almost every direction, thus T fi

n,θ is ergodic for almost every θ . Thus we can 
find a positive integer 
i , an open set Hi ⊂ S

1 and sets Bθ
n,i ⊂ Xθ

n so that ν̂θ
n (Bθ

n,i) > 1 − 1
i , λ(Hi) > 1 − 1

i and

∣∣∣S fi
n,
i

h j(s, θ) −
∫

Xθ
n

h j(t)dν̂n(t)
∣∣∣ <

1

i

for all s ∈ Bθ
n,i , θ ∈ Hi , n ≤ ni , 1 ≤ j ≤ i.

Now we would like to extend these estimates to the neighborhood U Ni ( f i, δi) for a sufficiently small strictly positive δi . 
By the triangular inequality we have:

∣∣∣S g
n,
i

h j(s, θ) −
∫

Xθ
n

h j(t)dν̂n(t)
∣∣∣ ≤

∣∣∣S g
n,
i

h j(s, θ) − S fi
n,
i

h j(s, θ)

∣∣∣ +
∣∣∣S fi

n,
i
h j(s, θ) −

∫

Xθ
n

h j(t)dν̂n(t)
∣∣∣.

For any point (s, θ) of continuity of 
(
T fi

n,θ

)
i , the point 
(
T g

n,θ

)
i
(s, θ) varies continuously with g in a small neighborhood of 

f i ; thus we can find δi > 0, an open set Ĥi ⊂ Hi and a set B̂θ
n,i ⊂ Bθ

n,i so that if g ∈ U Ni ( f i, δi), then

∣∣∣S g
n,
i

h j(s, θ) −
∫

Xθ
n

h j(t)dν̂n(t)
∣∣∣ <

2

i

for all s ∈ B̂θ
n,i , θ ∈ Ĥi , n ≤ ni , 1 ≤ j ≤ i; and B̂θ

n,i and Ĥi are both of measure larger than 1 − 2
i .

Suppose g ∈ G := ∩∞
m=1 ∪∞

i=m U Ni ( f i, δi). Since λ(Ĥi) > 1 − 2/i, the Gδ set H = ∩∞
M=1 ∪∞

i=M Ĥi has measure 1. Fix θ ∈ H, 
then there is an infinite sequence ki such that θ ∈ Ĥki . Consider Bθ

n = ∩∞
M=1 ∪∞

i=M B̂θ
n,ki

. Since ν̂θ
n (B̂θ

n,ki
) > 1 − 1

ki
, it follows 

that ν̂θ
n (Bθ ) = 1.
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We can thus conclude that for λ-a.e. θ , for ν̂n-a.e. s, for each j ≥ 1, for each n ≥ 1

lim
k→∞

S g
n,
ki

(h j(s, θ)) →
∫

Xθ
n

h j(t)dν̂n(t) (1)

as i → ∞. Since the hθ
j are dense in L1(Xθ

n , ̂νθ
n ), Equation (1) together with the Birkhoff ergodic theorem imply that, for 

each n ≥ 1, T g
n,θ is ergodic for all θ ∈H. The ergodicity of the billiard flow in every direction in H follows immediately from 

Lemma 3.1. �
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