Algebraic geometry

Remarks on minimal rational curves on moduli spaces of stable bundles ${ }^{*}$

Remarques sur les courbes rationnelles minimales sur les espaces des modules de faisceaux stables

Liu Min
School of Mathematics and Statistics, Qingdao University, Qingdao 266071, PR China

ARTICLE INFO

Article history:

Received 19 July 2016
Accepted after revision 31 August 2016
Available online 9 September 2016
Presented by Claire Voisin

Abstract

Let C be a smooth projective curve of genus $g \geq 2$ over an algebraically closed field of characteristic zero, and M be the moduli space of stable bundles of rank 2 and with fixed determinant \mathcal{L} of degree d on the curve C. When $g=3$ and d is even, we prove that, for any point $[W] \in M$, there is a minimal rational curve passing through [W], which is not a Hecke curve. This complements a theorem of Xiaotao Sun.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Ré S U M É

Soient C une courbe projective lisse de genre $g \geq 2$ et M l'espace des modules de faisceaux stables de rang 2 et de déterminant fixe \mathcal{L} de degré d sur C. Nous prouvons que, lorsque $g=3$ et d est pair, il existe, pour tout point $[W] \in M$, une courbe rationnelle minimale passant par [W], qui n'est pas une courbe de Hecke. Cela complète un théorème de Xiaotao Sun.
© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Throughout this paper, we assume that C is a smooth projective curve of genus $g \geq 2$ over an algebraically closed field of characteristic zero. Let $M:=S U_{C}(r, \mathcal{L})$ be the moduli space of stable vector bundles of rank $r \geq 2$ and with the fixed determinant \mathcal{L} of degree d, which is a smooth quasi-projective Fano variety with $\operatorname{Pic}(M)=\mathbb{Z} \cdot \Theta$ and $-K_{M}=2(r, d) \Theta$, where Θ is an ample divisor ($[9,1]$). By a rational curve of M, we mean a nontrivial proper morphism $\phi: \mathbb{P}^{1} \rightarrow M$ and its degree is defined to be $\operatorname{deg} \phi^{*}\left(-K_{M}\right)$ (with respect to the ample anti-canonical line bundle $-K_{M}$).

In [10], Xiaotao Sun has determined all rational curves of minimal degree passing through generic points of M except in the case where $g=3, r=2$, and d is even.

[^0]Theorem 1.1. (Theorem 1 of [10]) If $g \geq 3$, then any rational curve $\phi: \mathbb{P}^{1} \rightarrow M$ passing through the generic point has degree at least $2 r$. It has degree $2 r$ if and only if it is a Hecke curve unless $g=3, r=2$, and d is even.

This implies that all the rational curves of $\left(-K_{M}\right)$-degree smaller than $2 r$, called small rational curves, must lie in a proper closed subset $[3,4]$. In this note, we remark that the condition in Sun's Theorem is necessary:

Theorem 1.2. If $g=2, r=2$ and d is odd, then, for any $[W] \in M$, there exists a rational curve passing through it, which has degree 2.
If $g=3, r=2$ and d is even, then, for any point $[W] \in M$, there exists a rational curve of degree 4 passing through it, which is not a Hecke curve.

Recall that, by Lemma 2.1 of [10], any rational curve $\phi: \mathbb{P}^{1} \rightarrow M$ is defined by a vector bundle E on $f: X=C \times \mathbb{P}^{1} \rightarrow C$. If E is semi-stable on generic fiber $X_{\xi}=f^{-1}(\xi)$ (tensoring a pullback of line bundle on \mathbb{P}^{1}, we can assume the restriction of E to a generic fiber is of the form $O_{X_{\xi}}^{\oplus r}$), according to the arguments of section 2 in [10], there is a finite set $S \subset C$ of points and a vector bundle V on C such that E just suits in the exact sequence

$$
0 \rightarrow f^{*} V \rightarrow E \rightarrow \bigoplus_{p \in S} \mathcal{Q}_{p} \rightarrow 0
$$

where \mathcal{Q}_{p} is a vector bundle on $X_{p}=\{p\} \times \mathbb{P}^{1}$. The curves defined by such E were said to be of Hecke type in [8,11] (since a Hecke curve by definition is defined by a vector bundle E suited in $\left.0 \rightarrow f^{*} V \rightarrow E \rightarrow \mathcal{O}_{X_{p}}(-1) \rightarrow 0\right)$. If E is not semi-stable on the generic fiber X_{ξ} (curves defined by such E were said of split type in [11]) and the curve has minimal degree $2(r, d)$, then E must suit in

$$
0 \rightarrow f^{*} V_{1} \otimes \pi^{*} \mathcal{O}_{\mathbb{P}^{1}}(1) \rightarrow E \rightarrow f^{*} V_{2} \rightarrow 0
$$

where $\pi: X \rightarrow \mathbb{P}^{1}$ is the projection and V_{1}, V_{2} are stable vector bundles on C of rank r_{1}, r_{2}, and degrees d_{1}, d_{2} satisfy $r_{1} d-r d_{1}=(r, d)$. Note that rational curves of degree $2(r, d)$ have degree 1 with respect to Θ because of $-K_{M}=2(r, d) \Theta$, which will be called lines in M.

The rational curves we constructed in Theorem 1.2 are of split type (thus they are not Hecke curves). We have in fact a more general result. Let $M=\mathcal{S} U_{C}(2, \mathcal{L})$ be the moduli space of rank-two stable bundles with fixed determinant \mathcal{L} on a smooth projective curve C of genus $g \geq 3$. Let $M_{S} \subset M$ be the locus of stable bundles [W] $\in M$ with the Segre invariant $s(W)=s$ (refer to Section 3 for the definition of Segre invariant). Then we have the following theorem.

Theorem 1.3. When d is even, for any $[W] \in M_{2}$, there is a rational curve of split type passing through it, which has degree 4. If d is odd, for any $[W] \in M_{1}$, there is a rational curve of split type passing through it, which has degree 2 .

When $g=3$ and d is even, we have $M_{2}=M$ (see Lemma 3.1). Thus Theorem 1.2 is a corollary of Theorem 1.3.

2. Rational curves of split type

Let C be a smooth projective curve with genus $g \geq 2$ over an algebraically closed field of characteristic zero, W be a stable bundle of rank r and of degree d with determinant \mathcal{L} over C. Assume that there is a stable subbundle V_{1} of W such that

$$
\begin{equation*}
r_{1} d-d_{1} r=(r, d) \tag{1}
\end{equation*}
$$

where $r_{1}=\operatorname{rank} V_{1}, d_{1}=\operatorname{deg} V_{1}$ and $d=\operatorname{deg} W$. Let $V_{2}:=V / V_{1}$ be the quotient bundle, then W fits a non-trivial extension

$$
\begin{equation*}
0 \rightarrow V_{1} \rightarrow W \rightarrow V_{2} \rightarrow 0 \tag{2}
\end{equation*}
$$

It is known that there is a family of vector bundles $\left\{\mathcal{E}_{p}\right\}_{p \in P}$ on C parametrized by $P=\mathbb{P} E x t^{1}\left(V_{2}, V_{1}\right)$ so that for each $p \in P, \mathcal{E}_{p}$ is isomorphic to the bundle obtained as the extension of V_{2} by V_{1} given by p (see Lemma 2.3 of [9]). Let l be a line in $P=\mathbb{P} E x t^{1}\left(V_{2}, V_{1}\right)$ passing through the point p_{0}, where p_{0} is the point in P given by (2). If it happens that \mathcal{E}_{p} is stable for each $p \in l$, then

$$
\left\{\mathcal{E}_{p}\right\}_{p \in l}
$$

will define a rational curve of degree $2(r, d)$ (with respect to $\left.-K_{M}\right)$ passing through $[W] \in S U_{C}(r, \mathcal{L})([10,4])$. Such a rational curve in $S U_{C}(r, \mathcal{L})$ will be called a rational curve of split type.

It is known that an extension $0 \rightarrow E \rightarrow W \rightarrow F \rightarrow 0$, where E, W, F are vector bundles on C, gives rise to an element $\delta(W) \in H^{1}(C, \operatorname{Hom}(F, E))$, which is the image of the identity homomorphism in $H^{0}(C, \operatorname{Hom}(F, F))$ by the connecting homomorphism $H^{0}(C, \operatorname{Hom}(F, F)) \rightarrow H^{1}(C, \operatorname{Hom}(F, E))$. This gives a one:one correspondence between the set of equivalent classes of extensions of F by E and $H^{1}(C, \operatorname{Hom}(F, E)$) (refer to section 2 in [9]).

Lemma 2.1. Let d be an even number, and $0 \rightarrow L_{1} \rightarrow W \rightarrow L_{2} \rightarrow 0$ be any non-trivial extension of L_{2} by L_{1}, where L_{1} (resp. L_{2}) is a line bundle of degree $\frac{d}{2}-1$ (resp. $\frac{d}{2}+1$). Then
(i) W is semi-stable;
(ii) W is non-stable if and only if the element $\delta(W) \in H^{1}\left(C, L_{2}^{-1} \otimes L_{1}\right)$ corresponding to W is in the kernel of the map

$$
H^{1}\left(C, L_{2}^{-1} \otimes L_{1}\right) \longrightarrow H^{1}\left(C, L_{2}^{-1} \otimes L_{1} \otimes L_{x}\right)
$$

for some $x \in C$, where $L_{x}=\mathcal{O}_{C}(x)$ is the line bundle defined by x. In this case, W is S-equivalent to $L_{2} \otimes L_{x}^{-1} \oplus L_{1} \otimes L_{x}$ (refer to section 2 of [7] for the definition of S-equivalent).

Proof. (i) See Lemma 2.2 in [4] and [5].
(ii) Let L^{\prime} be a line bundle of degree $\frac{d}{2}$. Then, since $H^{0}\left(C, \operatorname{Hom}\left(L^{\prime}, L_{1}\right)\right)=0$, it is easy to see that $H^{0}\left(C, \operatorname{Hom}\left(L^{\prime}, W\right)\right) \neq 0$ if and only if L^{\prime} is of the form $L_{2} \otimes L_{x}^{-1}$ for some $x \in C$ and the natural map $L_{2} \otimes L_{x}^{-1} \rightarrow L_{2}$ can be lifted into a map $L_{2} \otimes L_{x}^{-1} \rightarrow W$.

Consider the commutative diagram of vector bundles

where the horizontal sequences are exact and the vertical maps are induced by the natural map $L_{2} \otimes L_{x}^{-1} \rightarrow L_{2}$. From this, we deduce the commutative diagram

which implies the lemma.
Remark 2.2. Lemma 2.1 (ii) asserts that the non-stable bundles in $\mathbb{P} H^{1}\left(L_{2}^{-1} \otimes L_{1}\right)$ correspond precisely to the image of C in $\mathbb{P} H^{1}\left(L_{2}^{-1} \otimes L_{1}\right)$ under the map given by the linear system $K_{C} \otimes L_{1}^{-1} \otimes L_{2}$. Which implies that the dimension of the subset of non-stable bundles in $\mathbb{P} H^{1}\left(L_{2}^{-1} \otimes L_{1}\right)$ is at most 1 .

3. Proof of Theorem 1.3

Let C be a smooth irreducible curve over an algebraically closed field of characteristic zero, W a vector bundle of rank 2 over C, set

$$
\begin{equation*}
m(W):=\max \{\operatorname{deg}(L) \mid L \subset W \text { is a sub line bundle of } W\} \tag{3}
\end{equation*}
$$

A sub line bundle L of W of maximal degree $m(W)$ is called a maximal sub line bundle. The Segre invariant is defined by

$$
\begin{equation*}
s(W):=\operatorname{deg}(W)-2 m(W) \tag{4}
\end{equation*}
$$

Note that $s(W) \equiv \operatorname{deg}(W)(\bmod 2)$ and that W is stable (resp. semi-stable) if and only if $s(W) \geq 1$ (resp. $s(W) \geq 0)$. Nagata proved in [6] that

$$
s(W) \leq g
$$

It is easy to see that
Lemma 3.1. If $g=3$, then, for any stable bundle W over C of rank 2 and with even degree d, we have $s(W)=2$.
In general, the function $s: M \longrightarrow \mathbb{Z}$ defined by $[W] \longmapsto s(W)$ is lower semicontinuous and gives a stratification of M into locally closed subsets M_{s} according to the value of s. Then, by Proposition 3.1 in [2], we have

Proposition 3.2. ([2]) Suppose that $1 \leq s \leq g-2$ and $s \equiv d(\bmod 2)$. Then M_{s} is an irreducible algebraic variety of dimension $2 g+s-2$.

The proof of Theorem 1.3 follows the following two propositions.

Proposition 3.3. Suppose that $g \geq 3, r=2$, d is even and M_{2} is non-empty. Then, for any $[W] \in M_{2}$, there is a rational curve of split type passing through it, which has degree 4.

Proof. For any $[W] \in M_{2}$, there is a sub line bundle L_{1} of W with $\operatorname{deg} L_{1}=\frac{d}{2}-1$, where $d=\operatorname{deg} \mathcal{L}$. Let $L_{2}:=W / L_{1}$ be the quotient bundle, which has degree $\frac{d}{2}+1$. It is easy to see that

$$
1 \times d-\left(\frac{d}{2}-1\right) \times 2=2=(2, d)
$$

Let $i: L_{1} \rightarrow W$ be the natural injection, then

$$
0 \longrightarrow L_{1} \xrightarrow{i} W \longrightarrow L_{2} \longrightarrow 0
$$

is a non-trivial extension (otherwise, we have $W \cong L_{1} \oplus L_{2}$, which contradicts the stability of W).
It is known that there is a family of vector bundles \mathcal{E} on C parametrized by $P_{\left(L_{1}, L_{2}\right)}=\mathbb{P} E x t^{1}\left(L_{2}, L_{1}\right)$ so that for each $p \in P_{\left(L_{1}, L_{2}\right)}$, the \mathcal{E}_{p} is isomorphic to the bundle obtained as the extension of L_{2} by L_{1} given by p (see Lemma 2.3 of [9]). More precisely, there is a universal extension

$$
\begin{equation*}
0 \rightarrow f^{*} L_{1} \otimes \pi^{*} \mathcal{O}_{P_{\left(L_{1}, L_{2}\right)}}(1) \rightarrow \mathcal{E} \rightarrow f^{*} L_{2} \rightarrow 0 \tag{5}
\end{equation*}
$$

on $C \times P_{\left(L_{1}, L_{2}\right)}$, where $f: C \times P_{\left(L_{1}, L_{2}\right)} \rightarrow C$ and $\pi: C \times P_{\left(L_{1}, L_{2}\right)} \rightarrow P_{\left(L_{1}, L_{2}\right)}$ are projections. Then \mathcal{E} is a family of semi-stable bundles of rank 2 and with fixed determinant $\operatorname{det}\left(L_{1}\right) \otimes \operatorname{det}\left(L_{2}\right) \cong \mathcal{L}$ (Lemma 2.1). Thus, the universal extension (5) defines a morphism

$$
\begin{equation*}
\Phi_{\left(L_{1}, L_{2}\right)}: P_{\left(L_{1}, L_{2}\right)} \longrightarrow U_{C}(2, \mathcal{L}) \tag{6}
\end{equation*}
$$

where $U_{C}(2, \mathcal{L})$ denotes the moduli space of semi-stable bundles of rank 2 and with fixed determinant \mathcal{L}, which is a projective compactification of M.

It is easy to see that $P_{\left(L_{1}, L_{2}\right)}$ is a projective space of dimension $g \geq 3$. By Lemma 2.1 and Remark 2.2, there is a line l in $P_{\left(L_{1}, L_{2}\right)}$ passing through

$$
q=\left[0 \longrightarrow L_{1} \xrightarrow{i} W \longrightarrow L_{2} \longrightarrow 0\right]
$$

such that \mathcal{E}_{p} is stable for each $p \in l$. Thus, $\Phi_{\left(L_{1}, L_{2}\right)}(l) \subset M=S U_{C}(2, \mathcal{L})$ and

$$
\begin{equation*}
\left.\Phi_{\left(L_{1}, L_{2}\right)}\right|_{l}: l \rightarrow M=S U_{C}(2, \mathcal{L}) \tag{7}
\end{equation*}
$$

is a rational curve of split type passing through the point $[W] \in M$.
Proposition 3.4. Suppose $g \geq 2, r=2, d$ is odd and M_{1} is non-empty. Then, for any $[W] \in M_{1}$, there is a rational curve of split type passing through it, which has degree 2 .

Proof. Let [W] be a point in M_{1}, then we have $s(W)=1$ and there is a sub line bundle L_{1} of W with $\operatorname{deg} L_{1}=\frac{d-1}{2}$, where $d=\operatorname{deg} \mathcal{L}$. Let $L_{2}:=W / L_{1}$, which is a line bundle of degree $\frac{d+1}{2}$. It is easy to see that

$$
1 \times d-\frac{d-1}{2} \times 2=1=(2, d) .
$$

Let $\iota: L_{1} \rightarrow W$ be the natural injection, then

$$
0 \longrightarrow L_{1} \xrightarrow{\iota} W \longrightarrow L_{2} \longrightarrow 0
$$

is a non-trivial extension because W is a stable bundle.
It is known that there is a family of vector bundles $\left\{\mathcal{E}_{p}\right\}$ on C parametrized by $P_{\left(L_{1}, L_{2}\right)}=\mathbb{P} E x t^{1}\left(L_{2}, L_{1}\right)$ such that for each $p \in P_{\left(L_{1}, L_{2}\right)}, \mathcal{E}_{p}$ is isomorphic to the bundle obtained as the extension of L_{2} by L_{1} given by p (Lemma 2.3 of [9]). By Lemma 3.1 of [10], $\left\{\mathcal{E}_{p}\right\}$ is a family of stable bundles of rank 2 and with fixed $\operatorname{determinant} \operatorname{det}\left(L_{1}\right) \otimes \operatorname{det}\left(L_{2}\right) \cong \mathcal{L}$, which defines a morphism

$$
\begin{equation*}
\Psi_{\left(L_{1}, L_{2}\right)}: P_{\left(L_{1}, L_{2}\right)} \longrightarrow S U_{C}(2, \mathcal{L})=M . \tag{8}
\end{equation*}
$$

Let l be a line in $P_{\left(L_{1}, L_{2}\right)}$ passing through

$$
q=\left[0 \longrightarrow L_{1} \xrightarrow{\iota} W \longrightarrow L_{2} \longrightarrow 0\right]
$$

then

$$
\begin{equation*}
\left.\Psi_{\left(L_{1}, L_{2}\right)}\right|_{l}: l \longrightarrow M=S U_{C}(2, \mathcal{L}) \tag{9}
\end{equation*}
$$

is a rational curve of split type passing through the point $[W] \in M$, which has degree 2 .
When $g=2$, the same as Lemma 3.1, we have:

Lemma 3.5. If $g=2, r=2$ and d is odd, for any $[W] \in M, s(W)=1$.

By Lemma 3.5 and Proposition 3.4, we have:

Proposition 3.6. If $g=2, r=2$ and d is odd, then, for any $[W] \in M$, there exists a rational curve of split type passing through it, which has degree 2.

Acknowledgements

The author is grateful to her supervisor Prof. Xiaotao Sun for his helpful suggestions in the preparation of this paper and to Prof. Meng Chen and Prof. Kejian Xu for their help.

References

[1] J.-M. Drezet, M.S. Narasimhan, Groupe de Picard des variétés de modules de fibrés semistables sur les courbes algébriques, Invent. Math. 97 (1989) 53-94.
[2] H. Lang, M.S. Narasimhan, Maximal subbundles of rank two vector bundles on curves, Math. Ann. 266 (1983) 55-72.
[3] M. Liu, Small rational curves on the moduli space of stable bundles, Int. J. Math. 23 (8) (2012) 1250085.
[4] N. Mok, X. Sun, Remarks on lines and minimal rational curves, Sci. China Ser. A, Math. 52 (4) (2009) 617-630
[5] N. Mok, X. Sun, Erratum to: Remarks on lines and minimal rational curves, Sci. China Ser. A, Math. 5 (9) (2014) 1992.
[6] M. Nagata, On self intersection number of vector bundles of rank 2 on a Riemann surface, Nagoya Math. J. 37 (1970) 191-196.
[7] M.S. Narasimhan, S. Ramanan, Moduli of vector bundles on a compact Riemann surface, Ann. of Math. (2) 89 (1969) 14-51.
[8] M.S. Narasimhan, S. Ramanan, Geometry of Hecke cycles I, in: C.P. Ramanujam - A Tribute, Tata Institute, Springer Verlag, 1978, pp. 291-345.
[9] S. Ramanan, The moduli spaces of vector bundles over an algebraic curve, Math. Ann. 200 (1973) 69-84.
[10] X. Sun, Minimal rational curves on the moduli spaces of stable bundles, Math. Ann. 331 (2005) 925-937.
[11] X. Sun, Elliptic curves in moduli spaces of stable bundles, in: Special Issue: In Memory of Eckart Viehweg 1761-1783, Pure Appl. Math. Q. 7 (4) (2011).

[^0]: 放 Supported by the National Natural Science Foundation of China (Grant No. 11401330).
 E-mail address: liumin@amss.ac.cn.
 http://dx.doi.org/10.1016/j.crma.2016.08.007
 1631-073X/© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

