Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Differential geometry

On the rank of a product of manifolds

Sur le rang d'un produit de variétés

Francisco-Javier Turiel^{a, 1}, Arthur G. Wasserman^b

^a Geometría y Topología, Facultad de Ciencias, Campus de Teatinos, s/n, 29071, Málaga, Spain
^b University of Michigan, Ann Arbor, MI 48109-1003, USA

ARTICLE INFO

Article history: Received 16 June 2016 Accepted after revision 30 August 2016 Available online 6 September 2016

Presented by Étienne Ghys

ABSTRACT

This note gives an example of closed smooth manifolds M and N for which the rank of $M \times N$ is strictly greater than rank M + rank N.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Cette note donne un exemple de deux variétés compactes M et N pour lesquelles le rang de $M \times N$ est strictement plus grand que rang M + rang N.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Milnor defined the *rank* of a smooth manifold M as the maximal number of commuting vector fields on M that are linearly independent at each point.

One of the questions raised by Milnor at the Seattle Topology Conference of 1963, and echoed by Novikov [2], was

 $is \operatorname{rank}(M \times N) = \operatorname{rank}(M) + \operatorname{rank}(N)$

whenever *M* and *N* are smooth closed manifolds? In this note we give a negative answer to this question.

2. The main result

We need a simple result about mapping tori. Let $f: X \to X$ be a diffeomorphism of a manifold X and let

http://dx.doi.org/10.1016/j.crma.2016.08.004

E-mail addresses: turiel@uma.es (F.-J. Turiel), awass@umich.edu (A.G. Wasserman).

¹ The author is partially supported by MEC-FEDER grant MTM2013-41768-P, and JA grant FQM-213.

 $^{1631\}text{-}073X/\odot$ 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

$$M(f) = \frac{l \times X}{(0, x) \sim (1, f(x))}$$

be the mapping torus of f where I = [0, 1].

Equivalently, $M(f) = \frac{\mathbb{R} \times X}{\mathbb{Z}}$ where the action of \mathbb{Z} on $\mathbb{R} \times X$ is given by $\alpha(k)(t, x) = (t+k, f^k(x))$. M(f) is a fiber bundle over S¹ with fiber X. We note that $\pi_1(M(f)) = \pi_1(X) *_f \mathbb{Z}$ where * denotes the semi-direct product and $f_* : \pi_1(X) \to \pi_1(X)$.

Proposition 2.1. Consider two periodic diffeomorphisms $f: X \to X$ and $g: Y \to Y$ with periods m and n respectively. Assume m and *n* are relatively prime, i.e., there are integers c, d such that mc + nd = 1.

Then $M(f) \times M(g)$ is diffeomorphic to M(h) where $h: S^1 \times X \times Y \to S^1 \times X \times Y$ is defined by $h(\theta, x, y) = (\theta, f^{-d}(x), g^c(y))$. Moreover $h^{m-n} = (id, f, g)$.

Proof. $M(f) \times M(g)$ can be identified with the quotient of $\mathbb{R}^2 \times X \times Y$ under the action of \mathbb{Z}^2 given by $\beta(z)(u, x, y) =$ $(u + z, f^{z_1}(x), g^{z_2}(y))$, where $z = (z_1, z_2) \in \mathbb{Z}^2$, $u = (u_1, u_2) \in \mathbb{R}^2$ and $(x, y) \in X \times Y$.

Set $\lambda = (m, n)$ and $\mu = (-d, c)$. Since mc + nd = 1, $\mathcal{B} = \{\lambda, \mu\}$ is at the same time a basis of \mathbb{Z}^2 as a \mathbb{Z} -module and a basis of \mathbb{R}^2 as a vector space. On the other hand

 $\beta(\lambda)(u, x, y) = (u + \lambda, x, y)$ and $\beta(\mu)(u, x, y) = (u + \mu, f^{-d}(x), g^{c}(y)).$

Therefore the action β referred to the new basis \mathcal{B} of \mathbb{Z}^2 and \mathbb{R}^2 is written now:

 $\beta(k, r)(a, b, x, y) = (a + k, b + r, \varphi^{r}(x), \gamma^{r}(y))$

where $\varphi = f^{-d}$ and $\gamma = g^c$.

As the action of the first factor of \mathbb{Z}^2 on $X \times Y$ is trivial, identifying S^1 with $\frac{\mathbb{R}}{\mathbb{Z}}$ shows that $M(f) \times M(g)$ is diffeomorphic to M(h).

Finally from (-n)(-d) = 1 - cm and cm = 1 - dn follows that $h^{m-n} = (id, f, g)$. \Box

On the other hand:

Lemma 2.1. Let $f: N \to N$ be a diffeomorphism and let X_1, \ldots, X_k be a family of commuting vector fields on N that are linearly independent everywhere. Assume $f_*X_i = \sum_{i=1}^k a_{ij}X_j$, i = 1, ..., k, where the matrix $(a_{ij}) \in GL(k, \mathbb{R})$. Then rank $(M(f)) \ge k$.

Proof. It suffices to construct k commuting vector fields $\widetilde{X}_1, \ldots, \widetilde{X}_k$ on $I \times N$ that are linearly independent at each point and such that every $\widetilde{X}_i(t,x)$ equals $X_i(x)$ if t is close to zero and $f_*X_i(x)$ when t is close to 1 (X_1,\ldots,X_k) are considered vector fields on $I \times N$ in the obvious way).

If $|a_{ij}| > 0$ consider an interval $[a, b] \subset (0, 1)$ and a (differentiable) map $(\varphi_{ij}): I \to GL(k, \mathbb{R})$ such that $\varphi_{ij}([0, a]) = \delta_{ij}$

and $\varphi_{ij}([b, 1]) = a_{ij}$, and set $\widetilde{X}_i(t, x) = \sum_{j=1}^k \varphi_{ij}(t) X_j(x)$. When $|a_{ij}| < 0$ first take an interval $[c, d] \subset (0, 1/2)$ and a function $\rho : [0, 1/2] \to \mathbb{R}$ such that $\rho([0, c]) = 1$, $\rho([d, 1/2]) = -1$, and on $[0, 1/2] \times N$ set $\widetilde{X}_1(t, x) = \rho(t) X_1(x) + (1 - \rho^2(t)) \frac{\partial}{\partial t}$ and $\widetilde{X}_i(t, x) = X_i(x)$, $i = 2, \dots, k$.

The matrix of coordinates of f_*X_1, \ldots, f_*X_k with respect to the basis $\{-X_1, X_2, \ldots, X_k\}$ has positive determinant, so by doing as before we can extend $\widetilde{X}_1, \ldots, \widetilde{X}_k$ to $[1/2, 1] \times N$ by means of an interval $[a, b] \subset (1/2, 1)$ and a suitable map $(\varphi_{ii}): [1/2, 1] \rightarrow GL(k, \mathbb{R}).$

Proposition 2.1 and Lemma 2.1 quickly yield a counterexample.

Assume X is a torus $\mathbb{T}^k = \frac{\mathbb{R}^k}{\mathbb{Z}^k}$ and f is the map induced by a nontrivial element of $GL(k,\mathbb{Z})$. Then by the above lemma applied to $\frac{\partial}{\partial \theta_i}$, j = 1, ..., k, rank $(M(f)) \ge k$. But M(f) has non-Abelian fundamental group, so it is not a torus and $\operatorname{rank}(M(f)) = k$. (If M is a closed connected *n*-manifold of rank *n*, then M is diffeomorphic to the *n*-torus.)

For the same reason, if $Y = \mathbb{T}^r$ and g is induced by a nontrivial element of $GL(r, \mathbb{Z})$, then rank(M(g)) = r.

If f and g are periodic with relatively prime periods m and n, respectively, then by Proposition 2.1, $M(f) \times M(g) =$ M(h) where $h: \mathbb{T}^{k+r+1} \to \mathbb{T}^{k+r+1}$ is induced by a nontrivial element of $GL(k+r+1,\mathbb{Z})$. Moreover rank(M(h)) = k+r+1. Therefore:

 $\operatorname{rank}(M(f) \times M(g)) > \operatorname{rank}(M(f)) + \operatorname{rank}(M(g)).$

For instance, set k = r = 2 and consider f, g induced by the elements in $SL(2, \mathbb{Z}) \subset GL(2, \mathbb{Z})$

$$\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}$$

respectively, so M(f) and M(g) are orientable. Then the period of f is 2 and that of g equals 3.

1024

Remark 1. The *file* of a manifold *M* was defined by Rosenberg [3] to be the largest integer *k* such that \mathbb{R}^k acts locally free on *M*. When *M* is closed file(*M*) equals rank(*M*) but file($\mathbb{R} \times S^2$) = 1, [3], while rank($\mathbb{R} \times S^2$) = 3.

The analog of Milnor's question for the file of a product of noncompact manifolds also fails. Indeed, let \mathbb{R}_e^4 be any exotic \mathbb{R}^4 . Then file(\mathbb{R}_e^4) ≤ 3 otherwise $\mathbb{R}_e^4 = \mathbb{R}^4$. But $\mathbb{R}_e^4 \times \mathbb{R} = \mathbb{R}^5$, because there in no exotic \mathbb{R}^5 , so file($\mathbb{R}_e^4 \times \mathbb{R}$) = 5 > file(\mathbb{R}_e^4) + file(\mathbb{R}).

Orientable closed connected *n*-manifolds of rank n - 1 are completely described in [4,1,5].

References

- [1] G. Chatelet, H. Rosenberg, Manifolds which admit \mathbb{R}^n actions, Publ. Math. Inst. Hautes Études Sci. 43 (1974) 245–260.
- [2] S.P. Novikov, The topology summer institute, in: Seattle, USA, 1963, Russ. Math. Surv. 20 (1965) 145-167, http://www.mi.ras.ru/~snovikov/16.pdf.
- [3] H. Rosenberg, Singularities of \mathbb{R}^2 actions, Topology 7 (1968) 143–145.
- [4] H. Rosenberg, R. Roussarie, D. Weil, A classification of closed oriented 3-manifold of rank two, Ann. of Math. (2) 91 (1970) 449-464.
- [5] D. Tischler, Manifolds M^n of rank n 1, Proc. Amer. Math. Soc. 94 (1985) 158–160.