Differential geometry

On the rank of a product of manifolds

CrossMark

Sur le rang d'un produit de variétés

Francisco-Javier Turiel ${ }^{\text {a, }}$, Arthur G. Wasserman ${ }^{\text {b }}$
${ }^{\text {a }}$ Geometría y Topología, Facultad de Ciencias, Campus de Teatinos, $s / n, 29071$, Málaga, Spain
${ }^{\text {b }}$ University of Michigan, Ann Arbor, MI 48109-1003, USA

A R T I CLE I N F O

Article history:

Received 16 June 2016
Accepted after revision 30 August 2016
Available online 6 September 2016
Presented by Étienne Ghys

A B S T R A C T

This note gives an example of closed smooth manifolds M and N for which the rank of $M \times N$ is strictly greater than $\operatorname{rank} M+\operatorname{rank} N$.
© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Cette note donne un exemple de deux variétés compactes M et N pour lesquelles le rang de $M \times N$ est strictement plus grand que rang $M+\operatorname{rang} N$.
© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Milnor defined the rank of a smooth manifold M as the maximal number of commuting vector fields on M that are linearly independent at each point.

One of the questions raised by Milnor at the Seattle Topology Conference of 1963, and echoed by Novikov [2], was

$$
\text { is } \operatorname{rank}(M \times N)=\operatorname{rank}(M)+\operatorname{rank}(N)
$$

whenever M and N are smooth closed manifolds?
In this note we give a negative answer to this question.

2. The main result

We need a simple result about mapping tori.
Let $f: X \rightarrow X$ be a diffeomorphism of a manifold X and let

[^0]$$
M(f)=\frac{I \times X}{(0, x)^{\sim}(1, f(x))}
$$
be the mapping torus of f where $I=[0,1]$.
Equivalently, $M(f)=\frac{\mathbb{R} \times X}{\mathbb{Z}}$ where the action of \mathbb{Z} on $\mathbb{R} \times X$ is given by $\alpha(k)(t, x)=\left(t+k, f^{k}(x)\right) . M(f)$ is a fiber bundle over S^{1} with fiber X. We note that $\pi_{1}(M(f))=\pi_{1}(X) *_{f} \mathbb{Z}$ where $*$ denotes the semi-direct product and $f_{*}: \pi_{1}(X) \rightarrow \pi_{1}(X)$.

Proposition 2.1. Consider two periodic diffeomorphisms $f: X \rightarrow X$ and $g: Y \rightarrow Y$ with periods m and n respectively. Assume m and n are relatively prime, i.e., there are integers c, d such that $m c+n d=1$.

Then $M(f) \times M(g)$ is diffeomorphic to $M(h)$ where $h: S^{1} \times X \times Y \rightarrow S^{1} \times X \times Y$ is defined by $h(\theta, x, y)=\left(\theta, f^{-d}(x), g^{c}(y)\right)$. Moreover $h^{m-n}=(i d, f, g)$.

Proof. $M(f) \times M(g)$ can be identified with the quotient of $\mathbb{R}^{2} \times X \times Y$ under the action of \mathbb{Z}^{2} given by $\beta(z)(u, x, y)=$ $\left(u+z, f^{z_{1}}(x), g^{z_{2}}(y)\right)$, where $z=\left(z_{1}, z_{2}\right) \in \mathbb{Z}^{2}, u=\left(u_{1}, u_{2}\right) \in \mathbb{R}^{2}$ and $(x, y) \in X \times Y$.

Set $\lambda=(m, n)$ and $\mu=(-d, c)$. Since $m c+n d=1, \mathcal{B}=\{\lambda, \mu\}$ is at the same time a basis of \mathbb{Z}^{2} as a \mathbb{Z}-module and a basis of \mathbb{R}^{2} as a vector space. On the other hand

$$
\beta(\lambda)(u, x, y)=(u+\lambda, x, y) \quad \text { and } \quad \beta(\mu)(u, x, y)=\left(u+\mu, f^{-d}(x), g^{c}(y)\right) .
$$

Therefore the action β referred to the new basis \mathcal{B} of \mathbb{Z}^{2} and \mathbb{R}^{2} is written now:

$$
\beta(k, r)(a, b, x, y)=\left(a+k, b+r, \varphi^{r}(x), \gamma^{r}(y)\right)
$$

where $\varphi=f^{-d}$ and $\gamma=g^{c}$.
As the action of the first factor of \mathbb{Z}^{2} on $X \times Y$ is trivial, identifying S^{1} with $\frac{\mathbb{R}}{\mathbb{Z}}$ shows that $M(f) \times M(g)$ is diffeomorphic to $M(h)$.

Finally from $(-n)(-d)=1-c m$ and $c m=1-d n$ follows that $h^{m-n}=(i d, f, g)$.
On the other hand:
Lemma 2.1. Let $f: N \rightarrow N$ be a diffeomorphism and let X_{1}, \ldots, X_{k} be a family of commuting vector fields on N that are linearly independent everywhere. Assume $f_{*} X_{i}=\sum_{j=1}^{k} a_{i j} X_{j}, i=1, \ldots, k$, where the matrix $\left(a_{i j}\right) \in G L(k, \mathbb{R})$. Then $\operatorname{rank}(M(f)) \geq k$.

Proof. It suffices to construct k commuting vector fields $\widetilde{X}_{1}, \ldots, \widetilde{X}_{k}$ on $I \times N$ that are linearly independent at each point and such that every $\widetilde{X}_{i}(t, x)$ equals $X_{i}(x)$ if t is close to zero and $f_{*} X_{i}(x)$ when t is close to $1\left(X_{1}, \ldots, X_{k}\right.$ are considered vector fields on $I \times N$ in the obvious way).

If $\left|a_{i j}\right|>0$ consider an interval $[a, b] \subset(0,1)$ and a (differentiable) map $\left(\varphi_{i j}\right): I \rightarrow G L(k, \mathbb{R})$ such that $\varphi_{i j}([0, a])=\delta_{i j}$ and $\varphi_{i j}([b, 1])=a_{i j}$, and set $\widetilde{X}_{i}(t, x)=\sum_{j=1}^{k} \varphi_{i j}(t) X_{j}(x)$.

When $\left|a_{i j}\right|<0$ first take an interval $[c, d] \subset(0,1 / 2)$ and a function $\rho:[0,1 / 2] \rightarrow \mathbb{R}$ such that $\rho([0, c])=1, \rho([d, 1 / 2])=$ -1 , and on $[0,1 / 2] \times N$ set $\widetilde{X}_{1}(t, x)=\rho(t) X_{1}(x)+\left(1-\rho^{2}(t)\right) \frac{\partial}{\partial t}$ and $\widetilde{X}_{i}(t, x)=X_{i}(x), i=2, \ldots, k$.

The matrix of coordinates of $f_{*} X_{1}, \ldots, f_{*} X_{k}$ with respect to the basis $\left\{-X_{1}, X_{2}, \ldots, X_{k}\right\}$ has positive determinant, so by doing as before we can extend $\widetilde{X}_{1}, \ldots, \widetilde{X}_{k}$ to $[1 / 2,1] \times N$ by means of an interval $[a, b] \subset(1 / 2,1)$ and a suitable map $\left(\varphi_{i j}\right):[1 / 2,1] \rightarrow G L(k, \mathbb{R})$.

Proposition 2.1 and Lemma 2.1 quickly yield a counterexample.
Assume X is a torus $\mathbb{T}^{k}=\frac{\mathbb{R}^{k}}{\mathbb{Z}^{k}}$ and f is the map induced by a nontrivial element of $G L(k, \mathbb{Z})$. Then by the above lemma applied to $\frac{\partial}{\partial \theta_{j}}, j=1, \ldots, k, \operatorname{rank}(M(f)) \geq k$. But $M(f)$ has non-Abelian fundamental group, so it is not a torus and $\operatorname{rank}(M(f))=k$. (If M is a closed connected n-manifold of rank n, then M is diffeomorphic to the n-torus.)

For the same reason, if $Y=\mathbb{T}^{r}$ and g is induced by a nontrivial element of $G L(r, \mathbb{Z})$, then $\operatorname{rank}(M(g))=r$.
If f and g are periodic with relatively prime periods m and n, respectively, then by Proposition $2.1, M(f) \times M(g)=$ $M(h)$ where $h: \mathbb{T}^{k+r+1} \rightarrow \mathbb{T}^{k+r+1}$ is induced by a nontrivial element of $G L(k+r+1, \mathbb{Z})$. Moreover $\operatorname{rank}(M(h))=k+r+1$. Therefore:

$$
\operatorname{rank}(M(f) \times M(g))>\operatorname{rank}(M(f))+\operatorname{rank}(M(g))
$$

For instance, set $k=r=2$ and consider f, g induced by the elements in $S L(2, \mathbb{Z}) \subset G L(2, \mathbb{Z})$

$$
\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right)
$$

respectively, so $M(f)$ and $M(g)$ are orientable. Then the period of f is 2 and that of g equals 3 .

An even simpler but non-orientable counterexample can be constructed as follows. Take r and g as before, $k=1$ and f induced by (-1). Then $M(f)$ is the Klein bottle which has rank 1 and $\mathrm{M}(\mathrm{g})$ has rank 2 ; however, $M(f) \times M(g)$ is diffeomorphic to $M(h)$ and hence has rank 4.

Remark 1. The file of a manifold M was defined by Rosenberg [3] to be the largest integer k such that \mathbb{R}^{k} acts locally free on M. When M is closed file (M) equals $\operatorname{rank}(M)$ but file $\left(\mathbb{R} \times S^{2}\right)=1$, [3], while $\operatorname{rank}\left(\mathbb{R} \times S^{2}\right)=3$.

The analog of Milnor's question for the file of a product of noncompact manifolds also fails. Indeed, let \mathbb{R}_{e}^{4} be any exotic \mathbb{R}^{4}. Then file $\left(\mathbb{R}_{e}^{4}\right) \leq 3$ otherwise $\mathbb{R}_{e}^{4}=\mathbb{R}^{4}$. But $\mathbb{R}_{e}^{4} \times \mathbb{R}=\mathbb{R}^{5}$, because there in no exotic \mathbb{R}^{5}, so file $\left(\mathbb{R}_{e}^{4} \times \mathbb{R}\right)=5>$ file $\left(\mathbb{R}_{e}^{4}\right)+\operatorname{file}(\mathbb{R})$.

Orientable closed connected n-manifolds of rank $n-1$ are completely described in [4,1,5].

References

[1] G. Chatelet, H. Rosenberg, Manifolds which admit \mathbb{R}^{n} actions, Publ. Math. Inst. Hautes Études Sci. 43 (1974) 245-260.
[2] S.P. Novikov, The topology summer institute, in: Seattle, USA, 1963, Russ. Math. Surv. 20 (1965) 145-167, http://www.mi.ras.ru/~snovikov/16.pdf.
[3] H. Rosenberg, Singularities of \mathbb{R}^{2} actions, Topology 7 (1968) 143-145.
[4] H. Rosenberg, R. Roussarie, D. Weil, A classification of closed oriented 3-manifold of rank two, Ann. of Math. (2) 91 (1970) 449-464.
[5] D. Tischler, Manifolds M^{n} of rank $n-1$, Proc. Amer. Math. Soc. 94 (1985) 158-160.

[^0]: E-mail addresses: turiel@uma.es (F.-J. Turiel), awass@umich.edu (A.G. Wasserman).
 1 The author is partially supported by MEC-FEDER grant MTM2013-41768-P, and JA grant FQM-213.
 http://dx.doi.org/10.1016/j.crma.2016.08.004
 1631-073X/© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

