

Contents lists available at ScienceDirect C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Topology

The hyperelliptic mapping class group of a nonorientable surface of genus $g \ge 4$ has a faithful representation into $GL(g^2 - 1, \mathbb{R})$

Le groupe modulaire hyperelliptique d'une surface non orientable de genre $g \ge 4$ a une représentation fidèle dans $GL(g^2 - 1, \mathbb{R})$

Michał Stukow¹

Institute of Mathematics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, 80-308 Gdańsk, Poland

ARTICLE INFO

Article history: Received 30 June 2015 Accepted after revision 18 July 2016 Available online 17 August 2016

Presented by the Editorial Board

ABSTRACT

We prove that the hyperelliptic mapping class group of a nonorientable surface of genus $g \ge 4$ has a faithful linear representation of dimension $g^2 - 1$ over \mathbb{R} .

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Nous démontrons que le groupe modulaire hyperelliptique d'une surface non orientable de genre $g \ge 4$ a une représentation fidèle linéaire de dimension $g^2 - 1$ sur \mathbb{R} . © 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let $N_{g,n}$ be a smooth, nonorientable, compact surface of genus g with n punctures. If n is zero, then we omit it from the notation. Recall that N_g is a connected sum of g projective planes and $N_{g,n}$ is obtained from N_g by specifying the set Σ of n distinguished points in the interior of N_g .

Let $\text{Diff}(N_{g,n})$ be the group of all diffeomorphisms $h: N_{g,n} \to N_{g,n}$ such that $h(\Sigma) = \Sigma$. By $\mathcal{M}(N_{g,n})$ we denote the quotient group of $\text{Diff}(N_{g,n})$ by the subgroup consisting of maps isotopic to the identity, where we assume that maps and isotopies fix the set Σ . $\mathcal{M}(N_{g,n})$ is called the *mapping class group* of $N_{g,n}$.

The mapping class group $\mathcal{M}(S_{g,n})$ of an orientable surface $S_{g,n}$ of genus g with n punctures is defined analogously, but we consider only orientation-preserving maps. If we include orientation reversing maps, we obtain the so-called *extended* mapping class group $\mathcal{M}^{\pm}(S_{g,n})$. Suppose that the closed orientable surface S_{g-1} , where $g - 1 \ge 2$, is embedded in \mathbb{R}^3 as shown in Fig. 1, in such a way that it is invariant under reflections across xy, yz, xz planes. Let $j: S_{g-1} \rightarrow S_{g-1}$ be the

http://dx.doi.org/10.1016/j.crma.2016.07.015

E-mail address: trojkat@mat.ug.edu.pl.

¹ Supported by grant 2015/17/B/ST1/03235 of National Science Centre, Poland.

¹⁶³¹⁻⁰⁷³X/© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

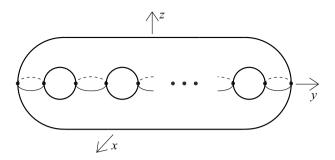


Fig. 1. Surface S_g embedded in \mathbb{R}^3 .

symmetry defined by j(x, y, z) = (-x, -y, -z). Denote by $C_{\mathcal{M}^{\pm}(S_{g-1})}(j)$ the centraliser of j in $\mathcal{M}^{\pm}(S_{g-1})$. The orbit space $S_{g-1}/\langle j \rangle$ is a nonorientable surface N_g of genus g and it is known (Theorem 1 of [3]) that the orbit space projection induces an epimorphism

$$\pi_j: \mathcal{C}_{\mathcal{M}^{\pm}(S_{g-1})}(j) \to \mathcal{M}(N_g)$$

with kernel ker $\pi_i = \langle j \rangle$. In particular

 $\mathcal{M}(N_g) \cong \mathcal{C}_{\mathcal{M}^{\pm}(S_{g-1})}(j)/\langle j \rangle.$

As was observed in the proof of Theorem 2.1 of [10], projection π_i has a section

$$i_j: \mathcal{M}(N_g) \to \mathcal{C}_{\mathcal{M}(S_{g-1})}(j) \subset \mathcal{M}(S_{g-1})$$

In fact, for any $h \in \mathcal{M}(N_g)$, we can define $i_j(h)$ to be an orientation preserving lift of h.

Let $\rho \in C_{\mathcal{M}^{\pm}(S_{g-1})}(j)$ be the hyperelliptic involution, i.e. the half turn about the *y*-axis. The hyperelliptic mapping class group $\mathcal{M}^{h}(S_{g-1})$ is defined to be the centraliser of ρ in $\mathcal{M}(S_{g-1})$. The hyperelliptic mapping class group turns out to be a very interesting and important subgroup, in particular its finite subgroups correspond to automorphism groups of hyperelliptic Riemann surfaces – see for example [9] and references therein.

Recently, we extended the notion of the hyperelliptic mapping class group to nonorientable surfaces [10], by defining $\mathcal{M}^h(N_g)$ to be the centraliser of $\pi_j(\varrho)$ in the mapping class group $\mathcal{M}(N_g)$. This definition is motivated by the notion of hyperelliptic Klein surfaces – see for example [4,5]. We say that $\pi_j(\varrho)$ is the hyperelliptic involution of N_g and by abuse of notation we write ϱ for $\pi_j(\varrho)$.

Since $\rho \in C_{\mathcal{M}^{\pm}(S_{g-1})}(j)$, we have restrictions of π_j and i_j to the maps

$$\pi_j: \mathcal{C}_{\mathcal{M}^{\pm}(S_{g-1})}(\langle j, \varrho \rangle) \to \mathcal{M}^h(N_g)$$
$$i_j: \mathcal{M}^h(N_g) \to \mathcal{C}_{\mathcal{M}(S_{g-1})}(\langle j, \varrho \rangle) \subset \mathcal{M}^h(S_{g-1}).$$

2. Linear representations of the hyperelliptic mapping class group

Mapping class groups of projective plane N_1 and of Klein bottle N_2 are finite, hence the first nontrivial case is the group $\mathcal{M}(N_3)$. This is an interesting case, because it is well known [3,8] that

 $\mathcal{M}^h(N_3) = \mathcal{M}(N_3) \cong \mathrm{GL}(2,\mathbb{Z}).$

In particular, $\mathcal{M}^h(N_3)$ has a faithful linear representation of real dimension 2.

For $g \ge 4$, we can produce a faithful linear representation of the hyperelliptic mapping class group $\mathcal{M}^h(N_g)$ as a composition of the section

$$i_j: \mathcal{M}^h(N_g) \to \mathcal{C}_{\mathcal{M}(S_{g-1})}(\langle j, \varrho \rangle) \subset \mathcal{M}^h(S_{g-1})$$

and a faithful linear representation of $\mathcal{M}^h(S_{g-1})$ obtained by Korkmaz [6] or by Bigelow and Budney [2]. Recall that both of these representations of $\mathcal{M}^h(S_{g-1})$ are obtained form the Lawrence-Krammer representation of the braid group [1,7].

The above argument is immediate, but the resulting representation of $\mathcal{M}^h(N_g)$ is far from being optimal. In fact, if we use the Bigelow–Budney representation of $\mathcal{M}^h(S_{g-1})$ (which has much smaller dimension than the one obtained by Korkmaz), the dimension of the obtained representation of $\mathcal{M}^h(N_g)$ is equal to

$$2g \cdot \binom{2g-1}{2} + 2(g-1) = 2(g-1)(2g^2 - g + 1).$$

Theorem 1. If $g \ge 4$, then the hyperelliptic mapping class group $\mathcal{M}^h(N_g)$ has a faithful linear representation of real dimension $g^2 - 1$.

Proof. Let $\mathcal{M}^{\pm}(S_{0,g+1})$ be the extended mapping class group of a sphere with g + 1 punctures $\{p_1, \ldots, p_{g+1}\}$, and let $\mathcal{M}^{\pm}(S_{0,g,1})$ be the stabiliser of p_{g+1} with respect to the action of $\mathcal{M}^{\pm}(S_{0,g+1})$ on the set of punctures. By Theorem 2.1 of [10], the orbit space projection $\mathcal{M}^h(N_g) \to \mathcal{M}^h(N_g)/\langle \varrho \rangle$ induces an epimorphism

$$\pi_{\varrho}: \mathcal{M}^h(N_g) \to \mathcal{M}^{\pm}(S_{0,g,1})$$

with ker $\pi_{\varrho} = \langle \varrho \rangle$. Moreover, by rescaling the Lawrence–Krammer representation of the braid group [1], Bigelow and Budney constructed in the proof of Theorem 2.1 of [2] a faithful linear representation

$$\mathcal{L}': \mathcal{M}(S_{0,g,1}) \to \mathrm{GL}\left(\binom{g}{2}, \mathbb{R}\right).$$

To be more precise, they obtained a representation over \mathbb{C} ; however, their argument works without any changes over \mathbb{R} .

Since $\mathcal{M}(S_{0,g,1})$ is a subgroup of index 2 in $\mathcal{M}^{\pm}(S_{0,g,1})$, the latter group has an induced faithful linear representation of dimension $2 \cdot {g \choose 2} = g^2 - g$. This gives us a linear representation

$$\mathcal{L}_1: \mathcal{M}^h(N_g) \to \mathrm{GL}\left(g^2 - g, \mathbb{R}\right)$$

with kernel ker $\mathcal{L}_1 = \langle \varrho \rangle$. It is straightforward to check that if

$$\mathcal{L}_2: \mathcal{M}^n(N_g) \to \mathrm{H}_1(N_g; \mathbb{R}) \subset \mathrm{GL}(g-1, \mathbb{R})$$

is a standard homology representation then $\mathcal{L}_1 \oplus \mathcal{L}_2$ is a required faithful linear representation of $\mathcal{M}^h(N_g)$ of dimension $g^2 - g + g - 1 = g^2 - 1$. \Box

Remark 1. The above theorem gives an upper bound $g^2 - 1$ on the minimal dimension of a faithful linear representation of the hyperelliptic mapping class group $\mathcal{M}^h(N_g)$. As we mentioned in the introduction, the hyperelliptic mapping class group $\mathcal{M}^h(N_g)$ has a faithful linear representation of real dimension 2, hence it seems very unlikely that the obtained bound is sharp.

Acknowledgement

The author wishes to thank the referee for his/her helpful suggestions.

References

- [1] S.J. Bigelow, Braid groups are linear, J. Amer. Math. Soc. 14 (2) (2001) 471-486.
- [2] S.J. Bigelow, R.D. Budney, The mapping class group of a genus two surface is linear, Algebraic Geom. Topol. 1 (2001) 699–708.
- [3] J.S. Birman, D.R.J. Chillingworth, On the homeotopy group of a non-orientable surface, Math. Proc. Camb. Philos. Soc. 71 (1972) 437–448.
- [4] E. Bujalance, A.F. Costa, J.M. Gamboa, The hyperelliptic mapping class group of Klein surfaces, Proc. Edinb. Math. Soc. 44 (2) (2001) 351–363.
- [5] E. Bujalance, J.J. Etayo, J.M. Gamboa, Hyperelliptic Klein surfaces, Quart. J. Math. Oxford 36 (2) (1985) 141-157.
- [6] M. Korkmaz, On the linearity of certain mapping class groups, Turk. J. Math. 24 (4) (2000) 367-371.
- [7] D. Kramer, Braid groups are linear, Ann. Math. 155 (1) (2002) 131–156.
- [8] M. Scharlemann, The complex of curves on non-orientable surfaces, J. Lond. Math. Soc. 25 (2) (1982) 171-184.
- [9] M. Stukow, Conjugacy classes of finite subgroups of certain mapping class groups, Turk. J. Math. 28 (2) (2004) 101-110.
- [10] M. Stukow, A finite presentation for the hyperelliptic mapping class group of a nonrientable surface, Osaka J. Math. 52 (2) (2015) 495–515.