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The hyperelliptic mapping class group of a nonorientable 
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We prove that the hyperelliptic mapping class group of a nonorientable surface of genus 
g ≥ 4 has a faithful linear representation of dimension g2 − 1 over R.
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r é s u m é

Nous démontrons que le groupe modulaire hyperelliptique d’une surface non orientable de 
genre g ≥ 4 a une représentation fidèle linéaire de dimension g2 − 1 sur R.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let Ng,n be a smooth, nonorientable, compact surface of genus g with n punctures. If n is zero, then we omit it from the 
notation. Recall that Ng is a connected sum of g projective planes and Ng,n is obtained from Ng by specifying the set � of 
n distinguished points in the interior of Ng .

Let Diff(Ng,n) be the group of all diffeomorphisms h: Ng,n → Ng,n such that h(�) = �. By M(Ng,n) we denote the 
quotient group of Diff(Ng,n) by the subgroup consisting of maps isotopic to the identity, where we assume that maps and 
isotopies fix the set �. M(Ng,n) is called the mapping class group of Ng,n .

The mapping class group M(S g,n) of an orientable surface S g,n of genus g with n punctures is defined analogously, but 
we consider only orientation-preserving maps. If we include orientation reversing maps, we obtain the so-called extended 
mapping class group M±(S g,n). Suppose that the closed orientable surface S g−1, where g − 1 ≥ 2, is embedded in R3 as 
shown in Fig. 1, in such a way that it is invariant under reflections across xy, yz, xz planes. Let j: S g−1 → S g−1 be the 
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Fig. 1. Surface S g embedded in R
3.

symmetry defined by j(x, y, z) = (−x, −y, −z). Denote by CM±(S g−1)( j) the centraliser of j in M±(S g−1). The orbit space 
S g−1/〈 j〉 is a nonorientable surface Ng of genus g and it is known (Theorem 1 of [3]) that the orbit space projection induces 
an epimorphism

π j: CM±(S g−1)( j) → M(Ng)

with kernel ker π j = 〈 j〉. In particular

M(Ng) ∼= CM±(S g−1)( j)/〈 j〉.
As was observed in the proof of Theorem 2.1 of [10], projection π j has a section

i j:M(Ng) → CM(S g−1)( j) ⊂ M(S g−1).

In fact, for any h ∈M(Ng), we can define i j(h) to be an orientation preserving lift of h.
Let � ∈ CM±(S g−1)( j) be the hyperelliptic involution, i.e. the half turn about the y-axis. The hyperelliptic mapping class group

Mh(S g−1) is defined to be the centraliser of � in M(S g−1). The hyperelliptic mapping class group turns out to be a very 
interesting and important subgroup, in particular its finite subgroups correspond to automorphism groups of hyperelliptic 
Riemann surfaces – see for example [9] and references therein.

Recently, we extended the notion of the hyperelliptic mapping class group to nonorientable surfaces [10], by defining 
Mh(Ng) to be the centraliser of π j(�) in the mapping class group M(Ng). This definition is motivated by the notion of 
hyperelliptic Klein surfaces – see for example [4,5]. We say that π j(�) is the hyperelliptic involution of Ng and by abuse of 
notation we write � for π j(�).

Since � ∈ CM±(S g−1)( j), we have restrictions of π j and i j to the maps

π j: CM±(S g−1)(〈 j,�〉) → Mh(Ng)

i j:Mh(Ng) → CM(S g−1)(〈 j,�〉) ⊂ Mh(S g−1).

2. Linear representations of the hyperelliptic mapping class group

Mapping class groups of projective plane N1 and of Klein bottle N2 are finite, hence the first nontrivial case is the group 
M(N3). This is an interesting case, because it is well known [3,8] that

Mh(N3) = M(N3) ∼= GL(2,Z).

In particular, Mh(N3) has a faithful linear representation of real dimension 2.
For g ≥ 4, we can produce a faithful linear representation of the hyperelliptic mapping class group Mh(Ng) as a com-

position of the section

i j:Mh(Ng) → CM(S g−1)(〈 j,�〉) ⊂ Mh(S g−1)

and a faithful linear representation of Mh(S g−1) obtained by Korkmaz [6] or by Bigelow and Budney [2]. Recall that both 
of these representations of Mh(S g−1) are obtained form the Lawrence–Krammer representation of the braid group [1,7].

The above argument is immediate, but the resulting representation of Mh(Ng) is far from being optimal. In fact, if 
we use the Bigelow–Budney representation of Mh(S g−1) (which has much smaller dimension than the one obtained by 
Korkmaz), the dimension of the obtained representation of Mh(Ng) is equal to

2g ·
(

2g − 1

2

)
+ 2(g − 1) = 2(g − 1)(2g2 − g + 1).
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Theorem 1. If g ≥ 4, then the hyperelliptic mapping class group Mh(Ng) has a faithful linear representation of real dimension g2 − 1.

Proof. Let M±(S0,g+1) be the extended mapping class group of a sphere with g + 1 punctures {p1, . . . , pg+1}, and let 
M±(S0,g,1) be the stabiliser of pg+1 with respect to the action of M±(S0,g+1) on the set of punctures. By Theorem 2.1 of 
[10], the orbit space projection Mh(Ng) →Mh(Ng)/〈�〉 induces an epimorphism

π�:Mh(Ng) → M±(S0,g,1)

with ker π� = 〈�〉. Moreover, by rescaling the Lawrence–Krammer representation of the braid group [1], Bigelow and Budney 
constructed in the proof of Theorem 2.1 of [2] a faithful linear representation

L′:M(S0,g,1) → GL

((
g

2

)
,R

)
.

To be more precise, they obtained a representation over C; however, their argument works without any changes over R.
Since M(S0,g,1) is a subgroup of index 2 in M±(S0,g,1), the latter group has an induced faithful linear representation 

of dimension 2 · (g
2

) = g2 − g . This gives us a linear representation

L1:Mh(Ng) → GL
(

g2 − g,R
)

with kernel kerL1 = 〈�〉. It is straightforward to check that if

L2:Mh(Ng) → H1(Ng;R) ⊂ GL (g − 1,R)

is a standard homology representation then L1 ⊕ L2 is a required faithful linear representation of Mh(Ng) of dimension 
g2 − g + g − 1 = g2 − 1. �
Remark 1. The above theorem gives an upper bound g2 − 1 on the minimal dimension of a faithful linear representation of 
the hyperelliptic mapping class group Mh(Ng). As we mentioned in the introduction, the hyperelliptic mapping class group 
Mh(N3) has a faithful linear representation of real dimension 2, hence it seems very unlikely that the obtained bound is 
sharp.
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