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We prove that critical percolation on any quasi-transitive graph of exponential volume 
growth does not have a unique infinite cluster. This allows us to deduce from earlier results 
that critical percolation on any graph in this class does not have any infinite clusters. The 
result is new when the graph in question is either amenable or nonunimodular.
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r é s u m é

Nous démontrons que la percolation critique sur les graphes quasi transitifs à croissance 
exponentielle ne possède pas de composante connexe infinie unique. En utilisant certains 
résultats antérieurs, ceci nous permet de déduire la non-existence d’une composante 
connexe infinie pour la percolation critique sur de tels graphes. Ce résultat était auparavant 
inconnu pour les cas moyennable et non unimodulaire.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In Bernoulli bond percolation, each edge of a graph G = (V , E) (which we will always assume to be connected and 
locally finite) is either deleted or retained at random with retention probability p ∈ [0, 1], independently of all other edges. 
We denote the random graph obtained this way by G[p]. Connected components of G[p] are referred to as clusters. Given 
a graph G , the critical probability, denoted pc(G) or simply pc , is defined to be

pc(G) = sup {p ∈ [0,1] : G[p] has no infinite clusters almost surely} .

A central question concerns the existence or non-existence of infinite clusters at the critical probability p = pc . Indeed, 
proving that critical percolation on the hypercubic lattice Zd has no infinite clusters for every d ≥ 2 is perhaps the best 
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known open problem in modern probability theory. Russo [23] proved that critical percolation on the square lattice Z2 has 
no infinite clusters, while Hara and Slade [13] proved that critical percolation on Zd has no infinite clusters for all d ≥ 19. 
More recently, Fitzner and van der Hofstad [10] improved upon the Hara–Slade method, proving that critical percolation on 
Z

d has no infinite clusters for every d ≥ 11. See e.g. [12] for further background.
In their highly influential paper [6], Benjamini and Schramm proposed a systematic study of percolation on general

quasi-transitive graphs; that is, graphs G = (V , E) such that the action of the automorphism group Aut(G) on V has only 
finitely many orbits (see e.g. [18] for more detail). They made the following conjecture.

Conjecture 1.1 (Benjamini and Schramm). Let G be a quasi-transitive graph. If pc(G) < 1, then G[pc] has no infinite clusters almost 
surely.

Benjamini, Lyons, Peres, and Schramm [5,4] verified the conjecture for nonamenable, unimodular, quasi-transitive graphs, 
while partial progress has been made for nonunimodular, quasi-transitive graphs (which are always nonamenable [18, Exer-
cise 8.30]) by Timár [24] and by Peres, Pete, and Scolnicov [22]. In this note, we verify the conjecture for all quasi-transitive 
graphs of exponential growth.

Theorem 1.2. Let G be a quasi-transitive graph with exponential growth. Then G[pc] has no infinite clusters almost surely.

A corollary of Theorem 1.2 is that pc < 1 for all quasi-transitive graphs of exponential growth, a result originally due to 
Lyons [16].

We prove Theorem 1.2 by combining the works of Benjamini, Lyons, Peres, and Schramm [4] and Timár [24] with the 
following simple connectivity decay estimate. Given a graph G , we write B(x, r) to denote the graph distance ball of radius 
r around a vertex x of G . Recall that a graph G is said to have exponential growth if

gr(G) := lim inf
r→∞ |B(x, r)|1/r

is strictly greater than 1 whenever x is a vertex of G . It is easily seen that gr(G) does not depend on the choice of x. Let 
τp(x, y) be the probability that x and y are connected in G[p], and let κp(n) := inf

{
τp(x, y) : x, y ∈ V , d(x, y) ≤ n

}
.

Theorem 1.3. Let G be a quasi-transitive graph with exponential growth. Then

κpc (n) := inf
{
τpc (x, y) : x, y ∈ V , d(x, y) ≤ n

} ≤ gr(G)−n

for all n ≥ 1.

Remark 1. The upper bound on κpc (n) in Theorem 1.3 is attained when G is a regular tree.

There are many amenable groups of exponential growth, and, to our knowledge, the conclusion of Theorem 1.2 was not 
previously known for any of their Cayley graphs. Among probabilists, the best known examples are the lamplighter groups
[18,22]. See e.g. [17,15,20,3,8] for further interesting examples.

Following the work of Lyons, Peres, and Schramm [19, Theorem 1.1], Theorem 1.2 has the following immediate corollary, 
which is new in the amenable case. The reader is referred to [19] and [18] for background on minimal spanning forests.

Corollary 1.4. Let G be a unimodular quasi-transitive graph of exponential growth. Then every component of the wired minimal 
spanning forest of G is one-ended almost surely.

2. Proof

Proof of Theorem 1.2 given Theorem 1.3. Let us recall the following results:

Theorem 2.1 (Newman and Schulman [21]). Let G be a quasi-transitive graph. Then G[p] has either no infinite clusters, a unique 
infinite cluster, or infinitely many infinite clusters almost surely for every p ∈ [0, 1].

Theorem 2.2 (Burton and Keane [7]; Gandolfi, Keane, and Newman [11]). Let G be an amenable quasi-transitive graph. Then G[p] has 
at most one infinite cluster almost surely for every p ∈ [0, 1].

Theorem 2.3 (Benjamini, Lyons, Peres, and Schramm [5,4]). Let G be a nonamenable, unimodular, quasi-transitive graph. Then G[pc]
has no infinite clusters almost surely.

Theorem 2.4 (Timár [24]). Let G be a nonunimodular, quasi-transitive graph. Then G[pc] has at most one infinite cluster almost surely.
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The statements given for the first two theorems above are not those given in the original papers; the reader is re-
ferred to [18] for a modern account of these theorems and for the definitions of unimodularity and amenability. Similarly, 
Timár’s result is stated for transitive graphs, but his proof easily extends to the quasi-transitive case. For our purposes, the 
significance of the above theorems is that, to prove Theorem 1.2, it suffices to prove that if G is a quasi-transitive graph 
of exponential growth, then G[pc] does not have a unique infinite cluster almost surely. This follows immediately from 
Theorem 1.3, since if G[pc] contains a unique infinite cluster then

τpc (x, y) ≥ Ppc (x and y are both in the unique infinite cluster)

≥ Ppc (x is in the unique infinite cluster)Ppc (y is in the unique infinite cluster)

for all x, y ∈ V by Harris’ inequality [14]. Quasi-transitivity implies that the right hand side is bounded away from zero if 
G[pc] contains a unique infinite cluster almost surely, and it follows that limn→∞ κpc (n) > 0 in this case. �
Lemma 1. Let G be any graph. Then κp(n) is a supermultiplicative function of n. That is, for every p, n and m, we have that κp(m +n) ≥
κp(m)κp(n).

Proof. Let u and v be two vertices with d(u, v) ≤ m +n. Then there exists a vertex w such that d(u, w) ≤ m and d(w, v) ≤ n. 
Since the events {u ↔ w} and {w ↔ v} are increasing and {u ↔ v} ⊇ {u ↔ w} ∩ {w ↔ v}, Harris’ inequality [14] implies 
that

τp(u, v) ≥ τp(u, w)τp(w, v) ≥ κp(m)κp(n).

The claim follows by taking the infimum. �
Lemma 2. Let G be a quasi-transitive graph. Then supn≥1(κp(n))1/n is left continuous in p. That is,

lim
ε→0+

sup
n≥1

(
κp−ε(n)

)1/n = sup
n≥1

(
κp(n)

)1/n
for every p ∈ (0,1]. (1)

Proof. Recall that an increasing function is left continuous if and only if it is lower semi-continuous, and that lower semi-
continuity is preserved by taking minima (of finitely many functions) and suprema (of arbitrary collections of functions). 
Now, observe that τp(x, y) is lower semi-continuous in p for each pair of fixed vertices x and y: This follows from the fact 
that τp(x, y) can be written as the supremum of the continuous functions τ r

p(x, y), which give the probabilities that x and 
y are connected in G[p] by a path of length at most r. (See [12, Section 8.3].) Since G is quasi-transitive, there are only 
finitely many isomorphism classes of pairs of vertices at distance at most n in G , and we deduce that κp(n) is also lower 
semi-continuous in p for each fixed n. Thus, supn≥1(κp(n))1/n is a supremum of lower semi-continuous functions and is 
therefore lower semi-continuous itself. �

We will require the following well-known theorem.

Theorem 2.5. Let G be a quasi-transitive graph, and let ρ be a fixed vertex of G. Then the expected cluster size is finite for every p < pc . 
That is,

∑
x

τp(ρ, x) < ∞ for every p < pc.

This theorem was proven in the transitive case by Aizenman and Barsky [1], and in the quasi-transitive case by Antunović 
and Veselić [2]; see also the recent work of Duminil-Copin and Tassion [9] for a beautiful new proof in the transitive case.

Proof of Theorem 1.3. Let ρ be a fixed root vertex of G . For every p ∈ [0, 1] and every n ≥ 1, we have

κp(n) · |B(ρ,n)| ≤
∑

x∈B(ρ,n)

τp(ρ, x) ≤
∑

x

τp(ρ, x).

Thus, it follows from Theorem 2.5, Lemma 1, and Fekete’s Lemma that

sup
n≥1

(κp(n))1/n = lim
n→∞(κp(n))1/n ≤ lim sup

n→∞

(∑
x τp(ρ, x)

|B(ρ,n)|
)1/n

= gr(G)−1

for every p < pc . We conclude by applying Lemma 2. �
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