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In this note, we show that the family of all possible unions of finite consecutive cylinders 
of the same rank of continued fraction expansion is faithful for the Hausdorff dimension 
calculation on the unit interval.
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r é s u m é

Nous montrons dans cette Note que la famille de toutes les unions finies de cylindres 
consécutifs de même rang n (une telle union est la clôture de l’ensemble des nombres 
réels dans l’intervalle unité dont les n − 1 premiers quotients partiels du développement 
en fraction continue sont fixés et le ne est astreint à parcourir un ensemble donné d’entiers 
consécutifs) est fidèle pour la dimension de Hausdorff de l’intervalle unité.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The notion of the Hausdorff dimension is now well known and plays an important role in fractal geometry. The Hausdorff 
dimension has the advantage of being defined for any set, as it is based on measures. However, a major disadvantage is 
that in many cases it is a rather non-trivial problem to give the exact Hausdorff dimension. Over the recent years, there has 
been a large interest in determining the Hausdorff dimension by restricting the family of admissible coverings. In [3,4], the 
notion of the faithfulness and non-faithfulness of families for Hausdorff dimension calculation is introduced. The faithfulness 
of family leads us to calculate the Hausdorff dimension by considering a small family of admissible coverings.
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To be more precise, let us shortly recall some definitions. Let � be a fine family of coverings on [0, 1], i.e. a family 
of subsets of [0, 1] such that, for any ε > 0, there exists an at most countable ε-covering {E j} of [0, 1] with E j ∈ �. The 
α-dimensional Hausdorff measure of a set E ⊂ [0, 1] with respect to a fine family of coverings � is defined by

Hα(E,�) = lim inf
ε→0

⎧⎨
⎩

∑
j

|E j|α | {E j} is an ε-covering of E, E j ∈ �

⎫⎬
⎭

and the nonnegative number

dimH (E,�) = inf
{
α|Hα(E,�) = 0

}
is called the Hausdorff dimension of the set E ⊂ [0, 1] with respect to the family �. If we take � as the family of all subsets 
of [0, 1], we denote dimH (E, �) by dimH (E), which is equal to the classical Hausdorff dimension of the set E ⊂ [0, 1]. For 
more properties of the Hausdorff dimension, one is referred to [6,8].

A fine covering family � is said to be a faithful family of coverings (non-faithful family of coverings) for the Hausdorff 
dimension calculation if

dimH (E,�) = dimH (E), for any E ∈ [0,1]
(respect to ∃E ⊂ [0,1] : dimH (E,�) �= dimH (E)).

The first result concerning the problem of faithful coverings is due to A. Besicovitch, who proved that the faithfulness of 
the family of cylinders of a binary expansion. This result was extended to the family of s-adic cylinders by P. Billingsley [5]. S. 
Albeverio et al. have done a series of works in this direction, e.g., [1–4,7]. Especially, in [3], S. Albeverio et al. gave a general 
sufficient and necessary condition for the family of cylinders of the famous Cantor series expansion to be faithful. The 
faithfulness of the families of cylinders generated by infinite linear iterated function systems, which covers the generalized 
Lüroth expansions, was studied in [4]. Although the convergents of continued fraction expansion are the best approximation 
of real numbers, the family of cylinders of continued fraction expansion is non-faithful, which is proved by Y. Peres and G. 
Torbin, see [3]. In this paper, we focus on the family of the finite union of cylinders of continued fraction expansion, and 
prove that the family of all possible unions of finite consecutive cylinders of the same rank of continued fraction expansion 
is faithful for the Hausdorff dimension calculation. To some extent, this give an explanation for why one usually uses the 
(countable) union of cylinders instead of the cylinders themselves for obtaining the lower bound of Hausdorff dimension of 
some sets in Diophantine approximation.

2. Statement of main result

Firstly, we briefly recall some basic properties and known results of continued fraction expansion.
Any irrational number x ∈ [0, 1) has a simple infinite continued fraction expansion

x = 1

a1(x) + 1

a2(x) + 1

a3(x) + · · ·

= [a1(x),a2(x),a3(x), · · · ], (2.1)

where {an(x)}n≥1 are positive integers and are called the partial quotients of x.
Let x ∈ [0, 1) and [a1(x), a2(x), a3(x), · · · ] be its continued fraction expansion. For any n ≥ 1, we denote by pn(x)/qn(x) =

[a1(x), a2(x), · · ·an(x)] the nth convergent of x. With the conventions p−1(x) = 1, q−1(x) = 0, p0(x) = 0, q0(x) = 1, we have

pn+1(x) = an+1 pn(x) + pn−1(x), n ≥ 0, (2.2)

qn+1(x) = an+1qn(x) + qn−1(x), n ≥ 0.

For any n ≥ 1 and (a1, a2, · · · , an) ∈ N
n , let qn(a1, a2, · · · , an) be the dominator of the finite continued fraction 

[a1, a2, · · · , an]. If there is no confusion, we write qn instead of qn(a1, a2, · · · , an) for simplicity. For any n ≥ 1 and 
(a1, a2, · · · , an) ∈N

n , let

In(a1,a2, · · · ,an) = cl{x ∈ [0,1) : a1(x) = a1, · · · ,an(x) = an},
which is called a cylinder of rank n and where ‘cl’ denotes the closure.

It is well known that

L(I(a1,a2, · · · ,an)) = 1

qn(qn + qn−1)
,

where L denotes the Lebesgue measure. By using the equalities (2.2), it is easy to get the following lemma.
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Lemma 2.1. Let a1, a2, · · · , an, s be any n + 1 positive integers and In(s) := I(a1, a2, · · · , an, s), then

|In(s + 1)| ≤ |In(s)| ≤ 3|In(s + 1)|
where |A| denotes the length of the set A.

Let An be the family of all possible unions of finite consecutive intervals of rank n, i.e.

An =
{

s+m⋃
i=s

I(a1,a2, · · · ,an−1, i) : s ∈N
+, m ∈N, a j ∈N

+,1 ≤ j ≤ n − 1

}
.

Define

A =
⋃
k≥1

Ak.

In this paper, we consider the covering family A of all possible unions of finite consecutive cylinders, and show that A
is faithful.

Theorem 2.2. The family A is faithful for Hausdorff dimension calculation on the unit interval.

3. Proofs of Theorem 2.2

This section is devoted to the proof of Theorem 2.2. For a given set E ⊂ (0, 1), α > 0, and let E j = (a j, b j), j ≥ 1 be an 
open ε-covering of E .

For any j ∈N, there exists an interval In j (a1, a2, · · · , an j ) of rank n j such that

(1) E j ⊂ In j (a1, a2, · · · , an j ),
(2) any interval of rank n j + 1 does not contain E j .

Without loss of generality, we assume that n j is odd, the other case can be handled in the same way. We divide the proof 
into two cases.

Case 1: E j contains at least one interval of rank n j + 1.
(1) If there are only finite intervals contained in E j , denoted by

In j+1(a1,a2, · · · ,an j , s), · · · , In j+1(a1,a2, · · · ,an j , s + k)

(for some positive integers s, k) of rank n j + 1 for which

E j ∩ In j+1(a1,a2, · · · ,an j , i) �= Ø, s ≤ i ≤ s + k,

then we have

In j+1(a1,a2, · · · ,an j , i) ⊂ E j, s + 1 ≤ i ≤ s + k − 1

and

E j ⊂
⋃

s≤i≤s+k

In j+1(a1,a2, · · · ,an j , i).

Take

J0 = In j+1(a1,a2, · · · ,an j , s),

J1 =
s+k−1⋃
i=s+1

In j+1(a1,a2, · · · ,an j , i)

and

J2 = In j+1(a1,a2, · · · ,an j , s + k).

Thus FE j = { J0, J1, J2} ⊂A is a covering of E j . By Lemma 2.1, we have

|E j|α ≥ 1

2 + 3α

∑
J∈FE j

| J |α and | Jk| ≤ 3|E j|,k = 0,1,2. (3.1)
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(2) If there are infinite many intervals of rank n j + 1 that have a non-empty intersection with E j , then there exists a 
positive integer d such that

In j+1(a1,a2, · · · ,an j , i) ⊂ E j, i ≥ d + 1

and

E j ⊂
⋃
i≥d

In j+1(a1,a2, · · · ,an j , i).

For the given α, we can take a sequence {l0 = 0, lk}k≥1 of integers such that

∑
k≥0

∣∣∣∣∣∣
lk+1⋃
i=1

In j+1(d +
k∑

m=0

lm + i)

∣∣∣∣∣∣
α

< +∞

where In j+1(m) = In j+1(a1, a2, · · · , an j , m). What is more, we make l1 sufficiently large so that∣∣∣∣∣∣
l1⋃

i=1

In j+1(d + i)

∣∣∣∣∣∣
α

≥
∑
k≥1

∣∣∣∣∣∣
lk+1⋃
i=1

In j+1(d +
k∑

m=0

lm + i)

∣∣∣∣∣∣
α

.

Now, take J0 = In j+1(d), Jk = ⋃lk
i=1 In j+1(d + ∑k−1

m=0 lm + i), k ≥ 1. Then we have J i ∈A, and

E j ⊂
⋃
i≥0

J i and
⋃
i≥1

J i ⊂ E j.

Note that | J0| = |In j+1(d)| ≤ 3|In j+1(d + 1)| ≤ 3| J1| by Lemma 2.1. Let FE j = { J i}i≥0 ⊂A, then we have∑
J∈FE j

| J |α = | J0|α + | J1|α +
∑
i≥2

| J i |α ≤ (3α + 2)|E j|α and | Jk| ≤ 3|E j|,k ∈N. (3.2)

Case 2: E j contains no interval of rank n j + 1.
In this case there are only two intervals of rank n j + 1, denoted by

In j+1(a1,a2, · · · ,an j , s), In j+1(a1,a2, · · · ,an j , s + 1)

for which

E j ∩ In j+1(a1,a2, · · · ,an j , i) �= Ø, i = s, s + 1.

Recall that E j = (a j, b j), then

a j ∈ In j+1(a1,a2, · · · ,an j , s) and b j ∈ In j+1(a1,a2, · · · ,an j , s + 1).

Let c be the right endpoint of interval In j+1(a1, a2, · · · , an j , s), we consider the coverings of (a, c) and [c, b) separately.
First of all, we consider the coverings of (a, c). Without loss of generality, we assume that point a belongs to some 

interval In j+2(a1, a2, · · · , an j , s, l) of rank n j + 2.
(i) If l ≥ 2, then

(a, c) ⊂
⋃

1≤i≤l

In j+2(a1,a2, · · · ,an j , s, i)

and

In j+2(a1,a2, · · · ,an j , s, i) ⊂ (a, c),1 ≤ i ≤ l − 1.

Take J = ⋃
1≤i≤l In j+2(a1, a2, · · · , an j , s, i), then J ∈A and | J | ≤ 2|E j|, hence

| J |α ≤ 2α |E j|α. (3.3)

(ii) If l = 1, the point a must fall in some cylinder of rank n j + 3 contained in In j+2(a1, a2, · · · , an j , s, 1). Suppose the 
cylinder of rank n j + 3 is In j+2(a1, a2, · · · , an j , s, 1, m0) for some integers m0 > 0. Then we have

In j+2(a1,a2, · · · ,an j , s,1,k) ⊂ (a, c),k ≥ m0 + 1

and



878 J. Liu, Z. Zhang / C. R. Acad. Sci. Paris, Ser. I 354 (2016) 874–878
(a, c) ⊂
⋃

k≥m0

In j+2(a1,a2, · · · ,an j , s,1,k).

By a similar analysis as in the case 1, we can take a sequence {lk}k≥0 of integers such that∣∣∣∣∣∣
l1⋃

i=1

In j+3(m0 + i)

∣∣∣∣∣∣
α

≥
∑
k≥1

∣∣∣∣∣∣
lk+1⋃
i=1

In j+3(m0 +
k∑

n=0

ln + i)

∣∣∣∣∣∣
α

where In j+3(m) = In j+3(a1, a2, · · · , an j , s, 1, m). Take

J0 = In j+3(m0), Jk =
lk⋃

i=1

In j+3(m0 +
k−1∑
m=0

lm + i)),k ≥ 1.

Let FE j = { J i}i≥0, then∑
J∈FE j

| J |α ≤ (3α + 2)|E j|α and | J | ≤ 3|E j|, J ∈ FE j . (3.4)

Secondly, we consider the coverings of [c, b). Since b ∈ In j+1(a1, · · · , an j , s + 1), we assume that the point b in cylinder 
In j+2(a1, · · · , an j , s + 1, s0) is of rank n j + 2 for some integer s0. Thus In j+2(a1, · · · , an j , s + 1, s0 + i) ⊂ [c, b) for all i ≥ 1 and 
[c, b) ⊂ ⋃

i≥0 In j+2(a1, · · · , an j , s + 1, s0 + i). Do the same analysis as above, there exists a subfamily FE j of A that covers 
[c, b) such that∑

J∈FE j

| J |α ≤ (3α + 2)|E j|α and | J | ≤ 3|E j|, J ∈ FE j . (3.5)

So, for a given open interval E j , there exists a countable subfamily FE j of A that covers E j such that∑
J∈FE j

| J |α ≤ K (a)|E j|α,

where K (α) is a constant and independent of j. Therefore, for any α > 0, E ⊂ [0, 1], we have

Hα(E) ≤ Hα(E,A) ≤ K (α)Hα(E).

Thus dimH (E, A) = dimH (E).
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