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Some aspects of the study of the group of homeomorphisms of a one-dimensional solenoid 
which are isotopic to the identity are discussed in this paper. The maximal subgroup up to 
homotopy equivalence is described and the Euler class of the universal central extension 
of this group is calculated. This class being bounded gives an interpretation of the rotation 
element on the solenoid.
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r é s u m é

Certains aspects de l’étude du groupe d’homéomorphismes d’un solénoïde à une dimension 
qui sont isotopes à l’identité sont abordés dans la présente contribution. Son sous-
groupe maximal, sauf classe d’équivalence homotopique, est décrit, et la classe d’Euler de 
l’extension centrale universelle de ce groupe est calculée. Cette classe, étant limitée, nous 
donne une interprétation de l’élément de rotation dans le solénoïde.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

At the end of the 19th century, Henri Poincaré [19] introduced an invariant of major importance for the study of the 
dynamics of homeomorphisms of the unit circle S1; this is the well-known rotation number. There are some equivalent ways 
of defining this topological invariant. Our interest lies in the works of É. Ghys [9] and [10]. At the beginning of this century, 
he found the rotation number using the language of cohomology of groups (see [6] for a detailed study of cohomology of 
groups).
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Consider the group Homeo+(S1) of homeomorphisms of the circle that preserves the orientation and ˜Homeo+(S1) the 
group of lifts with respect to the universal covering π :R −→ S1. There is a surjective homomorphism p : ˜Homeo+(S1) −→
Homeo+(S1) with kernel isomorphic to Z. Moreover, p is a universal covering map and this is a central extension

0 −→ Z −→ ˜Homeo+(S1)
p−→ Homeo+(S1) −→ 1.

In fact, it is a universal central extension and the kernel is isomorphic to H2(Homeo+(S1), Z).
Using the universal coefficient theorem, we can see that H2(Homeo+(S1), Z) � Z. In particular, it can be shown that 

the Euler class of this extension eu(S1) is bounded and represents a generator for the bounded cohomology group 
H2

b(Homeo+(S1), Z). If φ : Z −→ Homeo+(S1) is any homomorphism, the corresponding class φ∗(eu(S1)) ∈ H2
b(Z, Z) � R/Z

is the rotation number of the homeomorphism φ(1).
In this paper, we extend these results to the group of homeomorphisms of a one-dimensional solenoid S that are isotopic to the 

identity.
The solenoid S is a compact connected Abelian group that is constructed as the inverse limit of the system of coverings 

of the circle S1 −→ S1 given by ω �−→ ωn for n ∈ N, and any two of these homomorphisms are related by divisibility of 
the exponents. The solenoid S can also be seen as a foliated space whose leaves are homeomorphic to R and each fiber is 
homeomorphic to the profinite completion of the integers Ẑ. The path-component of the identity element 0 ∈ S is called 
the base leaf and it is denoted by L0.

It should be pointed out that S is not a manifold, but is closely related to S1, actually S is known as the algebraic 
universal covering space of the circle.

There is a well-defined covering map � : R × Ẑ −→ S, given as the quotient projection of a diagonal action of Z on 
the product space R × Ẑ. This exhibits S as the orbit space R ×Z Ẑ. Denote by ˜Homeo+(S) the group of lifts of elements 
in Homeo+(S). Using this group of lifts, we show that the group Homeo+(S) is homotopy equivalent to the subgroup of 
translations by elements on the base leaf L0 and consequently, every homotopy group πn(Homeo+(S)) is trivial.

Similar to the central extension for Homeo+(S1), there is a central extension of the type

0 −→ Z −→ ˜Homeo+(S) −→ Homeo+(S) −→ 1,

where Z is identified with the subgroup of deck transformations �(Z), which is contained in the center of ˜Homeo+(S)

(see section 3.3). We prove that this is a universal central extension. This can be done by using the fact that Homeo+(S)

is uniformly perfect, as shown in [3]. Consequently, we have the Schur multiplier H2(Homeo+(S), Z) � Z and using the 
universal coefficient theorem, there is an Euler class

eu ∈ H2(Homeo+(S),Z) � Z.

We calculate directly the obstruction cocycle for this extension, which happens to be bounded. Therefore, it represents 
a generator of H2

b(Homeo+(S), Z) � Z. Consider the rotation element ρ : Homeo+(S) −→ S as introduced in the work of 
A. Verjovsky and M. Cruz-López (see [8]). If ϕ : Q −→ Homeo+(S) is any homomorphism, we prove that the corresponding 
class

ϕ∗(eu) ∈ H2
b(Q,Z) � S

is the rotation element ρ(ϕ(1)) if and only if ϕ(1) has ρ-bounded motion.
We would like to mention that the group of homeomorphisms of solenoids was studied in extension from the topological 

point of view by J. Keesling [13], his work contains the first decomposition of the group using translations and automor-
phisms. The idea of lifts to R × Ẑ refers to the work of J. Kwapisz [14], who also describes the subgroup of automorphisms 
of the p-adic solenoid Sp , and proves some results in the context of isotopy classes. Finally, the study of the group of 
homeomorphisms of the 2-dimensional universal solenoid is contained in the work of C. Odden [18]; his results can be 
abstracted to the case of our interest

Homeo(S) ∼= HomeoL0(S) ×Z Ẑ,

where HomeoL0(S) denotes the subgroup of homeomorphisms that preserves the base leaf, and Ẑ is identified with the 
subgroup of translations along the fiber.

The article is organized as follows: in section 2, we introduce the one-dimensional universal solenoid S. In section 3, 
we mention the main results about the group of homeomorphisms of the solenoid Homeo(S) that exist in the literature. 
Then, we concentrate on the study of Homeo+(S). This section also contains the proof of the homotopy equivalence of 
Homeo+(S). At the end, we calculate H2(Homeo+(S), Z), H2

b(Homeo+(S), Z) and relate the rotation element as we men-
tioned before with a cohomology class in H2(Q, Z).
b
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2. The solenoid

For every integer n ≥ 1, the circle S1 is identified as R/nZ, with covering map πn : R −→ S1 given by x �−→ x + nZ. If 
n, m ∈N and n divides m, there is a unique covering map pnm : S1 −→ S1 such that πn = pnm ◦ πm ,

R

πm
πn

S1 S1.
pnm

Thus, {S1, pnm} defines an inverse system of compact Abelian groups and continuous homomorphisms. The inverse limit

S := lim←− S1,

is called the universal one-dimensional solenoid. S is a compact connected Abelian group.
There is an injective and continuous map P : R −→ S defined by P (x) = (πn(x)), whose image is the path-component of 

the identity element 0 ∈ S and it is a dense subset of S. We call this path-component the base leaf and use the notation 
L0 = P (R). The projection onto the first coordinate S −→ S1 defines a principal Ẑ-bundle, with Ẑ := lim←− Z/nZ the profinite 
completion of Z. Ẑ is a Cantor group and admits a canonical inclusion of Z whose image is dense.

S can also be identified with the quotient space R ×Z Ẑ, where Z acts by covering transformations on the first coordinate 
and by translations on the second. Explicitly, for every γ ∈ Z,

γ · (x,k) := (x + γ ,k − γ )

defines a properly discontinuous free action on the product space R × Ẑ whose orbit space is S ∼= R ×Z Ẑ.
Observe that the base leaf L0 coincides with the image of R ×Z under the canonical projection R × Ẑ −→ S. It can also 

be proved that S is a one-dimensional foliated space whose leaves are homeomorphic to R, and every fiber is homeomor-
phic to Ẑ.

3. Homeomorphisms of the solenoid

Let Homeo(S) be the group of homeomorphisms of the solenoid. J. Keesling [13] shows a topological decomposition 
of this group. Two fundamental examples of homeomorphisms of solenoids are given by translations along the leaves 
and translations along the fiber; explicitly, let y ∈ L0 and dy ∈ Homeo(S) be the translation along the leaf L0 defined by 
dy(z) = z + y; observe that dy is an homeomorphism that preserves L0. For any w ∈ Ẑ define the translation along the fiber
sw ∈ Homeo(S) as sw(z) = z + w; that is, there is a canonical inclusion Ẑ ↪→ Homeo(S).

The example of translations along the leaves is an example of an important kind of homeomorphisms: let HomeoL0(S)

be the subgroup of homeomorphisms that preserves the base leaf L0. It is easy to see that

HomeoL0(S) ∩ Ẑ = Z,

that is for every γ ∈ Z, dγ ≡ sγ . Then, directly from the work of C. Odden [18] the complete group of homeomorphisms 
of S can be described as

Homeo(S) ∼= HomeoL0(S) ×Z Ẑ;
where the action of Z is defined by

γ · (h, sw) = (dγ ◦ h, sw ◦ sγ ) = (dγ ◦ h, sw+γ ) (γ ∈ Z).

If Homeo+(S) is the subgroup of homeomorphisms of the solenoid that are isotopic to the identity, the mapping class group 
of homeomorphisms that preserves the base leaf 
L0 := HomeoL0(S)/Homeo+(S) is isomorphic to the subgroup of auto-
morphisms Aut(S) ∼= Aut(Q) ∼= Q∗ . J. Kwapisz [14] shows explicitly the form of every automorphism of the solenoid. He also 
proves that every homeomorphism in HomeoL0 (S) is isotopic to an automorphism and that every two translations along 
the fiber are isotopic if and only if they differ by an integer translation. The case of lifts of elements in Homeo+(S) to the 
product space R × Ẑ is considered in the following.

3.1. Limit-periodic displacements

Recall that S is the orbit space of R × Ẑ under the Z-action

γ · (x,k) = (x + γ ,k − γ ) (γ ∈ Z).

Let � :R × Ẑ −→ S denote the canonical projection. Then, � is an infinite cyclic covering [17].
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Let �(Z) be the group of deck transformations on R ×Z; namely,

�(Z) :=
{
(x,k)

�(γ )�−→ (x − γ ,k + γ ) : γ ∈ Z

}
� Z.

Assume that � : R × Ẑ −→ R is a bounded continuous function that is �(Z)-periodic; i.e. for every γ ∈ Z, �(x −γ , k +γ ) =
�(x, k). For a fixed k ∈ Ẑ we define �k := �(·, k) : R −→ R. We are interested in the case when �k is a limit-periodic 
function whose convex hull is isomorphic to S, with respect to the compact-open topology in the Banach space C(R)

(see [4]).
According to Bohr (see for example [5] or [7]), the mean value of the function �k exists and is equal to

M{�k} := lim
X−→∞

1

X

X/2∫
−X/2

�k(x)dx.

If y ∈ R, define the translation Ty : R −→ R by Ty(x) = x + y, then M{�k ◦ Ty} = M{�k}. In particular, given γ ∈ Z we have 
that M{�k ◦ Tγ } = M{�k}. Using the equivariance of �k with respect to the Z-action, for every k ∈ Ẑ, γ ∈ Z and x ∈ R, we 
have the relation �k(x + γ ) = �k+γ (x). In consequence, for each k ∈ Ẑ,

M{�k+γ } = M{�k}, ∀γ ∈ Z.

Lemma 3.1. For every k ∈ Ẑ, M{�k} = M{�0}.

Proof. We have that M{�0} = M{�γ } for every γ ∈ Z. If k ∈ Ẑ is given, let {γn}n∈Z ⊂ Ẑ be a sequence that converges 
uniformly to k. Thus, the collection of functions {�γn } converges uniformly to the function �k and consequently

M{�0} = lim M{�γn } = M{�k}. �
As a consequence of this result, the behavior of the original function � : R × Ẑ −→ R is completely determined by its 

mean value over the marked leaf R × {0}; that is, � can be written in a unique way as

�(x,k) = M{�0} + �(x,k);
where � :R × Ẑ −→R is a �(Z)-periodic, bounded continuous function, � ≡ � − M{�0} and for every k ∈ Ẑ, M{�k} = 0.

3.2. Lifts of the identity component

Let F :R × Ẑ −→R × Ẑ be a lift of f ∈ Homeo+(S) to R × Ẑ. Then, following [14] F has the form

F (x,k) = (x + �(x,k),k + α);
where � : R × Ẑ −→ R is a �(Z)-periodic, bounded continuous function and α ∈ Z ↪→ Ẑ; that is, for every k ∈ Ẑ, the 
function R −→R defined by x �−→ x +�k(x) has limit-periodic displacement and the function Ẑ → Ẑ defined by k �−→ k +α

is a minimal translation. Denote by ˜Homeo+(S) the set of all lifts of homeomorphisms in Homeo+(S); it is easy to see that 
˜Homeo+(S) is a group.
Using similar ideas as in the proof of the homotopy equivalence of Homeo+(S1) by É. Ghys (see [9]), we obtain the 

following result.

Proposition 3.2. The inclusion by translations on the base leaf

R×Z Z ↪→ Homeo+(S)

is a homotopy equivalence.

Proof. Take f ∈ Homeo+(S) and F ∈ ˜Homeo+(S) a lift of f of the form

F (x,k) = (x + �(x,k),k + α) (α ∈ Z).

By the above remarks � can be written as � ≡ M{�0} + � , where �k : R −→ R has zero mean value for each k ∈ Ẑ.
We can define an homotopy through the functions

Fs(x,k) = (x + M{�0} + (1 − s)�(x,k),k + α), 0 ≤ s ≤ 1.
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That is, for every s ∈ [0, 1], we have that Fs ∈ ˜Homeo+(S); or equivalently, the set consisting of the �(Z)-periodic, bounded 
continuous functions � : R × Ẑ −→R, satisfying that for each k ∈ Ẑ, M{�k} = 0, is a convex set.

Observe also that F0 ≡ F , F1(x, k) = (x + M{�0}, k + α) and we obtain a continuous retraction of ˜Homeo+(S) onto the 
subgroup of translations isomorphic to R ×Z. Moreover, for each s ∈ [0, 1], Fs commutes with the elements of the group of 
deck transformations �(Z). Therefore, we can define a continuous deformation of the quotient

˜Homeo+(S)/�(Z) � Homeo+(S)

on the subgroup of translations over the base leaf L0 ∼= R ×Z Z. �
Remark 3.3. The last argument shows that we have a topological homeomorphism

Homeo+(S) � L0 × Hid(S);
where Hid(S) is a contractible convex set. Moreover, every homotopy group πn(Homeo+(S)) is trivial.

3.3. The isotopy component of the identity

Recall that for any F ∈ ˜Homeo+(S), there is a �(Z)-periodic, bounded continuous function � : R × Ẑ −→ R (i.e. �

satisfies the relation

�(x + γ ,k − γ ) = �(x,k) (γ ∈ Z)),

and an element α ∈ Z such that F can be written as

F (x,k) = (x + �(x,k),k + α).

In particular, there is a continuous function φ̃ : S −→R such that the following diagram commutes

R× Ẑ

�

� R

S
φ̃

.

Hence, there is a continuous function φ : S −→ S, satisfying that φ(S) ⊂ L0 and φ completes the diagram

R× Ẑ

�

� R

P

S
φ̃

φ
S.

Consequently, we have a well-defined map

p : ˜Homeo+(S) −→ Homeo+(S)

F �−→ sα ◦ (id + φ).

Moreover, p is an onto homomorphism whose kernel is identified with the group of deck transformations �(Z) � Z. For 
every γ ∈ Z and every F ∈ ˜Homeo+(S) we have that for each (x, k) ∈ R × Ẑ:

�(γ )(F (x,k)) = �(γ )(x + �(x,k),k + α)

= (x + �(x,k) − γ ,k + α + γ )

= (x − γ + �(x,k),k + γ + α)

= (x − γ + �(x − γ ,k + γ ),k + γ + α)

= F (x − γ ,k + γ ) = F (�(γ )(x,k)).

Equivalently, �(Z) is contained in the center of ˜Homeo+(S) and therefore, we have arrived at the central extension

0 −→ Z −→ ˜Homeo+(S)
p−→ Homeo+(S) −→ 1.

From the work of J. Aliste-Prieto and S. Petite (see [3]), we know that Homeo+(S) is uniformly perfect; in fact, every 
element of Homeo+(S) can be written as the product of two commutators. Thus, there exists a universal central extension 
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and the kernel of such an extension can be mapped surjectively with Z (for a detailed study of universal central extensions 
see for example [16] and the second chapter of [20]).

We focus our attention on lifts F of the form (x, k) �−→ (x + �(x, k), k). As we already noted, for every fixed k ∈ Ẑ, the 
map Fk(x) := x + �k(x), has limit-periodic displacement and is strictly increasing. Moreover, Fk is a real-valued homeomor-
phism and, using the equivariant condition of �k , for every γ ∈ Z

Fk+γ (x) + γ = Fk(x + γ ).

Equivalently, Fk and Fk+γ are conjugated to a translation by γ in R.
If k ∈ Ẑ, consider the following subgroup of real valued homeomorphisms:

˜Homeo+(S)k =
{

Fk : R −→ R : F ∈ ˜Homeo+(S)
}

.

Lemma 3.4. For every k ∈ Ẑ, ˜Homeo+(S)k is homeomorphic to an immersed subgroup of the compactly supported homeomorphisms 
group HomeoC (R).

Proof. From the proof of Homeo+(S) being uniformly perfect (see Theorem 6.1. in [3]), we observe that every f ∈
Homeo+(S) can be written as a product of two commutators, say f = f1 ◦ f2, with f1 and f2 in Homeo+(S). Moreover, 
there is a finite collection of boxes {[0, ti] ×Z Ki}l

i=1; where {Ki} is a finite partition of the fiber Ẑ, such that this collection 
forms a cover of the support of f2 and from the partition property

f1 = g1 ◦ . . . ◦ gl,

with supp(gi) ⊂ [0, ti] ×Z Ki .
Hence, take F (x, k) = (x + �(x, k), k) a lift of f . Using the diagonal action, for every fixed k ∈ Ẑ, there is at most a finite 

collection of compact sets

{[γi, ti + γi] : γi ∈ Z}l
i=1;

with

supp(Fk) ⊂
l⋃

i=1

[γi, ti + γi].

That is, taking the lifts of the boxes [0, ti] ×Z Ki to R × Ẑ, we only consider the closed intervals that intersect the leaf 
R × {k} as the ones that support the homeomorphism Fk :R −→R. �

In particular, for every k ∈ Ẑ, following Mather [15] we have that Hn

(
˜Homeo+(S)k,Z

)
vanish for all n ≥ 1.

Theorem 3.5. The exact sequence

0 −→ Z −→ ˜Homeo+(S)
p−→ Homeo+(S) −→ 1,

is the universal central extension.

Proof. For every k ∈ Ẑ, let �k be a bounded continuous limit-periodic function of the real line. Consider the map Ẑ −→
Clp

b (R) defined as k �−→ �k . Using the exponential map, we know that this is a continuous correspondence.
Hence, the map Ẑ −→ Homeo(R), k �−→ Fk is also continuous. Moreover, Fk has constant mean value for the displace-

ment �k; that is M{�k} = M{�0}, with �0 the displacement of F0.

Thus, we have a continuous map Ẑ −→ ˜Homeo+(S)k such that

Hn

(
˜Homeo+(S)k,Z

)
= 0, (n ≥ 1).

Consequently, using that Fk+γ and Fk are conjugated via a translation by γ ∈ Z, we can assert that Hn

(
˜Homeo+(S),Z

)
= 0

for every n ≥ 1.
In particular,

H1

(
˜Homeo+(S),Z

)
= H2

(
˜Homeo+(S),Z

)
= 0,

which is equivalent to say that
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0 −→ Z −→ ˜Homeo+(S)
p−→ Homeo+(S) −→ 1

is the universal central extension. That is, we know that ˜Homeo+(S) is perfect and that every central exact sequence of 
˜Homeo+(S) by Z must split. �
As a consequence, we have the Schur multiplier

H2(Homeo+(S),Z) � Z.

Moreover, using the universal coefficient theorem we have that

H2(Homeo+(S),Z) � Hom(H2(Homeo+(S),Z),Z) � Z.

Let eu be a generator of this group, that is eu is the Euler class of the given extension.

3.4. The second bounded cohomology

Consider the obstruction cocycle

c( f , g) = σ( f ◦ g)−1 ◦ σ( f ) ◦ σ(g).

Note that the lifts σ( f ◦ g) and σ( f ) ◦ σ(g) differ by a deck transformation �γ ∈ �(Z) for some γ ∈ Z, because both are 
lifts of the same element f ◦ g ∈ Homeo+(S). That is,

σ( f ◦ g) ◦ �γ ≡ σ( f ) ◦ σ(g).

Define eu : Homeo+(S)2 −→ Z as eu( f , g) = γ .

Consider the specific normalized section σ : Homeo+(S) −→ ˜Homeo+(S), such that for every f ∈ Homeo+(S),

σ( f )(0,0) ∈ [0,1) × Ẑ.

In particular, σ( f ◦ g)(γ , −γ ) ∈ [γ , γ + 1) × Ẑ. Thus, σ(g)(0, 0) ∈ [0, 1) × Ẑ and because of σ( f )(1, −1) ∈ [1, 2) × Ẑ, we 
conclude that σ( f ) ◦ σ(g)(0, 0) ∈ [0, 2) × Ẑ. Therefore γ is equal to 0 or 1.

Consequently, the Euler class eu ∈ H2(Homeo+(S), Z) associated with c( f , g) is bounded and

H2
b(Homeo+(S),Z) � Z.

Define this class as eub = [c( f , g)] ∈ H2
b(Homeo+(S), Z).

From the work of A. Verjovsky and M. Cruz-López [8], we know that there is a rotation element

ρ : Homeo+(S) −→ S,

which can be defined using the notion of asymptotic cycle of Schwartzmann.
Specifically, let f ∈ Homeo+(S) and define the suspension space of f as

� f (S) := S × [0,1]/(z,1) ∼ ( f (z),0).

Thus, � f (S) ∼= S × S1 is a compact Abelian topological group whose character group is isomorphic to Q × Z.
For any character, it is obtained a 1-cocyle and by Birkhoff’s ergodic theorem, there is a well-defined homomorphism 

H f : Q × Z −→ R, such that its natural projection to S1 determines an element in the character group of Q × Z. That is, 
using Pontryagin’s duality, there is a well-defined element ρ( f ) ∈ S × S1. Moreover, this element does not depend on the 
second coordinate.

Furthermore, if f = id + φ, with displacement function φ, the element ρ( f ) is identified with the element 
∫

S φ dμ ∈ S, 
determined by the character of Q given by

q �−→ exp

⎛
⎝2πiq

∫
S

φdμ

⎞
⎠ ;

where μ is an f -invariant measure (see Remark 3.3 in [8]).

Remark 3.6. This element was also found in the work of J. Aliste-Prieto [1] using that for any f -invariant measure μ,∫
S

φdμ = lim
n−→∞

1

n

n∑
i=0

φ( f i(z))

for μ-almost every point z ∈ S. However, our approach seems more direct and without the use of specific dynamics. Even 
so, our results are still valid for this definition of the rotation element.
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It turns out that this element can be stated in the language of bounded cohomology.

Lemma 3.7. H2
b(Q, Z) � S.

Proof. Let 0 −→ Z −→ R −→ S1 −→ 1 be the exponential exact sequence and construct the associated long exact sequence 
in bounded cohomology

0 −→ Z −→ R −→ S1 −→ H1
b(Q,Z) −→ H1

b(Q,R) −→ H1
b(Q,S1) −→

−→ H2
b(Q,Z) −→ H2

b(Q,R) −→ H2
b(Q,S1) −→ · · · .

Using that Q is Abelian and therefore is an amenable group Hn
b(Q, R) = 0 for every n ≥ 1 (see [11] or [12] for details). 

Calculating these groups for n = 1 and n = 2, we obtain that

H2
b(Q,Z) � H1

b(Q,S1) � Hom(Q,S1) � S. �
Finally, we say that f has ρ-bounded motion (or bounded mean variation) if there exists a constant C > 0 such that 

| f n(z) − z −nρ( f )| < C , for every z ∈ S and n ≥ 0. From both [8] and [1], we know that a necessary and sufficient condition 
in order to have f ∈ Homeo+(S) semi-conjugated to the translation by ρ( f ), is that f has ρ-bounded motion (see also [2]
for more details on the semi-conjugacy problem). Thus, we have proved the following.

Theorem 3.8. Let ϕ : Q −→ Homeo+(S) be a homomorphism. The class ϕ∗(eub) ∈ H2
b(Q, Z) is the rotation element ρ(ϕ(1)) if and 

only if ϕ(1) has ρ-bounded motion.

Remark 3.9. The natural question of finding this rotation element as in the case of quasimorphisms is postponed for a work 
in progress.
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