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A boundary point of a smooth pseudoconvexdomain in Cn is said to be h-extendible if 
its Catlin’s multi-type coincides with its D’Angelo’s multi-type. There is a local model 
defined by Catlin’s multi-weight. In this paper, we show that a domain in Cn with a 
noncompact automorphism group is biholomorphically equivalent to its associated model 
if there exists a sequence of automorphisms of the domain that has an orbit converging to 
an h-extendible boundary point non-tangentially in a cone region.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Un point frontière d’un domaine pseudo-convexe lisse de Cn est dit h-extensible si 
son multi-type de Catlin coïncide avec son multi-type de D’Angelo. Le multi-poids de 
Catlin définit un modèle local. Nous montrons ici qu’un domaine de Cn avec un groupe 
d’automorphismes non compact est bi-holomorphiquement équivalent à son modèle 
associé s’il existe une suite d’automorphismes du domaine ayant une orbite convergeant 
non tangentiellement dans un cône, vers un point frontière h-extensible.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

One of the main problems in the study of weakly pseudoconvex domains is to understand the properties of domains of 
finite type. There are several classes of domains of finite type that have been relatively better understood: domains of finite 
type in C2, convex domains of finite type, and decoupled domains of finite type. All these domains are contained in a class 
of domains called h-extendible domains [14] or pseudoconvexdomains of semiregular type [4]. In this paper, we study the 
h-extendible domains with a noncompact automorphism group.

Let � ⊂ C
n be a domain, and denote by Aut(�) the group of holomorphic automorphisms equipped with the compact-

open topology. If the automorphism group is not compact, then by a theorem of Cartan (see, e.g., [9]), there are points 
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p ∈ ∂�, q ∈ �, and automorphisms f j ∈ Aut(�) such that f j(q) converges to p as j goes to infinity. The point p is called a 
boundary orbit accumulation point. If � is bounded and strongly pseudoconvexnear p, then � is biholomorphic to the unit 
ball in Cn [12,13]. When the boundary of � is real analytic and convex near p, Kim gave a complete description of such 
domains [8]. In [1], Bedford and Pinchuk obtained the following result:

Theorem 1.1. [1, Theorem 2] Any convex smoothly bounded domain of finite type in Cn+1 , having non-compact automorphism group, 
is biholomorphically equivalent to a domain of the form {(w, z) ∈C ×C

n : Re w + P (z) < 0}, where P (z) is a weighted homogeneous 
polynomial.

If � is smooth, convex, and of finite type 2m near p, then Gaussier proved the following result:

Theorem 1.2. [5, Theorem 1] Let � be a domain in Cn+1 and p ∈ ∂�. Assume that p is an accumulating point for a sequence of 
automorphisms of �. If ∂� is smooth, convex, and of finite type 2m near p, then � is biholomorphically equivalent to a rigid polynomial 
domain

D = {(w, z) ∈C×C
n : Re w + P (z) < 0},

where P (z) is a real nondegenerate convex polynomial of degree less than or equal to 2m.

In the above statement, “finite type” means that there is no non-trivial analytic set tangent to arbitrarily high order to 
the boundary of � at p. Accordingly, the nondegeneracy of P (z) is given by the condition that {z ∈ C

n : P (z) = 0} contains 
no nontrivial analytic set.

In this paper we extend the above results to the h-extendible domains under a cone convergence condition. For q ∈ �, 
p ∈ ∂� and f j ∈ Aut(�), we say that f j(q) converges to p non-tangentially in a cone region if

f j(q) ∈ �α(p) := {z ∈ � : |z − q| < αδp(z)}
for all j large enough for some α > 1. Here δp(z) = min{dist(z, ∂�), dist(z, T p∂�)}. If � is convex near p, then δp(z) =
dist(z, ∂�). By [10, Lemma 3], the cone region can be described as

�α(p) ⊂ {z ∈ � : 0 < � zpq′ < arccos(1/α)}. (1.1)

We write � for �α(p) from now on because the value of α is not important in our proof. The following is our main result.

Theorem 1.3. Let � ⊂ C
n+1 be a smoothly pseudoconvex domain, p ∈ ∂� is h-extendible with Catlin’s multi-type (1, m1, · · · , mn). 

If there is a point q ∈ � and f j ∈ Aut(�) such that f j(q) converges to p ∈ ∂� non-tangentially in a cone region as j goes to infinity, 
then � is biholomorphically equivalent to a domain of the form:

{(w, z) ∈ C×C
n : Re w + P (z) < 0}.

Here P (z) is a (1/m1, · · · , 1/mn)-homogeneous polynomial with no pluriharmonic terms.

In section 2, we recall some basic definitions and preparatory results. In section 3, we give the proof of our main result.

2. Preliminaries

Let � be a domain in Cn and p ∈ �. We first recall the definition of Catlin’s multi-type (see e.g. [3]).
Let Ln denote the set of all n-tuples μ = (μ1, · · · , μn) with 1 ≤ μi ≤ ∞ such that

(i) 0 < μ1 ≤ μ2 ≤ · · · ≤ μn ≤ ∞;
(ii) For each k, either μk = ∞ or there is a set of nonnegative integers a1, · · · , ak with ak > 0 such that 

∑k
j=1 a j/μ j = 1.

An element of Ln will be referred to as a list. The set of lists can be ordered lexicographically, i.e. if μ′ = (μ′
1, · · · , μ′

n)

and μ′′ = (μ1
′′, · · · , μn

′′), then μ′ < μ′′ if for some k, μ′
j = μ j

′′ for all j < k, but μ′
k < μk

′′ . A list μ ∈ Ln with rational 
components is called distinguished if there exist holomorphic coordinates (z1, · · · , zn) centered at p such that

If
n∑

i=1

αi + βi

μi
< 1, then Dα Dβr(p) = 0.

Here Dα and Dβ denote the partial differential operators

∂ |α|

∂zα1
1 · · · ∂zαn

n
and

∂ |β|

∂zβ1
1 · · · ∂zβn

n

.
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Definition 2.1. [2] The multi-type M(∂�, p) = (m1, · · · , mn) is defined to be the least list M in Ln such that M ≥ μ for 
every distinguished list μ.

The multi-type is an upper semicontinuous holomorphic invariant with rational components. If the multi-type M(∂�, p)

of p is finite, i.e. mn < ∞, then it was shown in [2] that M(∂�, p) = μ for some distinguished element μ of Ln . Since p
is a smooth point, it is easy to see that the first entry m1 = 1 in M. Note that if � is pseudoconvexnear p, then each mk , 
2 ≤ k ≤ n, is an even number. We call � = (λ1, · · · , λn) = (1/m1, · · · , 1/mn) the multi-weight of p.

Definition 2.2. Let f (z) be a function on Cn and � = (λ1, · · · , λn) is a multi-weight. For any real number t ≥ 0, set

πt(z) = (tλ1 z1, · · · , tλn zn) ∀z ∈C
n.

We say that f is �-homogeneous with weight α if f (πt(z)) = tα f (z) for every t > 0 and z ∈ C
n/{0}. If α = 1, then f is 

simply called �-homogeneous.

Let � be a domain in Cn+1, n ≥ 1. Suppose p ∈ ∂� is of finite multi-type (1, m1, · · · , mn). Then in suitable local coordi-
nates, the defining function of � near p has the form:

r(w, z) = Re w + P (z) + R(w, z),

where w ∈ C, z ∈ C
n , P is a (1/m1, · · · , 1/mn)-homogeneous plurisubharmonicpolynomial that contains no pluriharmonic 

terms, and R is smooth and satisfies

|R(w, z)| ≤ C(|w| +
n∑

i=1

|zi |mi )γ ,

for some constant γ > 1 and C > 0. We call D = {(w, z) ∈C ×C
n : Re w + P (z) < 0} an associated model for � at p.

Now we give the definition of h-extendible domains.

Definition 2.3. Let � ∈ C
n+1 be a domain and suppose that the Catlin’s multi-type of a boundary point p is (1, m1, · · · , mn)

with mn < ∞. Set � = (1/m1, · · · , 1/mn). If D� = {(w, z) ∈ C × C
n : Re w + P (z) < 0} is an associated model of � near p, 

then D� is called h-extendible at p if there is a C1 function a(z) on Cn/{0} satisfying the following conditions:

(i) a(z) > 0 whenever z �= 0;
(ii) a(z) is �-homogeneous;

(iii) P (z) − εa(z) is strictly plurisubharmonicon Cn \ {0} when 0 < ε ≤ 1.

We say that � is h-extendible at p if its associated model D� is h-extendible at p. And � is called h-extendible if each one 
of its boundary points is h-extendible.

We call a(z) a bumping function for P (z). These conditions state that the model domain for � at p can be approximated 
from the outside by the pseudoconvex domains {(w, z) ∈ C × C

n : Re(w) + P (z) − εa(z) < 0} having the same homogene-
ity as �. The key geometric property to the applications of h-extendible domains is the following relationship between 
h-extendible domains and h-extendible models.

Theorem 2.4. [15, Theorem 4.7] Let � be a smooth domain in Cn and p an h-extendible boundary point of ∂�. Then there are local 
holomorphic coordinates (z, w) and an h-extendible model Q (with the same multi-weight as p) such that in these coordinates p = 0
and � \ {p} ⊂ Q near p.

For any integer n ≥ 1, let � = (λ1, · · · , λn) be a fixed n-tuple of positive numbers and μ > 0. Denote by O(μ, �) the set 
of smooth functions f defined near the origin of Cn such that

Dα Dβ f (0) = 0, whenever
n∑

i=1

(αi + βi)λi ≤ μ.

If n = 1 and � = (1), then we use O(μ) to denote the functions vanishing to order at least μ at the origin. Then we have 
the following lemma.

Lemma 2.5. [15, Lemma 4.11] Let � be a domain in Cn+1 and p ∈ ∂� h-extendible. Suppose that the Catlin’s multi-type of p is 
(1, m1, · · · , mn) with mn < ∞ and let � = (1/m1, · · · , 1/mn). Then there are local holomorphic coordinates (̃z, ̃w), such that in these 
coordinates p = 0 and � can be described near p as follows:
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� = {(w̃, z̃) ∈C×C
n : Re w̃ + P̃ (̃z) + R̃1(̃z) + R̃2(Im w̃) + (Im w̃)R̃ (̃z) < 0}.

Here P̃ (̃z) is a �-homogeneous plurisubharmonicreal-valued polynomial containing no pluriharmonic terms, R̃1 ∈ O(1, �), R̃ ∈
O(1/2, �) and ̃R2 ∈O(2).

Remark 2.6. Assume that � is given by {(w, z) ∈C ×C
n : r(w, z) < 0} near p = (0′, 0) and � ⊂ � is a cone with vertex at p. 

Convexity is not a biholomorphic invariant, but from the proof of [15, Main Theorem] and [15, Lemma 4.10, Lemma 4.11], 
one easily sees that cones are preserved in both Theorem 2.4 and Lemma 2.5.

3. Proof of the Main Theorem

We first prove the main theorem in the special case where � is described as in Lemma 2.5. The process can be divided 
into three steps by the standard scaling method (see, e.g., [7]). First we show that any compact set in � can be mapped into 
some neighborhood U of p. Then we move f j(q) to the origin by complex linear maps and stretching the coordinates at the 
origin. We prove that the images of U ∩ � under the stretching map have a nontrivial limit. The limit is biholomorphic to 
the associated model. Composing the automorphisms of � with the stretching maps, we have a sequence from any compact 
set of � to its associated model, and we call this sequence the scaling sequence. Finally, we show that the limit of the 
scaling sequence gives a biholomorphic mapping between � and its associated model. For the general case, we construct 
biholomorphic maps of coordinates that keep the cone convergence. In the above process, we have used several different 
local coordinates, which will result in different model domains. However, in [11], Nikolov showed, using a scaling method, 
that all model domains in different coordinates are biholomorphically equivalent. Therefore, we can reduce the general case 
to the special case.

First we need a localization lemma.

Lemma 3.1. [7, Proposition 9.2.8] For any neighborhood U of p in Cn, let K be any compact subset of �, then there is a N > 0, such 
that f j(K ) ⊂ � ∩ U for all j ≥ N .

Now we define

�t(w, z) = (t w, t1/m1 z1, · · · , t1/mn zn) = (t w,πt(z)), t ∈R.

Let � be as in Lemma 2.5 and U a neighborhood of 0 ∈ ∂�. For any ξ = (ξ0, ′ξ) ∈ � ∩ U , where ′ξ ∈ C
n and ξ0 ∈ C, set 

t = |r(ξ)| and ξ̂ = (ξ̂0, ′ξ̂ ) := �t−1 (ξ). As ξ ∈ �, it is easy to see that |ξ | � | Re ξ0| ≈ t = |r(ξ)|. Here |A| � |B| means that 
there is a constant C > 0 which only depends on �, U and � such that |A| ≤ C |B|, and |A| ≈ |B| if |A| � |B| and |B| � |A|. 
So if ξ ∈ � ∩ � and |ξ | is small, then we have

|′ξ̂ | = |π1/t(
′ξ)| �

n∑
i=1

t−λi |ξi | �
n∑

i=1

t−λi t → 0 (3.1)

since 0 < λi < 1 for all 1 ≤ i ≤ n, and

|ξ̂0| � t−1|ξ0| � t−1|ξ | � 1. (3.2)

Thus we get that |ξ̂ | � 1.
Now, for any ξ ∈ � ∩ U ∩ �, define

Lξ (w, z) = (w, z) − ξ.

It is a holomorphic automorphism of Cn that moves ξ to the origin and L−1
ξ = L−ξ . Then consider the holomorphic mappings 

Dξ := �t−1 ◦ Lξ (� ∩ U ) and Uξ := �t−1 ◦ Lξ (U ). Set

rξ (w, z) = t−1r(L−ξ ◦ �t(w, z)) and r0(w, z) = Re w − 1 + P (z). (3.3)

Then locally Dξ is defined by

Dξ = {(w, z) ∈ C×C
n : r(L−ξ ◦ �t(w, z)) < 0} ∩ Uξ

= {(w, z) ∈ C×C
n : t−1r(L−ξ ◦ �t(w, z)) < 0} ∩ Uξ

= {(w, z) ∈ C×C
n : rξ (w, z) < 0} ∩ Uξ .

Then by the estimates (3.1) and (3.2) it is easy to see that Uξ converges normally to Cn+1 as ξ tends to zero. One readily 
checks that
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lim
�∩U∩��ξ→0

rξ (w, z) = r0(w, z) (3.4)

where the convergence is uniform on compact subsets of Cn+1, which means that Dξ converges normally to D0 := {(w, z) ∈
C

n+1 : r0(w, z) < 0}. (For the definition of the normal convergence, see, e.g., [7, Definition 9.2.2].)
On the other hand, by Theorem 2.4, there is an h-extendible model

Q = {(w, z) ∈ C×C
n : ρ(w, z) = Re w + Q (z) < 0}, (3.5)

where Q (z) is a �-homogeneous function on Cn \ {0}, such that if U is a small neighborhood of p then �∩ U \ {0} ⊂ Q ∩ U . 
Furthermore, shrinking U if necessary, there is a constant C , only depending on �, U and �, such that, for all small 
ξ ∈ � ∩ U ∩ �, we have

Dξ (Q ∩ U ) ⊂ Q 0 := {(w, z) ∈ C×C
n : Re w + Q (z) − C < 0}. (3.6)

Now we prove a simplified version of the main theorem.

Proposition 3.2. Let � be a smooth pseudoconvex domain in Cn+1 . Assume that p ∈ ∂� is h-extendible with multi-type 
(1, m1, · · · , mn), mn < ∞ and let � = (1/m1, · · · , 1/mn). Suppose that, near p = (0′, 0), � has a defining function r(z, w) of the 
form:

r(w, z) = Re w + P (z) + R1(z) + R2(Im w) + (Im w)R(z) < 0.

Here P (z) is a �-homogeneous plurisubharmonicreal-valued polynomial containing no pluriharmonic terms, and R1 ∈ O(1, �), R ∈
O(1/2, �) and R2 ∈O(2). If there is a point q ∈ � and f j ∈ Aut(�) such that f j(q) converges to p non-tangentially in a cone region 
�, then � is biholomorphic to a domain of the form:

D := {(w, z) ∈C×C
n : Re w + P (z) < 0}. (3.7)

Proof. Let U be a neighborhood of p and K be an arbitrary compact subset of � with q ∈ K . By the localization principle 
in Lemma 3.1, f j(K ) ⊂ � ∩ U for all j large enough. Set

� j(w, z) = �| f j(q)|−1(w, z), L j(w, z) = L f j(q)(w, z),

r j(w, z) = r f j(q)(w, z), D j = D f j(q).

By definition, L j( f j(q)) = (0, ′0) and � j ◦ L j( f j(q)) = (0, ′0). Then for all j large enough, we define the following biholo-
morphic mappings:

σ j := � j ◦ L j ◦ f j.

In order to show that � is biholomorphic to D0 = {(w, z) ⊂ C ×C
n : r0(w, z) < 0}, first we show that there is a limit of 

σ j , say σ , which defines a holomorphic map from � to D0 and is biholomorphic near q. Second, we construct a holomorphic 
map from D0 to �. Finally we show that they are holomorphic inverses to each other.

First we show that a limit of σ j defines a holomorphic map from � to D0. Note that σ j|K is a map from K to D j and 
D j converges normally to D0 (by (3.4)), and D j ⊂ Q 0 (by (3.6)) for all j large enough. As Q 0 is a taut domain, {σ j} form 
a normal family and let σ be one of the limits. Since D j converges normally to D0, we have σ |K : K → D0. Since K is 
arbitrary, σ is defined on the whole �. Then by the tautness of D0, either σ(�) ⊂ ∂ D0 or σ(�) ⊂ D0. On the other hand, 
σ j(q) = � j ◦ L j ◦ f j(q) = (0, ′0). But (0, ′0) ∈ D0 and D0 is open, so σ(�) ⊂ D0.

Next we show that σ is biholomorphic near q ∈ �. Since D0 is open, there is a constant δ > 0 such that for all j large, 
we have the ball centered at (0, ′0) and with radius δ such that B((0, ′0), δ) ⊂ D j = � j ◦ L j(� ∩ U ). Since ∂� is of finite 
type at p, it is of finite type at points p′ in ∂� near p, since finite type is an open condition (see, e.g., [3]). As p is an 
accumulating point, by [6, Example 3.1.2], � is taut, hence hyperbolic. So there is a neighborhood W of q and a constant 
δ1 > 0 so that |F�(ζ, X)| ≥ δ1|X | for any ζ ∈ W and X ∈ Tζ �. Then we have

δ1|X | ≤ F�(q, X) = F f j(�)( f j(q),df j(q)X) (3.8)

≤ F�∩U ( f j(q),df j(q)X) (3.9)

= F� j◦L j(�∩U )((0, ′0),d� j ◦ dL j ◦ df j(q)X) (3.10)

≤ F B((0,′0),δ)((0, ′0),dσ j(q)X) (3.11)

≤ δ2|dσ j(q)||X |, (3.12)

for all 0 �= X ∈ Tq�. Equations (3.8) and (3.10) hold because the Kobayashi metric is a biholomorphic invariant and inequal-
ities (3.9) and (3.11) hold because Kobayashi metric decreases under holomorphic mappings. Inequality (3.12) holds by the 
explicit Kobayashi metric of the ball with radius δ at the origin. So we get
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|dσ j(q)| ≥ δ1

δ2
.

The constants δ1 and δ2 do not depend on j. So letting j go to infinity, and setting δ3 = δ1/δ2, we get

|dσ(q)| ≥ δ3 > 0.

This shows that σ is biholomorphic near q.
Now we construct a holomorphic map from D0 to �. Set

ω j = f −1
j ◦ �−1

j ◦ L−1
j .

For any compact subset K̃ ⊂ D0, as D j converges normally to D0, so for j large enough, K̃ ⊂ D j = � j ◦ L j(� ∩ U ), that is 
L−1

j ◦ �−1
j (K̃ ) ⊂ � ∩ U . Thus the sequence ω j |K̃ : K̃ → � is well defined. As � is taut, {ω j} form a normally family and let 

ω be one of the limits. Since K̃ is arbitrary, ω is defined on D0 and ω(D0) ⊂ �. But ω j(0, ′0) = f −1
j ◦ �−1

j ◦ L−1
j (0, ′0) = q, 

so ω(D0) ⊂ �.
Now we show that σ is a biholomorphism. As σ j converges to σ uniformly on compact sets of � and σ is a local 

biholomorphism near q, there exists a constant δ4 > 0 and a compact set N ⊂ � with q ∈ N , such that B((0, ′0), δ4) ⊂
σ j(N) ⊂ D0 for all large j. This implies that ω j(B((0, ′0), δ4)) ⊂ f −1

j ( f j(N)) = N . Thus for large j, the mapping

σ j ◦ ω j|B((0′,0),δ4) = idB((0,′0),δ4)

is well defined. Let j go to infinity, we have σ ◦ ω|B((0′,0),δ4) = idB((0,′0),δ4) , and hence σ ◦ ω = idD0 . On the other hand, on 
any compact set K ⊂ � with q ∈ K , we have

ω j ◦ σ j|K = idK .

Let j go to infinity, we see that ω ◦ σ |K = idK , thus ω ◦ σ = id� . Hence σ is a biholomorphic mapping between D0 and �.
By the defining functions of D0 in (3.3) and D in (3.7), it is easy to see that � and its associated model D are biholo-

morphically equivalent. �
Now we give the proof of the main theorem (Theorem 1.3):

Proof of Theorem 1.3. Suppose that � is given by {(w, z) ⊂C ×C
n : r(w, z) < 0} in a neighborhood U of p. By assumption, 

there exist holomorphic automorphisms f j ∈ Aut(�) and q ∈ � such that f j(q) converge to the boundary point p non-
tangentially in a cone � as j goes to infinity. Let (w̃, ̃z) = H p(w, z) be the local coordinate change given in Lemma 2.5. 
Then, by Remark 2.6, the image of the cone � under H p , defined by �̃ := H p(�), is also a cone with vertex p = 0. So one 
gets H p( f j(q)) ∈ �̃. By Proposition 3.2, � is biholomorphic to the model D = {(w̃, ̃z) : Re w̃ + P̃ (̃z) < 0}. By [11], all models 
in different coordinates are biholomorphically equivalent. This completes the proof. �
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