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In this Note, we present a new version of the vector penalty–projection splitting method 
described in [1] for the fast numerical computation of incompressible flows with variable 
density and viscosity. We show that the velocity correction can be made completely 
independent of the mass density ρ . Hence, this step is purely kinematic using the fast 
Helmholtz–Hodge decompositions proposed in [2]. Then, it is shown that the dynamic step 
of pressure gradient correction can be fast and locally consistent on edge-based generalized 
MAC-type unstructured meshes that naturally verify the compatibility condition in the 
proposed discrete setting. By the way, a new accurate front-tracking Lagrangian-advection 
technique is also introduced for multiphase flows.
This new method preserves the fully vector formulation of both the prediction and 
correction steps of the original scheme, the primary unknowns being (v, ∇p) and ρ by 
advection, since the pressure Neumann–Poisson problem remains eliminated. The efficiency 
of the present method is demonstrated through numerical results on sharp test cases.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

On présente dans cette Note une nouvelle version de la méthode de splitting par pénalité–
projection vectorielle décrite dans [1] pour le calcul des écoulements incompressibles à 
masse volumique et viscosité variables. Le principal résultat est de rendre la correction 
vectorielle de vitesse complètement indépendante de la masse volumique ρ . Cette étape 
devient donc purement cinématique et correspond à une décomposition rapide de 
Helmholtz–Hodge proposée dans [2]. On montre que l’étape dynamique de correction 
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du gradient de pression peut être rapide et localement consistante sur des maillages 
généralisés de type MAC non structurés.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Version française abrégée

L’idée clé pour la construction de cette nouvelle méthode (K-VPPε) repose sur les décompositions rapides de Helmholtz–
Hodge en domaine borné proposées dans [2] et analysées dans [3]. L’étape de correction vectorielle en vitesse v est rendue 
purement cinématique. Elle correspond à une méthode de projection à divergence nulle approchée pour obtenir la com-
posante irrotationelle v̂ := ∇φ du champ de vitesse prédit ṽ . L’étape dynamique de correction du gradient de pression 
est alors obtenue en introduisant le concept de densité inertielle ρ calculée sur chaque arête du maillage principal et 
reliant les sommets des inconnues scalaires p, φ et ρ . On montre qu’il existe ρ satisfaisant l’équation de consistance lo-
cale, ∇(ρ φ) = ρ ∇φ = ρ v̂ , et permettant de recouvrer un gradient de pression entre les sommets. En pratique, comme la 
condition de compatibilité associée est naturellement satisfaite pour les maillages de type MAC, le calcul de ρ est effectué 
facilement et de façon rapide à partir de ρ et d’une fonction de partage α, tandis que φ est reconstruit à partir de son 
gradient connu sur les arêtes.

1. Introduction

We consider the numerical solution to unsteady incompressible flows with variable mass density and viscosity. This is 
typically the case of incompressible or low-Mach dilatable and/or multimaterial multiphase flows [13]. The design of efficient 
numerical methods, i.e. accurate, fast and robust, is still a challenging issue [11], especially for multiphase flows with strong 
stresses [4]: large mass density or viscosity ratios, large surface tension, open boundary conditions, fluid–structure interac-
tions, or multi-physics problems. Many refined techniques have been developed for the front-tracking or front-capturing of 
moving and deformable phase interfaces, e.g., [10,12–14], and most of them use the very popular time-stepping projection 
methods of Chorin–Teman for the flow solver.

Here, we focus on the important feature of velocity–pressure coupling with fully vector splitting methods [1,4], which 
eliminate the pressure Poisson equation of scalar projection methods and thus the pressure boundary condition. The main 
objective of this work is to show that the velocity correction step in the vector penalty–projection (VPPε) method [1] can 
be made fully kinematic and completely independent of the mass density. This is obtained by using fast Helmholtz–Hodge 
decompositions studied in [2,3]. A similar result is obtained in [9] with a scalar projection method. Then, it is shown that 
the dynamic step of pressure gradient correction can be easily made in a locally consistent way if the spatial discretiza-
tion satisfies a discrete compatibility condition that is verified for edge-based generalized MAC-type unstructured meshes, 
already introduced in [1,7].

2. The kinematic vector penalty–projection method for the Navier–Stokes equations

Let us consider the incompressible Navier–Stokes model problem in the time-space domain (0, T ) ×� with homogeneous 
Dirichlet boundary condition for velocity v on (0, T ) × �:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ρ (∂t v + (v · ∇)v) − div (2μ(ρ)d(v)) + ∇p = f in (0, T ) × �,

div v = 0 in (0, T ) × �,

∂tρ + v · ∇ρ = 0 in (0, T ) × �,

v |� = 0 on (0, T ) × �,

ρ(t = 0) = ρ0, v(t = 0) = v0 in �.

(1)

Here, � is a connected and bounded domain in Rd (d ≤ 3) with a Lipschitz continuous boundary � := ∂�. The strain rate 
tensor is denoted by d(v) := (∇v + (∇v)t)/2, the mass density by ρ , the dynamic viscosity by μ = μ(ρ) and the pressure 
by p. The force field f usually includes the gravity force ρ g and the capillary surface tension σ κ n� δ� supported by the 
interface � between the phases, where n� is a unit normal vector on �, κ its local curvature and σ the surface tension 
coefficient.

2.1. The time semi-discrete scheme (K-VPPε)

The fast (K-VPPε) method, proposed here using a first-order linearly implicit scheme reads with classical notations, for 
all n ∈ N such that (n + 1)δt ≤ T , δt > 0 being the time step, 0 < ε � 1 the penalty parameter, and starting from the initial 
conditions ρ0 = ρ0, v0 = v0 and p0 = 0 in �:

http://creativecommons.org/licenses/by-nc-nd/4.0/
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) Standard prediction step:

ρn

(
ṽn+1 − vn

δt
+ (vn · ∇)̃vn+1

)
− div

(
2μ(ρn)d(̃vn+1)

)
+ ∇pn = f n in �,

ṽn+1
|� = 0 on �,

(b) Divergence-free velocity penalty–projection (VPP): purely kinematic step

ε v̂n+1 − ∇
(

div v̂n+1
)

= ∇
(

div ṽn+1
)

in �,

v̂n+1
|� = 0 on �,

(c) Velocity correction: vn+1 = ṽn+1 + v̂n+1 in �,

(d) Find the inertial density ρn such that (see Sect. 2.2):

∇(ρn φn+1) = ρn v̂n+1, with φn+1 reconstructed from its gradient v̂n+1 := ∇φn+1 in �,

(e) Explicit locally consistent pressure gradient correction: dynamic step

∇(pn+1 − pn) = −ρn

δt
v̂n+1 = − 1

δt
∇(ρn φn+1) or (pn+1 − pn) = −ρn φn+1

δt
in �,

( f ) Advection and front-tracking of density (see Sect. 2.3):

ρn+1 − ρn

δt
+ vn+1 · ∇ρn = 0 in �.

(2)

In the sub-step (d), the scalar potential φn+1 is theoretically equal to φn+1 := 1

ε
div vn+1 up to an additive constant, as a 

by-product of the (VPP) sub-steps (b, c). However, to avoid round-off errors in the numerical computations when ε is very 
small up to machine precision, typically ε = 10−14, since we have ‖div vδt‖l2(0,T ;L2(�)) = O(ε δt), it is shown in [1,2] that it 
is far better to directly reconstruct φn+1 locally from its known gradient ∇φn+1 := v̂n+1. This is easily carried out by using 
the circulation theorem with the Stokes formula along each edge, which gives a very fast numerical procedure. A similar 
technique is also detailed in Section 2.2 to locally calculate ρn on each edge-linking pressure vertices.

Since v̂n+1 = vn+1 − ṽn+1 with (c), it is important to notice that the sub-steps (d) and (e) in (2) allow us to write the 
effective velocity and pressure gradient corrections as in [1,4], v̂n+1 being the solution by the (VPP) method of sub-step (b), 
which is now purely kinematic and completely independent of ρ:⎧⎪⎪⎨⎪⎪⎩

ρn vn+1 − ṽn+1

δt
+ ∇(pn+1 − pn) = 0 in �,

with ∇(pn+1 − pn) = −ρn

δt
v̂n+1 in �.

(3)

Then, if the calculation of the pressure itself is not necessary for physical reasons, the present method reads more simply:

(K-VPPε)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρn

(
ṽn+1 − vn

δt
+ (vn · ∇)̃vn+1

)
− div

(
2μ(ρn)d(̃vn+1)

)
+ ∇pn = f n in �,

ṽn+1
|� = 0 on �,

ε v̂n+1 − ∇
(

div v̂n+1
)

= ∇
(

div ṽn+1
)

in �,

v̂n+1
|� = 0 on �,

Velocity correction: vn+1 = ṽn+1 + v̂n+1 in �,

Explicit pressure gradient correction: ∇(pn+1 − pn) = −ρn

δt
v̂n+1 in �,

ρn+1 − ρn

δt
+ vn+1 · ∇ρn = 0 in �.

(4)

Another improvement of the present method is that the sub-step (b) in (2) can be also enforced by the Dirichlet condition 
v̂n+1

|� = 0 and not only with the natural normal component v̂n+1 · n|� = 0 as in [1–3]. Indeed, we can prove by a vanishing 
viscosity method that it yields a well-posed problem with a unique solution v̂n+1 ∈ H1

0(�) when the boundary � is of class 
C1,1 or if � is a convex domain.



P. Angot et al. / C. R. Acad. Sci. Paris, Ser. I 354 (2016) 1124–1131 1127
Fig. 1. Edge-based generalized MAC-type unstructured mesh. Topology of the 3-D primal mesh with vertices, edges, faces and an interface �: p, ρ, φ
unknowns located at all vertices a or b and velocity components v · t on each edge [a, b].

Now by summing the prediction and correction steps using vn+1 = ṽn+1 + v̂n+1 and (3), we get that the unique solutions 
(vn+1, ∇pn+1) and ρn+1 at each time step satisfy the equations below, even if the practical scheme is never solved in this 
way but within two steps:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρn
(

vn+1 − vn

δt
+ (vn · ∇)̃vn+1

)
− div

(
2μ(ρn)d(̃vn+1)

)
+ ∇pn+1 = f n in �,

vn+1
|� = 0 on �,

∇
(

div vn+1
)

= ε v̂n+1, and ∇(pn+1 − pn) = −ρn

δt
v̂n+1 in �,

ρn+1 − ρn

δt
+ vn+1 · ∇ρn = 0 in �.

(5)

This formally shows that the (K-VPPε) method does produce the same numerical solutions as the original (VPPε) one, and 
thus gives an O(δt) time accuracy of both velocity and pressure for the first-order scheme with ‖div vδt‖l∞(0,T ;L2(�)) =
O(ε δt), as numerically verified in [1].

Moreover, the velocity–pressure coupling in (2) can be interpreted as a new two-step artificial compressibility scheme 
for variable density flows satisfying the pressure correction:

pn+1 = pn − ρn φn+1

δt
in �. (6)

2.2. Construction of the inertial density field ρ on a staggered generalized MAC-type mesh

The main important issue of the present (K-VPPε) method (2) is to show the existence at each time step of the so-called 
inertial density ρ . Indeed, since the irrotational component v̂ of ṽ = v − v̂ is calculated by the (VPP) sub-step (b), this also 
gives easily as a by-product the scalar potential φ such that v̂ = ∇φ as detailed further. Then, the inertial density ρ should 
verify the local consistency condition below, which is required to recover a pressure gradient:

∇(ρ φ) = ρ ∇φ = ρ v̂ in �, with ρ = ρ on �. (7)

A necessary, and also sufficient condition if the domain � is simply-connected, to get q ∈ H1(�) such that ∇q = ρ v̂ reads 
rot (ρ v̂) = 0, which gives the local compatibility condition because rot v̂ = 0:

rot (ρ v̂) = ρ rot v̂ + ∇ρ ∧ v̂ = ∇ρ ∧ v̂ = 0, in �. (8)

This condition is naturally satisfied in the proposed discrete setting below for edge-based generalized MAC-type discreti-
sations, since ∇ρ is calculated between two vertices a, b along any edge where the velocity components v̂ · t are located, 
see Fig. 1. Then from [2,3], since φ ∈ H2(�) ↪→ C(�) for d ≤ 3 and defined up to an additive constant, we can choose a 
continuous potential φ > 0 on the compact domain �, which yields ρ = q/φ.

In practice, the compatibility equation ∇(ρ φ) = ρ v̂ in (7) can be solved locally on the spatial mesh with a very fast 
numerical technique. Here, we consider the structured MAC staggered grid [10] or the edge-based generalized unstructured 
staggered mesh of MAC-type [5,7] in the context of dispersed multiphase flows. The edge-based generalized MAC mesh 
shown in Fig. 1 is constructed in the spirit of Whitney’s finite elements, see, e.g., [6]. A typical configuration at time 
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Fig. 2. Detection of an interface represented by a Lagrangian marker chain on the primal mesh. Left: topology of the primal mesh with vertices, edges, cells 
and the interface – Right: intersections of the connected marker chain cutting across some primal edges.

tn := n δt , in 2-D for the sake of clarity, for a triangular primal mesh is shown in Fig. 2. The scalar unknowns p, φ, ρ , 
or div v are located at the vertices of the primal mesh. The velocity components v · t , as well as the gradients of scalar 
potentials ∇φ or ∇p are located at the mid-point of any edge linking two neighbour vertices and oriented by a unit vector t . 
We have verified in [1] that the underlying space discretisation yields second-order errors in O(h2) for the L2(�)-norm of 
both velocity and pressure, h being the mesh step. It is also easy to show that the following important properties are exactly 
satisfied at the discrete scale: rot h(∇hφh) = 0 and div h(rot hψh) = 0, ∀h > 0 for any scalar φ or vector potential ψ . This 
was numerically verified up to machine precision in [2].

The discrete interface � between two phases is represented by a chain of Lagrangian markers having its own connectivity 
table and defining a polygon with N marker sides (or surface-markers based on triangles in 3-D). Each marker point belongs 
to a single cell in the primal mesh and this association is made by a fast algorithm of ray-tracing [12], which also easily 
determines the intersections of the connected marker chain with the edges separating two neighbour cells. Then, a phase 
function ξ is defined at each vertex taking the value 1 or 0, depending on whether the point lies inside or outside the 
polygonal chain.

The calculation of φ and ρ is made by reconstruction of a scalar potential by integrating its known gradient along all 
the edges in the primal mesh. Starting from one point where φ := 0 arbitrarily, we have along any edge [a, b], which gives 
the value φb when φa is already known, and so on:

b∫
a

v̂ · t dx :=
b∫

a

∇φ · t dx = φb − φa, on any edge [a,b]. (9)

Now, the calculation of ρ must take into account the density variations and thus the position of the interface �. From one 
side, using the generalized average formula, there exists ρ that is constant along the segment [a, b] such that:

b∫
a

ρ v̂ · t dx = ρ

b∫
a

v̂ · t dx = ρ (φb − φa) =
b∫

a

∇(ρ φ) · t dx.

Hence, ρ satisfies the compatibility condition (7) along the edge [a, b]. From another side, denoting the intersection point 
x� with the marker chain by c := � ∩ [a, b] and the distance d(a, b) := |b − a|, we have also:

b∫
a

ρ v̂ · t dx =
c∫

a

ρ v̂ · t dx +
b∫

c

ρ v̂ · t dx = (ρa |c − a| + ρb |b − c|) v̂ · t

= (ρa |c − a| + ρb |b − c|)
|b − a|

b∫
a

v̂ · t dx = (α ρa + (1 − α)ρb) (φb − φa), with α := |c − a|
|b − a| .

Comparing the two expressions, we get ρ associated with the edge [a, b] as a weighted average:

ρ[a,b] = αρa + (1 − α)ρb, on any intersected edge [a,b]; 0 ≤ α ≤ 1. (10)

Moreover, it is explained in the context of Discrete Mechanics [7,8] that the inertial density ρ and the mass density ρ
have different physical meanings.

A kinematic scalar projection (KSP) method, similar to the version proposed in [9], is now simply obtained by replacing 
the (VPP) sub-step (b) in (2) by the standard technique for the divergence-free projection of ṽ consisting in solving for φ
the Neumann–Poisson problem: −�φ = div (̃v) with ∇φ · n = 0 on �.
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Fig. 3. Second-order space convergence rate for the local curvature of an ellipse with a = 1 and b = 0.75: error in L2-norm versus number N of Lagrangian 
interface markers.

2.3. A new front-tracking Lagrangian-advection method

A new simple but accurate Lagrangian front-tracking technique is now introduced for the advection of interface � in 
the sub-step (2( f )) and the updating of density ρn+1 from the velocity field vn+1. The algorithm that ensures a good mass 
conservation of the different phases is briefly described below.

a) Calculate the barycentric velocity vb(x) associated with each marker point x from the velocity components vn+1 · t on 
the edges bordering the primal cell where the marker lies.

b) Move the markers such that x′(t) = vb(t, x) by calculating the new position with the Heun Runge-Kutta explicit scheme 
(RK2 or RK4 with the K-VPP method of second-order in time):

xn+1 = xn + δt

2

(
vn

b(xn) + vn+1
b (xn + δt vn

b(xn))
)

.

c) Detect the cells in the primal mesh that are crossed by the updated marker chain with a ray-tracing technique issued 
from computer graphics procedures [12] and, according to that, update the phase function ξ at the vertices.

d) Calculate the intersection points x� ∈ [a, b] between the marker chain segments and the edges [a, b] of the crossed cells 
in the primal mesh.

e) From x� , calculate the dividing function α on each edge [a, b] oriented by t and cut across by �.
f ) Update the density ρ , the corresponding viscosity μ(ρ) and the inertial mass density ρ[a,b] = α ρa + (1 − α) ρb , on any 

intersected edge [a, b].
g) Compute the local curvature κ(x) at each marker point x using the osculator circle crossing three consecutive points.
h) Compute the force source term modelling the capillary effects f c := σ κ ∇ξ on � to be included in the force balance 

on any intersected edge.
i) Solve for the flow at time tn+1 = (n + 1)δt with the method of velocity–pressure coupling.

3. Some validations with numerical experiments

The numerical results are performed with a time-step δt satisfying a CFL value of CFL = 0.5.

3.1. Perfect numerical verification of Laplace’s law: the static equilibrium of a droplet

The local curvature κ(x) is calculated at each marker point x by using the osculator circle defined by x and its two 
neighbours. Thus, it should be exact when the interface � is a circle of radius R where the constant curvature equals 
κ = 1/R or κ = 2/R for a sphere in 3-D. It is numerically verified up to machine precision. For an ellipse of radius a and b
in the polar coordinates, the analytical value equals:

κ(θ) = a b

(a2 sin2 θ + b2 cos2 θ)3/2
, with θ ∈ [0,2π].

The second-order accuracy in the L2-norm is achieved with respect to the mean distance between two connected inter-
face markers for calculating the local curvature κ(x), as shown in Fig. 3.

The emblematic case of capillary effects is the static equilibrium of a cylindrical or spherical droplet [8]. Here, the issue 
is to attest to the ability of the whole numerical methodology to preserve the perfect equilibrium during an arbitrary time. 
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Fig. 4. Laplace uniform capillary pressure pc = 400 Pa in a disk droplet of radius R = 2.5·10−3 m for a constant surface tension σ = 1 N/m: the velocity 
field is zero in both cases with no parasite current. Left: unstructured mesh non-fitted to the interface-markers circle – Right: unstructured mesh fitted to 
the interface.

Fig. 5. Dynamics of the air bubble of diameter d = 0.01 m, mass density ρg = 1.1768 kg/m3, dynamic viscosity μg = 1.85 10−5 Pa·s in a vertical cavity of 
width l = 4·10−2 m and height h = 10−1 m. The bubble rises in the liquid steel with ρl = 104 kg/m3, μl = 10−3 Pa·s and σ = 1.5 N/m. Left: pressure field 
p ∈ [−9235, 0] Pa (p = 0 at the bottom left) at time t = 0.05 s – Center: vertical velocity field vz ∈ [−0.48, 1.55] m/s and streamlines at t = 0.05 s – Right:

Some bubble positions and shapes during time and vertical velocity field vz at final time t = 0.2 s.

Let us consider a cylindrical drop of radius R with a constant surface tension σ = 1 for two fluids of different densities. The 
computation is run with zero initial conditions, the boundary condition v |� = 0 and the capillary force field f c = σ κ ∇ξ

on � with no gravity force. Because the curvature is κ = 1/R �= 0, exactly computed in our case with the markers chain, 
the drop is likely to crash on itself with a speed equal to the capillary velocity. But since the flow is incompressible, the 
locally isovolume flow induces a reaction force exerted on the interface that exactly counterbalances the capillary force f c . 
Then, the static equilibrium is obtained instantaneously with a uniform capillary pressure inside the droplet which equals 
Laplace’s law: pc = σ/R for a disk, pc = 2σ/R for a sphere and pc = σ κ in general, whatever the densities.

The result shown in Fig. 4 is computed within one time iteration only and exhibits no parasite current. The exact uniform 
capillary pressure pc = 400 Pa is obtained with a velocity field being exactly zero both inside and outside the drop up to 
machine precision.

3.2. Numerical results for a sharp benchmark: air bubble dynamics in melted steel

The test case of air bubble dynamics rising in liquid water, where the density ratio is ρl/ρg = 829, viscosity ratio 
μl/μg = 56 with the air–water surface tension σ = 0.0714 N/m, is reputed to be difficult to compute with the suitable 
mesh convergence property [11,13], and hence considered as already discriminating.
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Here, we show that the (K-VPPε) method can compute the case proposed in [4] of air bubbles arising in a liquid melted 
steel with a density ratio ρl/ρg ≈ 8500, viscosity ratio μl/μg = 54 and surface tension σ = 1.5 N/m. The motion is induced 
by the vertical gravity force ρ g with g = 9.81 m/s2 and the capillary force f c = σ κ ∇ξ . The size of the mesh is 128 × 256
Cartesian MAC cells, N = 128 Lagrangian markers are used in the interface chain, and the mesh convergence is reached. The 
cylindrical air bubble is initialized asymmetrically at the bottom of the liquid column in order to create a lateral motion, 
and we have a symmetry boundary condition for the velocity components on the walls. A typical situation is shown in 
Fig. 5 where the interface is plotted over the pressure or the vertical velocity fields.

4. Conclusion

From the physical point of view, the main conclusion of this work is that the velocity correction in a time-stepping 
method for the incompressible flow is fully kinematic and only concerned with the Helmholtz–Hodge decomposition of the 
predicted velocity. Hence, this step includes no physics inside. Conversely, the pressure gradient correction does link the 
mass density to induce the motion and perfectly reproduce the dynamics of the phenomena. This assertion, which was only 
a conjecture till now, is here validated by two physical examples.
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