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Let Pk := F2[x1, x2, . . . , xk] be the graded polynomial algebra over the prime field of two 
elements F2, in k generators x1, x2, . . . , xk , each of degree 1. Being the mod-2 cohomology 
of the classifying space B(Z/2)k , the algebra Pk is a module over the mod-2 Steenrod 
algebra A. In this Note, we extend a result of Hưng on Kameko’s homomorphism S̃q

0
∗ :

F2 ⊗A Pk −→ F2 ⊗A Pk . Using this result, we show that Singer’s conjecture for the 
algebraic transfer is true in the case k = 5 and the degree 7.2s − 5 with s an arbitrary 
positive integer.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit Pk := F2[x1, x2, . . . , xk] l’algèbre polynomiale graduée à k générateurs sur le corps à 
deux éléments F2, chaque générateur étant de degré 1. En tant que cohomologie mod-2 du 
classifant B(Z/2)k , l’algèbre Pk est dotée d’une structure naturelle de module sur l’algèbre 
de Steenrod A. Dans cette Note, nous généralisons un résultat de Hưng pour le morphisme 
de Kameko S̃q

0
∗ : F2 ⊗A Pk −→ F2 ⊗A Pk . En appliquant ce résultat, nous montrons que la 

conjecture de Singer pour le transfert algébrique est vraie pour k = 5 et le degré 7,2s − 5
avec s > 0.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Let (Z/2)k be the elementary Abelian 2-group of rank k. Denote by B(Z/2)k the classifying space of (Z/2)k . Then,

Pk := H∗(B(Z/2)k) ∼= F2[x1, x2, . . . , xk],
a polynomial algebra in k variables x1, x2, . . . , xk , each of degree 1. Here the cohomology is taken with coefficients in the 
prime field F2 of two elements.
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Being the cohomology of a topological space, Pk is a module over the mod-2 Steenrod algebra, A. The action of A on 
Pk is explicitly given by the formula

Sqi(x j) =

⎧⎪⎨⎪⎩
x j, i = 0,

x2
j , i = 1,

0, otherwise,

and subject to the Cartan formula Sqn( f g) = ∑n
i=0 Sqi( f )Sqn−i(g), for f , g ∈ Pk (see Steenrod and Epstein [12]).

Let GLk be the general linear group over the field F2. This group acts naturally on Pk by matrix substitution. Since the 
two actions of A and GLk upon Pk commute with each other, there is an inherited action of GLk on F2 ⊗A Pk .

Denote by (F2 ⊗A Pk)n the subspace of F2 ⊗A Pk consisting of the classes represented by the homogeneous polynomials 
of degree n in Pk . In [10], Singer defined the algebraic transfer, which is a homomorphism

ϕk : TorAk,k+n(F2,F2) −→ (F2 ⊗A Pk)
GLk
n

from the homology of the Steenrod algebra to the subspace of (F2⊗APk)n consisting of all the GLk-invariant classes. It is 
a useful tool in describing the homology groups of the Steenrod algebra, TorAk,k+n(F2, F2). The Singer algebraic transfer was 
studied by many authors (see Boardman [2], Hưng [5], Chơn–Hà [4], Nam [9], Hưng–Quỳnh [6], and others).

Singer showed in [10] that ϕk is an isomorphism for k = 1, 2. Boardman showed in [2] that ϕ3 is also an isomorphism. 
However, for any k � 4, ϕk is not a monomorphism in infinitely many degrees (see Singer [10], Hưng [5]). Singer made the 
following conjecture.

Conjecture 1 (see Singer [10]). The algebraic transfer ϕk is an epimorphism for any k � 0.

The conjecture is true for k � 3. Based on the results in [13,14], it can be verified for k = 4.
In this Note, we extend Hưng’s result in [5] on Kameko’s homomorphism

S̃q
0
∗ : F2 ⊗A Pk −→ F2 ⊗A Pk.

This homomorphism is an GLk-homomorphism induced by the F2-linear map, also denoted by S̃q
0
∗ : Pk → Pk , given by

S̃q
0
∗(x) =

{
y, if x = x1x2 . . . xk y2,

0, otherwise,

for any monomial x ∈ Pk . Note that S̃q
0
∗ is not an A-homomorphism. However, S̃q

0
∗ Sq2t = Sqt S̃q

0
∗ and S̃q

0
∗ Sq2t+1 = 0 for any 

non-negative integer t .
For a positive integer n, by μ(n), one means the smallest number r for which it is possible to write n = ∑

1�i�r(2ui − 1), 
where ui > 0.

Theorem 2 (see Kameko [7]). Let m be a positive integer. If μ(2m + k) = k, then

S̃q
0
∗ : (F2 ⊗A Pk)2m+k −→ (F2 ⊗A Pk)m

is an isomorphism of GLk-modules.

By a direct computation, we can see that for a non-negative integer d with either d = 0 or μ(d) � k, there exists a 
non-negative integer t such that μ(k(2s − 1) + 2sd) = k for every s > t . Hence, Theorem 2 implies that

( S̃q
0
∗)s−t : (F2 ⊗A Pk)k(2s−1)+2sd −→ (F2 ⊗A Pk)k(2t−1)+2td

is an isomorphism of GLk-modules for every s � t . However, this result does not confirm how large t should be.
Denote by α(n) the number of ones in dyadic expansion of n and by ζ(n) the greatest integer u such that n is divisible 

by 2u . That means n = 2ζ(n)m, with m an odd integer. For any non-negative integer d, set

t(k,d) = max{0,k − α(d + k) − ζ(d + k)}.
The following is one of our main results.

Theorem 3. Let d be an arbitrary non-negative integer. Then

( S̃q
0
∗)s−t : (F2 ⊗A Pk)k(2s−1)+2sd −→ (F2 ⊗A Pk)k(2t−1)+2td

is an isomorphism of GLk-modules for every s � t if and only if t � t(k, d).
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For either d = 0 or μ(d) � k, we show that t = t(k, d) is the minimum number such that μ(k(2s − 1) + 2sd) = k for every 
s > t . Then, the theorem follows from Theorem 2.

If μ(d) > k, then μ(k(2s − 1) + 2sd) > k for every s � 0 = t(k, d). From a result of Wood [16], we have (F2 ⊗A
Pk)k(2s−1)+2sd = 0, for every s � 0. Therefore, Theorem 3 holds for an arbitrary non-negative integer d.

It is easy to see that t(k, d) � k − 2 for every d and k � 2. So, one gets the following.

Corollary 4 (see Hưng [5]). Let d be an arbitrary non-negative integer. Then

( S̃q
0
∗)s−k+2 : (F2 ⊗A Pk)k(2s−1)+2sd −→ (F2 ⊗A Pk)k(2k−2−1)+2k−2d

is an isomorphism of GLk-modules for every s � k − 2.

Corollary 4 shows that the number t = k − 2 commonly serves for every degree d. In [5], Hưng predicted that t = k − 2 is 
the minimum number for this purpose and proved it for k = 5. It is easy to see that for d = 2k −k +1, we have t(k, d) = k −2. 
So, his prediction is true for all k � 2.

An application of Theorem 3 is the following theorem.

Theorem 5. Singer’s conjecture is true for k = 5 and the degree 7.2s − 5 with s an arbitrary positive integer.

For d = 2, we have t(5, 2) = 2 and 5(2s − 1) + 2sd = 7.2s − 5. So, by Theorem 3,

( S̃q
0
∗)s−2 : (F2 ⊗A P5)7.2s−5 −→ (F2 ⊗A P5)23

is an isomorphism of GL5-modules for every s � 2. Hence, by an explicit computation of (F2 ⊗A P5)7.2s−5 and (F2 ⊗A
P5)

GL5
7.2s−5 for s = 1, 2, one gets the following.

Theorem 6. Let m = 7.2s − 5 with s a positive integer. Then

i) dim(F2 ⊗A P5)m = 191 for s = 1, and dim(F2 ⊗A P5)m = 1245 for any s � 2.
ii) (F2 ⊗A P5)

GL5
m = 0 for any s � 1.

The second part of the theorem has been proved by Singer [10] for s = 1. In [5], Hưng also proved this theorem for s = 2
by using computer calculation. However, the detailed proof was unpublished at the time of the writing.

The proof of Theorem 6 is long and very technical. The first part is proved by determining the admissible monomials of 
degree m in P5. The computations are based on some results of Kameko [7] and Singer [11] on the admissible monomials 
and the hit monomials (see [14]). We prove the second part by a direct computation using the admissible monomials of 
degree m which are determined in the first part. The computations are also based on Singer’s criterion in [11] on the hit 
monomials.

From the results of Tangora [15], Lin [8] and Chen [3], we obtain

TorA5,7.2s (F2,F2) =
{

〈(Ph1)
∗〉, if s = 1,

〈(hs gs−1)
∗〉, if s � 2,

and hs gs−1 	= 0, where hs denote the Adams element in Ext1,2s

A (F2, F2), P is the Adams periodicity operator in [1] and 
gs−1 ∈ Ext4,2s+2+2s+1

A (F2, F2) for s � 2. Hence, by Theorem 6(ii), the homomorphism

ϕ5 : TorA5,7.2s (F2,F2) −→ (F2⊗AP5)
GL5
7.2s−5

is an epimorphism. However, it is not a monomorphism. This result confirms the one of Hưng.

Corollary 7 (see Hưng [5]). There are infinitely many degrees in which ϕ5 is not a monomorphism.

The proofs of the results of this Note will be published in detail elsewhere.
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