

Lie algebras

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

A substitution theorem for the Borcherds-Weyl semigroup

Théorème de substitution pour le semi-groupe de Borcherds-Weyl

Anthony Joseph¹, Polyxeni Lamprou

Department of Mathematics, The Weizmann Institute of Science, Rehovot, 76100, Israel

ARTICLE INFO

Article history: Received 10 May 2016 Accepted 30 June 2016 Available online 1 August 2016

Presented by Michèle Vergne

ABSTRACT

A result concerning Bruhat sequences for a Borcherds–Kac–Moody algebra is established. It is needed for the Littelmann path model. For a Kac–Moody Lie algebra, it is a consequence of the exchange lemma. In the present framework, the proof is more complex.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Un résultat pour les suites de Bruhat est établi dans le cadre d'une algèbre de Borcherds-Kac-Moody. Il est nécessaire au modèle des chemins de Littelmann. Pour une algèbre de Kac-Moody, c'est une conséquence du lemme de substitution. Dans le cadre actuel, la démonstration est plus complexe.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Soit *T* le semi-groupe de Borcherds–Weyl associé à une algèbre de Borcherds–Kac–Moody [1]. Soient λ, μ des poids dominants et $\tau \in T$. Soit α^{\vee} une coracine positive réelle telle que $\alpha^{\vee}(\tau\lambda) < 0$. Il est relativement facile d'en déduire [3, Lemma 2.2.7] que $\alpha^{\vee}(\tau\mu) \leq 0$.

Le résultat principal (voir Théorème 3.1) de cette note est de montrer que $\alpha^{\vee}(\tau\mu) < 0$, lorsque τ est donné par une suite de Bruhat associée à μ , c'est-à-dire par les formules (1), (2). Ceci est utilisé dans le modèle des chemins de Littelmann [3, 7.3.8]. Les ingrédients principaux de la preuve sont le lemme de substitution [2, 5.3.2] pour *T* et une décomposition réduite dominante [2, 2.2.6] pour τ . On peut trouver une esquisse de preuve de ce théorème dans la version ameliorée [3, Lemma 7.3.7] non publiée de [2].

http://dx.doi.org/10.1016/j.crma.2016.06.004

E-mail addresses: anthony.joseph@weizmann.ac.il (A. Joseph), polyxeni.lamprou@weizmann.ac.il (P. Lamprou).

¹ The first author was supported in part by the Binational Science Foundation, Grant No. 711628.

¹⁶³¹⁻⁰⁷³X/© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

1.1. The Borcherds-Weyl semi-group

In a recent paper [2], we extended the Littelmann path model to the case of integrable highest weight modules for a Borcherds–Kac–Moody algebra g.

Recall [1] that \mathfrak{g} is constructed from a vector space \mathfrak{h} and a Cartan matrix expressed in the form $\alpha_i^{\vee}(\alpha_j)$, where the α_i^{\vee} are linearly independent elements of \mathfrak{h} and the α_j are linearly independent elements of \mathfrak{h}^* . The latter form the set Π of simple roots for the pair $(\mathfrak{g}, \mathfrak{h})$. The set Π is a disjoint union of a subset of Π_{re} of "real" simple roots defined by the condition that $\alpha^{\vee}(\alpha) = 2$ and a subset of "imaginary" simple roots Π_{im} defined by the condition that $\alpha^{\vee}(\alpha) \in -\mathbb{N}$.

For all $\alpha \in \Pi$, one defines a linear automorphism of \mathfrak{h}^* by $r_{\alpha}\lambda = \lambda - \alpha^{\vee}(\lambda)\alpha$.

We call the semigroup *T* generated by the $r_{\alpha} : \alpha \in \Pi$, the Borcherds–Weyl semigroup. The $r_{\alpha} : \alpha \in \Pi_{re}$ are reflections and are so involutive. They generate a Weyl subgroup *W* of *T*. The $r_{\alpha} : \alpha \in \Pi_{im}$ are of infinite order (yet invertible). In Section 2, we denote by r_i a simple reflection and more generally, in Section 3, an element of $\{r_{\alpha} : \alpha \in \Pi\}$.

1.2. The Littelmann path model

The extension of the Littelmann path model to the Borcherds case introduced in [2] requires a fairly extensive study of T. This was carried out in [2]. In this, there were some points not fully attended to. This led to a corrected version of [2] which appeared only in the arXiv [3].

The aim of this note is to give a detailed proof of [3, Lemma 7.3.7], which we believe is a quite non-trivial result of independent interest and which is as yet unpublished. It results from the exchange lemma when W = T. Otherwise, the proof is significantly more difficult using several results from [2] concerning *T*. We also note in 3.7 the independence of the second joining condition [2, 7.3.3 (2)] on changes of paths.

1.3. Distance

Let Δ (resp. Δ^+) denote the set of non-zero (resp. positive) roots [2, 2.1.2, 2.1.4] and P^+ the set of dominant weights [2, 2.1.3] of \mathfrak{g} relative to Π . Set $\Delta_{re} := W \Pi_{re}$, $\Delta_{re}^+ := \Delta_{re} \cap \Delta^+$, $\Delta_{im} = W \Pi_{im}$. One has $\Delta_{im} \subset \Delta^+$. For all $\beta \in W \Pi$, let β^{\vee} denote the corresponding coroot [2, 2.1.9].

Fix $\lambda \in P^+$. For certain pairs $\mu, \nu \in T\lambda$ one may define [3, 5.1.1] the distance dist (μ, ν) between them. If dist $(\mu, \nu) = 1$, then there exists $\beta \in W \Pi \cap \Delta^+$ such that $\beta^{\vee}(\mu) > 0$ with $\nu = r_{\beta}\mu$. In this case, we write $\mu \stackrel{\beta}{\leftarrow} \nu$. If dist $(\mu, \nu) = t \in \mathbb{N}$, then we may write

$$\mu := \mu_t \stackrel{\beta_t}{\leftarrow} \mu_{t-1} \stackrel{\beta_{t-1}}{\leftarrow} \cdots \stackrel{\beta_2}{\leftarrow} \mu_1 \stackrel{\beta_1}{\leftarrow} \mu_0 =: \nu, \tag{1}$$

and moreover there are no strictly longer such sequences. We denote such a sequence, called a Bruhat sequence, by (β) . Set

$$\tau_{(\beta)} = r_{\beta_1} r_{\beta_2} \cdots r_{\beta_t},\tag{2}$$

written simply as τ .

One has $\nu = \tau \mu$. Set $\tau_i := r_{\beta_i} r_{\beta_{i+1}} \cdots r_{\beta_t} : i = 1, 2, \dots, t, \tau_{t+1} = Id$. Notice that (1) implies that $\beta_i^{\vee}(\tau_{i+1}\mu) > 0$, for all $i = 1, 2, \dots, t$.

Given $\tau \in T$, let $\ell(\tau)$ denote its reduced length.

2. The substitution theorem for W

In this section we assume W = T.

2.1. If $\mu \in P^+$, one can give an interpretation of dist (μ, ν) in terms of τ defined by (1), (2) above. Note first that $\nu \in W \mu$ with $\mu \in P^+$, implies that $\mu - \nu \in \mathbb{N}\Pi$. Let $o(\mu - \nu)$ denote the sum of the coefficients of $\mu - \nu$ written as a sum of simple roots.

Lemma. Assume $\mu \in P^+$ and $\nu \in W \mu$. Then there exist $t' \in \mathbb{N}$ and a sequence of simple roots $\alpha_1, \alpha_2, \ldots, \alpha_{t'}$ such that

$$\alpha_i^{\vee}(r_{i-1}\dots r_1\nu) < 0,$$

with $r_{t'}r_{t'-1} \dots r_1 \nu = \mu$. Moreover $\tau' := r_1 r_2 \dots r_{t'}$ is a reduced decomposition.

Proof. Since $v \in W\mu$, then $v = \mu$ if $v \in P^+$. Otherwise there is a simple root α_1 such that $\alpha_1^{\vee}(v) < 0$. Then $o(\mu - r_1v) < o(\mu - v)$ and the proof of the first part proceeds by induction on $o(\mu - v)$. The last part follows from (3). \Box

(3)

2.2. Retain the notation of 2.1.

Proposition. Assume $\mu \in P^+$ and $\nu \in W \mu$. Suppose dist $(\mu, \nu) = t$ and define $\tau \in W$ as in (2) and τ' following (3). Then $\tau = \tau'$ and $\ell(\tau) = t' = t$.

Proof. Adopt the notation of (1) and of Lemma 2.1.

By (3) and the definition of dist it follows that $t' \leq t$. Observe that

$$\tau \mu = r_{\beta_1} r_{\beta_2} \dots r_{\beta_r} \mu = r_1 r_2 \dots r_{t'} \mu = \tau' \mu.$$
(4)

Then by (1) we obtain $\beta_1^{\vee}(v) = \beta_1^{\vee}(r_1r_2...r_{t'}\mu) < 0$ and so $r_{t'}...r_1\beta_1 \in -\Delta^+$. Yet $\beta_1 \in \Delta^+$, so there exists $i|t' > i \ge 1$ maximal such that $r_i...r_1\beta_1 \in \Delta^+$. This forces $r_i...r_1\beta_1 = \alpha_{i+1}$. Thus $r_{\beta_1} = r_1r_2...r_ir_{i+1}r_i...r_1$. Substitution in $v = r_{\beta_1}...r_{\beta_\ell}\mu$ gives

$$r_{\beta_2}r_{\beta_3}\dots r_{\beta_t}\mu = r_{\beta_1}\nu = r_{\beta_1}r_1r_2\dots r_{t'}\mu = r_1r_2\dots r_ir_{i+2}r_{i+3}\dots r_{t'}\mu.$$
(4')

In the passage from (4) to (4'), we did not use (3) (only (1)). Thus we may repeat this step to obtain $r_{\beta_{t-t'}} \dots r_{\beta_t} \mu = \mu$. Yet the left-hand side must be dominant and so this forces t - t' = 0. Then $\tau' = \tau$, through induction on t using (1), (4') and formula for r_{β_t} . On the other hand, $\ell(\tau') = t'$ by the last part of Lemma 2.1. \Box

2.3. Retain the notation of 2.1 and 2.2. For all $w \in W$, set $S(w) := \{\beta \in \Delta^+ | w\beta \in -\Delta^+\}$.

Corollary. Assume $\mu \in P^+$ and $\nu \in W \mu$. Define $\tau \in W$ as in (2). Take $\lambda \in P^+$ and $\alpha \in \Delta^+$ such that $\alpha^{\vee}(\tau \lambda) < 0$. Then $\alpha^{\vee}(\tau \mu) < 0$.

Proof. By the hypothesis and Proposition 2.2, one obtains $\alpha \in S(\tau^{-1}) = S(\tau'^{-1})$. Thus there exists $i \in \{1, 2, ..., t\}$ such that $\alpha = r_1 r_2 \dots, r_{i-1} \alpha_i$. Then $\alpha^{\vee}(\tau \mu) = \alpha_i^{\vee}(r_i \dots r_t \mu) = \alpha_i^{\vee}(r_{i-1} \dots r_t \nu)$ and so the assertion follows from (3). \Box

3. The substitution theorem in the general case

3.1.

Theorem. Take λ , $\mu \in P^+$ and $\nu \in T\mu$. Suppose dist $(\mu, \nu) = t$ and adopt the notation of (1), (2). If $\alpha^{\vee}(\tau\lambda) < 0$ for some $\alpha \in \Delta_{re}^+$, then $\alpha^{\vee}(\tau\mu) < 0$.

The proof of the theorem is given in the following sections. One may already remark that conclusion $\alpha_i^{\vee}(\tau \mu) \leq 0$ results from [3, Lemma 2.2.7]. This is a more general (and easy) result, which does not need that the special form of τ by taking it to be given by (1), (2).

3.2. Take $\tau \in T$. It is clear that τ may be written in the form

$$\tau = w_0 r_{i_1} w_1 \cdots w_{k-1} r_{i_k} w_k \colon w_j \in W, \, \alpha_{i_j} \in \Pi_{\rm im}, \, \forall j \in \{0, 1, \dots, k\}.$$
(5)

We say that (5) is a reduced expression for τ if $\ell(\tau) = k + \sum_{i=0}^{k} \ell(w_i)$.

We say that (5) is a dominant reduced expression if τ is reduced and successively the $\ell(w_k)$, $\ell(w_{k-1})$, ..., $\ell(w_0)$ take their minimal values. As noted in [2, 2.2.4, 2.2.6] this is attained by successively taking for j = k, k - 1, ..., 1, the simple reflections r_u for which $\ell(r_u w_i) < \ell(w_i)$ and $r_{i_i} r_u = r_u r_{i_i}$, to the left.

Observe that a dominant reduced expression defines an ordered set of simple imaginary roots, namely $(\alpha_{i_1}, \alpha_{i_2}, ..., \alpha_{i_k})$. By [2, Lemma 2.2.3] a dominant reduced expression has the property that for all $\mu \in P^+$ and for all i = 1, 2, ..., k, the sub-expression $r_{i_i} w_i \cdots w_{k-1} r_{i_k} w_k \mu$ of $w_0 r_{i_1} w_1 \cdots w_{k-1} r_{i_k} w_k \mu$ lies in P^+ .

3.3. Retain the above notation and hypotheses. Let us write $\tau^* = r_{i_1}w_1 \cdots w_{k-1}r_{i_k}w_k$ and w_0 simply as w. Then $\mu^* := \tau^* \mu \in P^+$ and $\nu = w \mu^*$.

Lemma. Either the conclusion of the theorem holds or it may be reduced to showing that its conclusion holds when $w \in \operatorname{Stab}_W \mu^*$.

Proof. The proof is analogous to that of Proposition 2.2.

By Lemma 2.1 we may choose $\alpha_1, \alpha_2, \ldots, \alpha_{t'} \in \Pi_{\text{re}}$ such that $w' = r_1 r_2 \ldots r_{t'}$ satisfies $v = w' \mu^* = w \mu^*$ and that (3) holds. Then $w'' := w'^{-1} w \in \text{Stab}_W \mu^*$. Set $w'_i = r_1 r_2 \ldots r_{i-1}$. Then $\gamma_i := w'_i \alpha_i \in \Delta^+$ and $w'^{-1} \gamma_i = r_{t'} \ldots r_i \alpha_i \in -\Delta^+$ by the last part of Lemma 2.1. Thus $S(w'^{-1}) = \{\gamma_i : i = 1, 2, \ldots, t'\}$.

On the other hand, $\alpha_1^{\vee}(\tau\mu) < 0$ and $\alpha_1^{\vee}(\mu) \ge 0$. By the exchange lemma [2, Lemma 5.3.2] for *T*, it follows that α_1 is equal to β_k for some *k* with $1 \le k \le t$. We can assume *k* minimal with this property.

Then

 $\alpha_1^{\vee}(\mu_k) > 0, \alpha_1^{\vee}(\mu_{k-1}) < 0.$

Set $\beta'_s := r_1 \beta_s$, for all s = 1, 2, ..., k - 1; they are positive roots by the minimality of k. Then $(\beta'_s)^{\vee}(r_{\beta'_{s+1}} \cdots r_{\beta'_k} \mu_k) = \beta_s^{\vee}(\mu_s) > 0$ and $\tau \mu = r_1 r_{\beta'_1} \cdots r_{\beta'_k} \mu = r_1 r_2 \cdots r_{t'} \mu^*$. Thus we may cancel r_1 and obtain

 $r_{\beta'_1}\cdots r_{\beta'_{k-1}}r_{\beta_{k+1}}\cdots r_{\beta_\ell}\mu=r_2\cdots r_{t'}\mu^*.$

Repeating this constructive gives $v = \mu^* = w'' \mu^*$, with dist $(\mu, v) = t - t'$.

Now take $\alpha \in \Delta_{re}^+$ as in the hypothesis of the theorem.

If $\alpha \in S(w'^{-1})$, then there exists $i \in \{1, 2, ..., t'\}$ such that $\alpha = \gamma_i$. Then $\alpha^{\vee}(\nu) = (w'_i \alpha_i)^{\vee}(\nu) < 0$ by (3), and we are done.

If $\alpha \notin S(w'^{-1})$, then $\alpha' := w'^{-1}\alpha \in \Delta_{\text{re}}^+$ and $\alpha'^{\vee}(w''\tau^*\lambda) = \alpha^{\vee}(\tau\lambda) < 0$, whilst $w'' \in \text{Stab}_W \mu^*$. \Box

3.4. Retain the notation and hypotheses of the first paragraph of 3.3.

Lemma. Suppose $\nu = w \mu^* = \mu^*$. Then $\beta_1 \in \Pi_{im}$. Moreover the hypothesis of the theorem holds with τ replaced by $\tau_2 := r_{\beta_2} \cdots r_{\beta_t}$.

Proof. Since $\nu \in P^+$, the first part follows from [2, Lemma 6.3.4]. On the other hand, $\alpha^{\vee}(\tau\lambda) < 0$ and so $\tau\lambda \notin P^+$. Yet $r_{\beta_1}P^+ \subset P^+$ by [2, 2.2.3], since $\beta_1 \in \Pi_{\text{im}}$. Thus $\tau_2\lambda \notin P^+$, so the reduced dominant expression of τ_2 can be written as $\tau_2 = w_0\tau^{**}$ with $\tau^{**}\eta \in P^+$ for all $\eta \in P^+$ and $w_0 \in W \setminus \{\text{Id}\}$. Then by [2, Lemma 2.2.3] we can write $w_0 = w'_0w''_0$ where lengths add, $w'_0 \in W \setminus \{\text{Id}\}$, commutes with r_{β_1} and $r_{\beta_1}w''_0\tau^{**}\eta \in P^+$, for all $\eta \in P^+$. Finally $\tau = w'_0r_{\beta_1}w''_0\tau^{**}$.

It follows that $w'_0 \in \operatorname{Stab}_W \mu^*$ and since $\alpha^{\vee}(\tau\lambda) < 0$, that $\alpha \in S(w'_0^{-1})$. This last inclusion implies that α can be written as a sum of the roots in Π_{re} such the corresponding reflections occur in w'_0 . However, each of these reflections commutes with r_{β_1} and so the corresponding coroots vanish on β_1 . In particular $\alpha^{\vee}(\beta_1) = 0$. We conclude that $\alpha^{\vee}(\tau_2\lambda) = \alpha^{\vee}(\tau\lambda) < 0$. This completes the proof of the lemma. \Box

3.5. The proof of the theorem is completed by induction on *t*. It is trivial for t = 0 as $\lambda \in P^+$ and so there can be no $\alpha \in \Delta_{re}^+$ satisfying its hypothesis. Then by Lemma 3.3 either the conclusion of the theorem holds for *t* or by the same lemma and the next, it is reduced to the case when *t* is decreased by 1.

3.6. The conclusion of Theorem 3.1 is used in [3, Lemma 7.3.8].

3.7. The proof of the theorem shows (as in the case W = T) that $dist(\mu, \nu) = \ell(\tau)$. More interestingly, we can replace (β) by a Bruhat sequence (β') of the same length with only simple roots and indeed those given by a dominant reduced expression for τ . In this, let $i_1 < i_2 < \ldots < i_k$ be such that $\{\beta_{i_s}\}_{s=1}^k$ are the positive imaginary roots occurring in $\{\beta_i\}_{i=1}^t$; in particular, $\beta_{i_s} \in W\alpha_{i_s}$, for some unique $\alpha_{i_s} \in \Pi_{\text{im}}$. Then $r_{i_s} = r_{\alpha_{i_s}}$, for all $s = 1, 2, \ldots, k$, in the dominant reduced expression for τ .

Observe that in the passage from (β) to (β') the values of $\beta_{i_s}^{\vee}(\tau_{i_s+1}\mu): s = 1, 2, ..., k$ do not change. This shows that the joining condition [2, 7.3.3 (2)] is independent of the choice of the Bruhat sequence linking the pair (μ , ν), given that the order of the imaginary roots is not changed. We do not need more than this because the operations on Bruhat sequences performed in [2,3] involve only changing (β) by W translates of its elements.

Yet it is an open question as to whether two dominant reduced expressions of a given element of *T* can admit differing sequences of imaginary roots (apart from interchanging adjacent simple imaginary roots α , α' for which $\alpha^{\vee}(\alpha') = 0$). This is a delicate question involving the nature of the relations in *T*.

References

- [1] R.E. Borcherds, Generalized Kac-Moody algebras, J. Algebra 115 (2) (1988) 501-512.
- [2] A. Joseph, P. Lamprou, A Littelmann path model for crystals of generalized Kac-Moody algebras, Adv. Math. 221 (6) (2009) 2019–2058.
- [3] A. Joseph, P. Lamprou, A Littelmann path model for crystals of generalized Kac-Moody algebras revisited, arXiv:0804.1485.