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A result concerning Bruhat sequences for a Borcherds–Kac–Moody algebra is established. It 
is needed for the Littelmann path model. For a Kac–Moody Lie algebra, it is a consequence 
of the exchange lemma. In the present framework, the proof is more complex.
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r é s u m é

Un résultat pour les suites de Bruhat est établi dans le cadre d’une algèbre de Borcherds–
Kac–Moody. Il est nécessaire au modèle des chemins de Littelmann. Pour une algèbre de 
Kac–Moody, c’est une conséquence du lemme de substitution. Dans le cadre actuel, la 
démonstration est plus complexe.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Soit T le semi-groupe de Borcherds–Weyl associé à une algèbre de Borcherds–Kac–Moody [1]. Soient λ, μ des poids 
dominants et τ ∈ T . Soit α∨ une coracine positive réelle telle que α∨(τλ) < 0. Il est relativement facile d’en déduire 
[3, Lemma 2.2.7] que α∨(τμ) ≤ 0.

Le résultat principal (voir Théorème 3.1) de cette note est de montrer que α∨(τμ) < 0, lorsque τ est donné par une 
suite de Bruhat associée à μ, c’est-à-dire par les formules (1), (2). Ceci est utilisé dans le modèle des chemins de Littelmann 
[3, 7.3.8]. Les ingrédients principaux de la preuve sont le lemme de substitution [2, 5.3.2] pour T et une décomposition 
réduite dominante [2, 2.2.6] pour τ . On peut trouver une esquisse de preuve de ce théorème dans la version ameliorée 
[3, Lemma 7.3.7] non publiée de [2].
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1. Introduction

1.1. The Borcherds–Weyl semi-group

In a recent paper [2], we extended the Littelmann path model to the case of integrable highest weight modules for a 
Borcherds–Kac–Moody algebra g.

Recall [1] that g is constructed from a vector space h and a Cartan matrix expressed in the form α∨
i (α j), where the 

α∨
i are linearly independent elements of h and the α j are linearly independent elements of h∗ . The latter form the set �

of simple roots for the pair (g, h). The set � is a disjoint union of a subset of �re of “real” simple roots defined by the 
condition that α∨(α) = 2 and a subset of “imaginary” simple roots �im defined by the condition that α∨(α) ∈ −N.

For all α ∈ �, one defines a linear automorphism of h∗ by rαλ = λ − α∨(λ)α.
We call the semigroup T generated by the rα : α ∈ �, the Borcherds–Weyl semigroup. The rα : α ∈ �re are reflections 

and are so involutive. They generate a Weyl subgroup W of T . The rα : α ∈ �im are of infinite order (yet invertible). In 
Section 2, we denote by ri a simple reflection and more generally, in Section 3, an element of {rα : α ∈ �}.

1.2. The Littelmann path model

The extension of the Littelmann path model to the Borcherds case introduced in [2] requires a fairly extensive study 
of T . This was carried out in [2]. In this, there were some points not fully attended to. This led to a corrected version of [2]
which appeared only in the arXiv [3].

The aim of this note is to give a detailed proof of [3, Lemma 7.3.7], which we believe is a quite non-trivial result of 
independent interest and which is as yet unpublished. It results from the exchange lemma when W = T . Otherwise, the 
proof is significantly more difficult using several results from [2] concerning T . We also note in 3.7 the independence of the 
second joining condition [2, 7.3.3 (2)] on changes of paths.

1.3. Distance

Let � (resp. �+) denote the set of non-zero (resp. positive) roots [2, 2.1.2, 2.1.4] and P+ the set of dominant weights 
[2, 2.1.3] of g relative to �. Set �re := W �re, �+

re := �re ∩ �+ , �im = W �im. One has �im ⊂ �+ .
For all β ∈ W �, let β∨ denote the corresponding coroot [2, 2.1.9].
Fix λ ∈ P+ . For certain pairs μ, ν ∈ T λ one may define [3, 5.1.1] the distance dist(μ, ν) between them. If dist(μ, ν) = 1, 

then there exists β ∈ W � ∩�+ such that β∨(μ) > 0 with ν = rβμ. In this case, we write μ 
β← ν . If dist(μ, ν) = t ∈N, then 

we may write

μ := μt
βt← μt−1

βt−1← ·· · β2← μ1
β1← μ0 =: ν, (1)

and moreover there are no strictly longer such sequences. We denote such a sequence, called a Bruhat sequence, by (β).
Set

τ(β) = rβ1 rβ2 · · · rβt , (2)

written simply as τ .
One has ν = τμ. Set τi := rβi rβi+1 · · · rβt : i = 1, 2, . . . , t, τt+1 = Id. Notice that (1) implies that β∨

i (τi+1μ) > 0, for all 
i = 1, 2, . . . , t .

Given τ ∈ T , let 	(τ ) denote its reduced length.

2. The substitution theorem for W

In this section we assume W = T .

2.1. If μ ∈ P+ , one can give an interpretation of dist(μ, ν) in terms of τ defined by (1), (2) above. Note first that ν ∈ W μ
with μ ∈ P+ , implies that μ − ν ∈ N�. Let o(μ − ν) denote the sum of the coefficients of μ − ν written as a sum of simple 
roots.

Lemma. Assume μ ∈ P+ and ν ∈ W μ. Then there exist t′ ∈N and a sequence of simple roots α1, α2, . . . , αt′ such that

α∨
i (ri−1 . . . r1ν) < 0, (3)

with rt′rt′−1 . . . r1ν = μ. Moreover τ ′ := r1r2 . . . rt′ is a reduced decomposition.

Proof. Since ν ∈ W μ, then ν = μ if ν ∈ P+ . Otherwise there is a simple root α1 such that α∨
1 (ν) < 0. Then o(μ − r1ν) <

o(μ − ν) and the proof of the first part proceeds by induction on o(μ − ν). The last part follows from (3). �
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2.2. Retain the notation of 2.1.

Proposition. Assume μ ∈ P+ and ν ∈ W μ. Suppose dist(μ, ν) = t and define τ ∈ W as in (2) and τ ′ following (3). Then τ = τ ′ and 
	(τ ) = t′ = t.

Proof. Adopt the notation of (1) and of Lemma 2.1.
By (3) and the definition of dist it follows that t′ ≤ t .
Observe that

τμ = rβ1 rβ2 . . . rβt μ = r1r2 . . . rt′μ = τ ′μ. (4)

Then by (1) we obtain β∨
1 (ν) = β∨

1 (r1r2 . . . rt′μ) < 0 and so rt′ . . . r1β1 ∈ −�+ . Yet β1 ∈ �+ , so there exists i|t′ >

i ≥ 1 maximal such that ri . . . r1β1 ∈ �+ . This forces ri . . . r1β1 = αi+1. Thus rβ1 = r1r2 . . . riri+1ri . . . r1. Substitution in 
ν = rβ1 . . . rβ	

μ gives

rβ2 rβ3 . . . rβt μ = rβ1ν = rβ1 r1r2 . . . rt′μ = r1r2 . . . riri+2ri+3 . . . rt′μ. (4′)
In the passage from (4) to (4′), we did not use (3) (only (1)). Thus we may repeat this step to obtain rβt−t′ . . . rβt μ = μ.
Yet the left-hand side must be dominant and so this forces t − t′ = 0. Then τ ′ = τ , through induction on t using (1), (4′)

and formula for rβ1 . On the other hand, 	(τ ′) = t′ by the last part of Lemma 2.1. �
2.3. Retain the notation of 2.1 and 2.2. For all w ∈ W , set S(w) := {β ∈ �+|wβ ∈ −�+}.

Corollary. Assume μ ∈ P+ and ν ∈ W μ. Define τ ∈ W as in (2). Take λ ∈ P+ and α ∈ �+ such that α∨(τλ) < 0. Then α∨(τμ) < 0.

Proof. By the hypothesis and Proposition 2.2, one obtains α ∈ S(τ−1) = S(τ ′ −1). Thus there exists i ∈ {1, 2, . . . , t} such that 
α = r1r2 . . . , ri−1αi . Then α∨(τμ) = α∨

i (ri . . . rtμ) = α∨
i (ri−1 . . . r1ν) and so the assertion follows from (3). �

3. The substitution theorem in the general case

3.1.

Theorem. Take λ, μ ∈ P+ and ν ∈ Tμ. Suppose dist(μ, ν) = t and adopt the notation of (1), (2). If α∨(τλ) < 0 for some α ∈ �+
re , 

then α∨(τμ) < 0.

The proof of the theorem is given in the following sections. One may already remark that conclusion α∨
i (τμ) ≤ 0 results 

from [3, Lemma 2.2.7]. This is a more general (and easy) result, which does not need that the special form of τ by taking it 
to be given by (1), (2).

3.2. Take τ ∈ T . It is clear that τ may be written in the form

τ = w0ri1 w1 · · · wk−1rik wk : w j ∈ W ,αi j ∈ �im,∀ j ∈ {0,1, . . . ,k}. (5)

We say that (5) is a reduced expression for τ if 	(τ ) = k + ∑k
i=0 	(wi).

We say that (5) is a dominant reduced expression if τ is reduced and successively the 	(wk), 	(wk−1), . . . , 	(w0) take 
their minimal values. As noted in [2, 2.2.4, 2.2.6] this is attained by successively taking for j = k, k − 1, . . . , 1, the simple 
reflections ru for which 	(ru wi) < 	(wi) and ri j ru = ruri j , to the left.

Observe that a dominant reduced expression defines an ordered set of simple imaginary roots, namely (αi1 , αi2 , . . . , αik ).
By [2, Lemma 2.2.3] a dominant reduced expression has the property that for all μ ∈ P+ and for all i = 1, 2, . . . , k, the 

sub-expression rii wi · · · wk−1rik wkμ of w0ri1 w1 · · · wk−1rik wkμ lies in P+ .

3.3. Retain the above notation and hypotheses. Let us write τ ∗ = ri1 w1 · · · wk−1rik wk and w0 simply as w . Then μ∗ :=
τ ∗μ ∈ P+ and ν = wμ∗ .

Lemma. Either the conclusion of the theorem holds or it may be reduced to showing that its conclusion holds when w ∈ StabW μ∗ .

Proof. The proof is analogous to that of Proposition 2.2.
By Lemma 2.1 we may choose α1, α2, . . . , αt′ ∈ �re such that w ′ = r1r2 . . . rt′ satisfies ν = w ′μ∗ = wμ∗ and that (3)

holds. Then w ′′ := w ′ −1 w ∈ StabW μ∗ . Set w ′
i = r1r2 . . . ri−1. Then γi := w ′

iαi ∈ �+ and w ′ −1γi = rt′ . . . riαi ∈ −�+ by the 
last part of Lemma 2.1. Thus S(w ′ −1) = {γi : i = 1, 2, . . . , t′}.

On the other hand, α∨
1 (τμ) < 0 and α∨

1 (μ) ≥ 0. By the exchange lemma [2, Lemma 5.3.2] for T , it follows that α1 is 
equal to βk for some k with 1 ≤ k ≤ t . We can assume k minimal with this property.
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Then

α∨
1 (μk) > 0,α∨

1 (μk−1) < 0.

Set β ′
s := r1βs , for all s = 1, 2, . . . , k − 1; they are positive roots by the minimality of k. Then (β ′

s)
∨(rβ ′

s+1
· · · rβ ′

k
μk) =

β∨
s (μs) > 0 and τμ = r1rβ ′

1
· · · rβ ′

k−1
rβk+1 · · · rβ	

μ = r1r2 · · · rt′μ∗ . Thus we may cancel r1 and obtain

rβ ′
1
· · · rβ ′

k−1
rβk+1 · · · rβ	

μ = r2 · · · rt′μ
∗.

Repeating this constructive gives ν = μ∗ = w ′′μ∗ , with dist(μ, ν) = t − t′ .
Now take α ∈ �+

re as in the hypothesis of the theorem.
If α ∈ S(w ′ −1), then there exists i ∈ {1, 2, . . . , t′} such that α = γi . Then α∨(ν) = (w ′

iαi)
∨(ν) < 0 by (3), and we are 

done.
If α /∈ S(w ′ −1), then α′ := w ′ −1α ∈ �+

re and α′ ∨(w ′′τ ∗λ) = α∨(τλ) < 0, whilst w ′′ ∈ StabW μ∗ . �
3.4. Retain the notation and hypotheses of the first paragraph of 3.3.

Lemma. Suppose ν = wμ∗ = μ∗ . Then β1 ∈ �im . Moreover the hypothesis of the theorem holds with τ replaced by τ2 := rβ2 · · · rβt .

Proof. Since ν ∈ P+ , the first part follows from [2, Lemma 6.3.4]. On the other hand, α∨(τλ) < 0 and so τλ /∈ P+ . Yet 
rβ1 P+ ⊂ P+ by [2, 2.2.3], since β1 ∈ �im. Thus τ2λ /∈ P+ , so the reduced dominant expression of τ2 can be written as 
τ2 = w0τ

∗∗ with τ ∗∗η ∈ P+ for all η ∈ P+ and w0 ∈ W \ {Id}. Then by [2, Lemma 2.2.3] we can write w0 = w ′
0 w ′′

0 where 
lengths add, w ′

0 ∈ W \ {Id}, commutes with rβ1 and rβ1 w ′′
0τ

∗∗η ∈ P+ , for all η ∈ P+ . Finally τ = w ′
0rβ1 w ′′

0τ
∗∗ .

It follows that w ′
0 ∈ StabW μ∗ and since α∨(τλ) < 0, that α ∈ S(w ′ −1

0 ). This last inclusion implies that α can be written 
as a sum of the roots in �re such the corresponding reflections occur in w ′

0. However, each of these reflections commutes 
with rβ1 and so the corresponding coroots vanish on β1. In particular α∨(β1) = 0. We conclude that α∨(τ2λ) = α∨(τλ) < 0. 
This completes the proof of the lemma. �

3.5. The proof of the theorem is completed by induction on t . It is trivial for t = 0 as λ ∈ P+ and so there can be no 
α ∈ �+

re satisfying its hypothesis. Then by Lemma 3.3 either the conclusion of the theorem holds for t or by the same lemma 
and the next, it is reduced to the case when t is decreased by 1.

3.6. The conclusion of Theorem 3.1 is used in [3, Lemma 7.3.8].

3.7. The proof of the theorem shows (as in the case W = T ) that dist(μ, ν) = 	(τ ). More interestingly, we can replace 
(β) by a Bruhat sequence (β ′) of the same length with only simple roots and indeed those given by a dominant reduced 
expression for τ . In this, let i1 < i2 < . . . < ik be such that {βis }k

s=1 are the positive imaginary roots occurring in {βi}t
i=1; in 

particular, βis ∈ W αis , for some unique αis ∈ �im. Then ris = rαis
, for all s = 1, 2, . . . , k, in the dominant reduced expression 

for τ .
Observe that in the passage from (β) to (β ′) the values of β∨

is
(τis+1μ) : s = 1, 2, . . . , k do not change. This shows that the 

joining condition [2, 7.3.3 (2)] is independent of the choice of the Bruhat sequence linking the pair (μ, ν), given that the 
order of the imaginary roots is not changed. We do not need more than this because the operations on Bruhat sequences 
performed in [2,3] involve only changing (β) by W translates of its elements.

Yet it is an open question as to whether two dominant reduced expressions of a given element of T can admit differing 
sequences of imaginary roots (apart from interchanging adjacent simple imaginary roots α, α′ for which α∨(α′) = 0). This 
is a delicate question involving the nature of the relations in T .
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