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Lev A. Borisov has shown that the class of the affine line is a zero divisor in the 
Grothendieck ring of algebraic varieties over complex numbers. We improve the final 
formula by removing a factor.
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r é s u m é

Lev A. Borisov a prouvé que la classe de la droite affine est un diviseur de zéro dans 
l’anneau de Grothendieck des variétés algébriques complexes. Nous améliorons la formule 
finale en supprimant un facteur.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The Grothendieck ring K0(VarC) of complex algebraic varieties is defined as the quotient of the free abelian group 
generated by the isomorphism classes [X] of complex algebraic varieties modulo the relations

[X] = [Y ] + [X \ Y ]
for all closed subvarieties Y ⊂ X . The Cartesian product of varieties gives the product structure.

The class L = [A1(C)] of the affine line has a major role in the study of the Grothendieck ring. It has been proved in [2]
that X and Y are stably birational if and only if their classes [X] and [Y ] are equal modulo L. After Bjorn Poonen had 
shown in [3] that K0(VarC) is not a domain, Lev Borisov has clarified this result in [1] by showing that L is a zero divisor. 
He has compared the two sides [XW ] and [Y W ] of the Pfaffian–Grassmannian double mirror correspondence, and obtained 
the following formula:

([XW ] − [Y W ]) · (L2 − 1) · (L− 1) ·L7 = 0.
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This result is not only an improvement of that of Poonen: it is crucial in motivic integration to understand the kernel 
of the localization morphism K0(VarC) → K0(VarC)[L−1], since we consider classes in the localized ring. In this paper, we 
improve this formula as follows.

Theorem 1.1. ([XW ] − [Y W ]) ·L6 = 0.

2. The class of Grasmannians

Proposition 2.1. For 2 ≤ k < n, we have the relation

[G(k,n)] = [G(k,n − 1)] +L
n−k · [G(k − 1,n − 1)].

Proof. Let e1, ..., en be the canonical basis of Cn , F the hyperplane orthogonal to en , U ⊂ G(k, n) the open subset defined by 
{T ∈ G(k, n) | dim(T ∩ F ) = k − 1} and π : U → G(k − 1, F ) the regular mapping that sends T on T ∩ F . For S ∈ G(k − 1, F ), 
the fiber π−1(S) can be identified with

P(Cn/S) \ P(F/S) � A
n−k.

Let H be a complementary subspace of S in F and the open subset V = {S ′ ∈ G(k − 1, F ) | S ′ ⊕ H = F }. For all S ′ ∈ V , we 
have the identification Cn/S ′ � H ⊕ Cen , hence π is a trivial fibration over V . Consequently, π is a locally trivial fibration, 
therefore [U ] = L

n−k · [G(k − 1, n − 1)]. We have [G(k, n)] = [Z ] + [U ] with Z = G(k, n) \ U = {T ∈ G(k, n) | T ⊂ F } = G(k, F ), 
which shows the announced formula. �

A simple induction gives the following formulas for n ≥ 4:

[G(2,n)] =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
P

n−2
]
·
(n−2)/2∑

k=0

L
2k if n is even

[
P

n−1
]
·
(n−3)/2∑

k=0

L
2k if n is odd.

For example, [G(2, 5)] = [P4] · (L2 + 1) and [G(2, 7)] = [P6] · (L4 +L
2 + 1).

3. Improvement of Borisov’s formula

3.1. Pfaffian and Grassmannian double mirror varieties

Let V be a 7-dimensional complex vector space and W a generic 7-dimensional space of skew forms on V . We define 
XW as a subvariety of the Grassmannian G(2, V ), which is the locus of all T ∈ G(2, V ) with ω|T = 0 for all ω ∈ W , and 
Y W as a subvariety of PW of skew forms whose rank is less than 6. Smoothness of these two varieties has been shown by 
E. Rødland in [4]. Furthermore, we know that all forms in Y W have rank 4 and all forms in PW \ Y W have rank 6.

3.2. The formula

Let us define H as a subvariety of G(2, V ) × PW that consists of pairs (T , Cω) with ω|T = 0. In order to obtain the 
explicit equations that define H , let us set T0 ∈ G(2, V ) with basis e1, e2 and H a complementary subspace with basis 
e3, ..., e7. The neighborhood U = {T ∈ G(2, V ) | T ⊕ H = V } of T0 can be identified with L (T0, H) by considering the map 
f ∈ L (T0, H) �→ {x + f (x) | x ∈ T0} ∈ U . If we set ( f i, j)(i, j)∈{1,2}×{3,...,7} the basis of L (T0, H) adapted to the two bases 
previously considered, we can identify T ∈ U with {x + ∑

αi, j f i, j(x) | x ∈ T0}. Now, for ω = ∑7
i=1 βiωi ∈ W , the condition 

ω|T = 0 can be expressed as

7∑
i=1

βiωi

⎛
⎝e1 +

7∑
j=3

α1, je j, e2 +
7∑

j=3

α2, je j

⎞
⎠ = 0.

Looking at the projections onto the two factors G(2, V ) and PW will give us two ways to express [H]. Theorem 1.1 will 
be a direct consequence of the two next propositions.
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Proposition 3.1. [H] = [P6] · (L4 +L
2 + 1) · [P5] + [XW ] ·L6 .

Proof. Considering the projection p : H → G(2, V ) onto the first factor, which is a trivial fibration in restriction to p−1(XW )

and a locally trivial fibration in restriction to G(2, V ) \ p−1(XW ), Proposition 2.4 of [1] proves that

[H] = [G(2,7)] · [P5] + [XW ] ·L6.

The expression [G(2, 7)] = [P6] · (L4 +L
2 + 1) gives the result. �

Proposition 3.2. [H] = [Y W ] ·L6 + [P6] · [P5] · (L4 +L
2 + 1).

Lemma 3.3. Let π : H → PW be the projection onto the second factor. Its restrictions to π−1(Y W ) and π−1(PW \ Y W ) are piecewise 
trivial fibrations (see 4.2.1 in [5]).

Proof of the lemma. The reasoning is the same for rank 4 (Y4 = Y W ) and rank 6 (Y6 = PW \ Y W ). For i ∈ {4, 6}, let us set

Zi = π−1(Yi) = H ∩ (G(2, V ) × Yi).

In order to have piecewise triviality of π on Zi , it suffices, according to Theorem 4.2.3 in [5], to prove that there exists a 
uniform fiber Fi such that for all x ∈ Yi ,

Zi ×Yi {x} � Fi ×C Spec(κ(x)).

To achieve this, it suffices to note that a skew form of rank 4 or 6 with coefficients in a field K ⊃ C is congruent with the 
skew form⎛

⎝ 0 I2 0
−I2 0 0

0 0 0

⎞
⎠ or

⎛
⎝ 0 I3 0

−I3 0 0
0 0 0

⎞
⎠

with a base change having coefficients in K , an action that spreads on fibers. �
Lemma 3.4. Let Cω ∈ Y W be a closed point. Then the class of its fiber is

[π−1(Cω)] = [P5] · (L4 +L
2 + 1) +L

6.

Proof. As rk(ω) = 4, there exists a basis e1, ..., e7 of V in which the matrix of ω is⎛
⎝ 0 I2 0

−I2 0 0
0 0 0

⎞
⎠ .

Denote F = Vect{e3, ..., e7} and H = F ⊕Ce2. We have

[π−1(Cω)] = [{T ∈ G(2, V ) | ω|T = 0}] = [{T ∈ G(2, H) | ω|T = 0}] + [U ]
where U is the open subset {T ∈ G(2, V ) | dim(T ∩ H) = 1, ω|T = 0}, with the locally trivial fibration π : U → PH = P

5. 
Note that ker(ω) = Vect{e5, e6, e7} ⊂ H and ker(ω|H ) = ker(ω) ⊕Ce3 ⊂ H .

Let D =Ce ∈ PH . There are three cases.

• First case: D ⊂ ker(ω). We have

[π−1(D)] = [{C f ∈ P(V /D) | ω( f , e) = 0}] − [{C f ∈ P(H/D) | ω|H ( f , e) = 0}]
= [P5] − [P4] = L

5.

• Second case: D ⊂ ker(ω) and D ⊂ ker(ω|H ). In this case π−1(D) = ∅, because

{C f ∈ P(V /D) | ω( f , e) = 0} = {C f ∈ P(H/D) | ω|H ( f , e) = 0}.
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• Third case: D ⊂ ker(ω|H ). We have

[π−1(D)] = [{C f ∈ P(V /D) | ω( f , e) = 0}] − [{C f ∈ P(H/D) | ω|H ( f , e) = 0}]
= [P4] − [P3] = L

4.

Consequently

[U ] = [Pker(ω)] ·L5 + ([PH] − [Pker(ω|H )]) ·L4

= [P2] ·L5 + ([P5] − [P3]) ·L4

= ([P5] − 1) ·L4.

We can repeat the argument with H . As ω|F = 0, we have

[{T ∈ G(2, H) | ω|T = 0}] = [{T ∈ G(2, F ) | ω|T = 0}] + [Pker(ω|H )] ·L4

= [G(2,5)] + [P3] ·L4

= [P4] · (L2 + 1) + [P3] ·L4.

Finally, we get

[π−1(Cω)] = ([P5] − 1) ·L4 + [P4] · (L2 + 1) + [P3] ·L4

= ([P5] − 1) ·L4 + ([P5] −L
5) · (L2 + 1) + (L3 +L

2 +L+ 1) ·L4

= [P5] · (L4 +L
2 + 1) +L

6. �
A similar calculation gives the following result.

Lemma 3.5. Let Cω ∈ PW \ Y W be a closed point. Then the class of its fiber is

[π−1(Cω)] = [P5] · (L4 +L
2 + 1).

Proof of Proposition 3.2. Let Cω1 ∈ Y W and Cω2 ∈ PW \ Y W be two closed points. Lemma 3.3 implies that{ [π−1(Y W )] = [Y W ] · [π−1(Cω1)]
[π−1(PW \ Y W )] = ([PW ] − [Y W ]) · [π−1(Cω2)],

and consequently

[H] = [Y W ] · [π−1(Cω1)] + ([PW ] − [Y W ]) · [π−1(Cω2)].
Using Lemmas 3.4 and 3.5, we have

[H] = [Y W ] · ([P5] · (L4 +L
2 + 1) +L

6) + ([P6] − [Y W ]) · [P5] · (L4 +L
2 + 1)

= [Y W ] ·L6 + [P6] · [P5] · (L4 +L
2 + 1),

which concludes the proof. �
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