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We prove the consistency of an adaptive importance sampling strategy based on biasing 
the potential energy function V of a diffusion process dX0

t = −∇V (X0
t )dt + dWt ; for 

the sake of simplicity, periodic boundary conditions are assumed, so that X0
t lives 

on the flat d-dimensional torus. The goal is to sample its invariant distribution μ =
Z−1 exp

(−V (x)
)

dx. The bias Vt − V , where Vt is the new (random and time-dependent) 
potential function, acts only on some coordinates of the system, and is designed to flatten 
the corresponding empirical occupation measure of the diffusion X in the large-time 
regime. The diffusion process writes dXt = −∇Vt(Xt)dt + dWt , where the bias Vt − V is 
function of the key quantity μt : a probability occupation measure which depends on the 
past of the process, i.e. on (Xs)s∈[0,t]. We are thus dealing with a self-interacting diffusion. 
In this note, we prove that when t goes to infinity, μt almost surely converges to μ. 
Moreover, the approach is justified by the convergence of the bias to a limit that has an 
interpretation in terms of a free energy. The main argument is a change of variables, which 
formally validates the consistency of the approach. The convergence is then rigorously 
proven adapting the ODE method from stochastic approximation.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Nous prouvons la consistance d’une méthode adaptative d’échantillonnage préférentiel, 
basée sur le biaisage du potentiel d’un processus de diffusion dX0

t = −∇V (X0
t )dt + dWt ; 

pour simplifier, des conditions au bord périodiques sont appliquées, si bien que X0
t

est à valeurs dans le tore plat d-dimensionnel. L’objectif est d’échantillonner sa mesure 
invariante μ = Z−1 exp

(−V (x)
)

dx. Le biais Vt −V , où Vt est le nouveau potentiel (aléatoire 
et dépendant du temps), n’agit que sur certaines coordonnées du système, et est construit 
de façon à rendre la mesure d’occupation empirique correspondante uniforme en temps 
long. Le processus de diffusion s’écrit dXt = −∇Vt(Xt)dt + dWt , où le biais Vt − V est 
fonction de la quantité μt : une mesure d’occupation qui dépend du passé du processus, i.e.
de (Xs)s∈[0,t]. Nous étudions ainsi un processus de diffusion en auto-interaction. Dans cette 
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note, nous prouvons la convergence presque sûre de μt vers μ quand t tend vers l’infini. De 
plus, l’approche est justifiée par la convergence du biais, vers une limite qui s’interprète en 
termes d’énergie libre. L’argument principal de la preuve est un changement de variables, 
qui formellement valide la consistance de l’approche. La convergence est alors prouvée 
rigoureusement en adaptant la méthode de l’EDO venant de l’approximation stochastique.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Computing the average μ(ϕ) = ∫
D ϕ(x)μ(dx) of a function ϕ : D → R, with respect to a probability distribution μ

defined on D ⊂ R
d , is typically a challenging task in many applications (e.g., chemistry, statistical physics, see, e.g., [5]), 

since usually d is large and μ is multimodal.
In the sequel, we assume that D = T

d = (R/Z)d is the flat d-dimensional torus, and that μ writes

μ(dx) = μβ(dx) = exp
(−βV (x)

)
Z(β)

dx, (1)

where V : Td →R is a smooth potential function, β ∈ (0, +∞) is the inverse temperature, dx denotes the Lebesgue measure 
on Td and Z(β) is a normalizing constant. In this context, the multimodality of μβ follows, in the case of so-called energetic 
barriers, from the existence of several local minima of V .

A standard approach to computing μβ(ϕ) is to consider the following SDE on Td (overdamped Langevin dynamics):

dX0
t = −∇V (X0

t )dt +
√

2β−1dWt, X0
0 = x, (2)

where 
(
W (t)

)
t≥0 is standard Brownian Motion on Td . Indeed, it is well-known that, for any continuous function ϕ : Td →R, 

almost surely

1

t

t∫
0

ϕ(X0
r )dr →

t→+∞

∫

Td

ϕ(x)μβ(dx). (3)

However, this convergence may be very slow, when β is large and V has several minima: the stochastic process X0 is then 
metastable, and hopping from the neighborhood of one local minimum of V to another is a rare event that may have a 
strong influence on the estimation of averages μβ(ϕ).

Many strategies based on importance sampling techniques – self-healing umbrella-sampling [7], well-tempered meta-
dynamics [1], Wang–Landau algorithms, adaptive biasing force, etc. – have been proposed and applied to improve the 
convergence to equilibrium of stochastic processes in order to compute approximations of μβ . We refer for instance to [6]
and references therein for a mathematical review.

In this work, we focus on an Adaptive Biasing Potential (ABP) method, given by the system (4). The method was designed 
in [4,7] for problems in chemistry, and up to our knowledge no rigorous general mathematical analysis has been performed 
so far. Precisely, in (2), V is replaced with a time-dependent and random potential function Vt , which is modified adaptively, 
using the history of the process up to time t: At depends on the values of the associated stochastic process Xr for all 0 ≤
r ≤ t . Here, Vt = V − At ◦ ξ , where, for some m ∈ {1, . . . ,d − 1}, At : Tm → R and ξ : Td → T

m is a smooth function, referred 
to as the reaction coordinate mapping. In applications, usually m ∈ {1,2,3}. To simplify further the presentation, we assume 
that ξ(x1, . . . , xd) = (x1, . . . , xm); in this case, z = (x1, . . . , xm) = ξ(x1, . . . , xd) (resp. z⊥ = (xm+1, . . . , xd)) is interpreted as the 
slow (resp. fast) variable.

The dynamics of the ABP method is given by the following system⎧⎪⎪⎨
⎪⎪⎩

dXt = −∇(
V − At ◦ ξ

)
(Xt)dt + √

2β−1 dW (t)

μt = μ0+∫ t
0 exp

(−β Ar◦ξ(Xr)
)
δXr dr

1+∫ t
0 exp

(−β Ar◦ξ(Xr)
)
dr

exp
(−β At(z)

) = ∫
Td K

(
z, ξ(x)

)
μt(dx), ∀z ∈ T

m,

(4)

where a smooth kernel function K : Tm × T
m → (0, +∞), such that 

∫
Tm K (z, ζ )dz = 1, ∀ζ ∈ T

m , is introduced to define a 
smooth function At from the distribution μt . The unknowns in (4) are the stochastic processes t �→ Xt ∈ T

d , t �→ μt ∈P(Td)

(the set of Borel probability distributions on Td , endowed with the usual topology of weak convergence of probability 
distributions), and t �→ At ∈ C∞(Tm) (the set of infinitely differentiable functions on Tm). In addition to (4), arbitrary (and 
deterministic, for simplicity) initial conditions Xt=0 = x, μt=0 = μ0 and At=0 = A0 are prescribed.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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The third equation in (4) introduces a coupling between the evolutions of the diffusion Xt and of the weighted empirical 
distribution μt : then X can be seen as a self-interacting diffusion process, like in [3].

Our main result is the consistency of the ABP approach.

Theorem 1.1. Almost surely, μt →
t→+∞ μβ , in P(Td).

With standard arguments, Theorem 1.1 yields almost sure convergence of At in Ck(Tm), for all k ∈N.

Corollary 1.2. Set exp
(−β A∞

) = ∫
K (·, ξ(x))μβ(dx). Almost surely, At →

t→+∞ A∞ , in Ck(Tm), ∀ k ∈N.

The limit A∞ is an approximation of the function known as the free energy A� (see (5)), which depends on V , β , and ξ . 
As explained in Section 2, the construction of the adaptive dynamics (4) is motivated by an efficient non-adaptive biasing 
method, (6), which depends on A� . Computing A� is the aim of many algorithms in molecular dynamics (see [6]), and 
adaptive methods are among the most used in practice. Our result, Theorem 1.1, answers positively the important question 
of the consistency of ABP method.

The remaining part of the article is organized as follows. In Section 2, we define the free-energy function A� , and explain 
why non-adaptive and adaptive biasing methods that are related to this function are interesting in the context of metastable 
dynamics (2). In Section 3, we detail the strategy for the proof of Theorem 1.1: we prove a stability estimate for At , and 
then introduce a random change of variables, based on a change of time. We are then in position to adapt the strategy of 
proof from [3] in our setting, which is based on the ODE method from stochastic approximation. The main essential role of 
the change of variables is the identification of the limit flow.

The main result (Theorem 1.1) holds in a more general setting, with appropriate modifications, than that of the present 
paper. For instance, the overdamped Langevin dynamics may be defined on the non-compact space Rd instead of Td; one 
can also consider the (hypoelliptic) Langevin dynamics, or infinite-dimensional dynamics (parabolic SPDEs). It is also possible 
to study the efficiency of the method in terms of a Central Limit Theorem. These generalizations will be studied in [2].

2. Free energy and construction of the ABP dynamics (4)

The aims of this section are to explain first how the ABP method (4), is constructed in a consistent way (the limit in 
Theorem 1.1 is μβ ); and second why it is expected to be efficient (a rigorous analysis of the efficiency is out of the scope 
of this work).

Observe that exp
(−β A∞(z)

) = ∫
Tm K (z, ζ ) exp

(−β A�(ζ, β)
)
dζ , where A�(·, β) is the free energy (at temperature β−1), 

defined by: for all z ∈ T
m

exp
(−β A�(z, β)

) =
∫

Td−m

exp
(−βV (z, z⊥)

)
Z(β)

dz⊥. (5)

Usually, K (z, ζ ) = K ε(z, ζ ) = 1
ε K̃

(
(ζ − z)/ε

)
, where ε ∈ (0, 1) and K̃ : Rm → (0, +∞) is symmetric, smooth, with compact 

support in [−1/2, 1/2]; then Aε∞ converges to A�(·, β), in C∞ . Choosing ε sufficiently small, At almost surely approximates 
the free energy A�(·, β) when t → +∞, thanks to Corollary 1.2.

Equation (5) means that exp
(−β A�(z, β)

)
dz ∈ P(Tm) is the image μβ

(
ξ−1(·)) of μβ by ξ . The free energy gives an 

effective potential along ξ , which is chosen in practice such that 
(
ξ(X0

t )
)

t≥0 is metastable; this is related to μβ

(
ξ−1(·))

being metastable, for instance when A�(·, β) has several local minima.
This is why, in many applications, computing free-energy differences A�(z1, β) − A�(z2, β) is essential, see [6]. The 

free-energy function also theoretically provides efficient importance sampling algorithms; however, these algorithms can 
only be implemented if A� is explicitly known, and adaptive strategies allow us to circumvent this practical difficulty. 
Define biased probability distribution and dynamics

μ�
β = exp

(−β
[
V (x) − A�(ξ(x),β)

])
Z(β)

dx

dX�
t = −∇[

V − A�(ξ(·),β)
]
(X�

t )dt +
√

2β−1 dW (t),

(6)

by replacing the original potential function V with the biased potential function V − A�

(
ξ(·), β)

in (1) and (2). Note that 
μ�

β is the unique invariant distribution of X� . By construction, it is easy to check that the image by ξ of μ�
β is the uniform 

distribution dz on Tm , i.e. the associated free energy is equal to 0.
Now define (unweighted) empirical distributions associated with (2) and (6) respectively:

ρ0
t = 1

t

t∫
δX0

r
dr , ρ�

t = 1

t

t∫
δX�

r
dr.
0 0
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Then, by (3), the image by ξ of ρ0
t , resp. ρ�

t , converges almost surely in P(Tm), to exp
(−β A�(z, β)

)
dz, resp. dz. Thus the 

dynamics in (6) reaches asymptotically a flat histogram property in the z = ξ(x) direction; the exploration of Tm is thus 
faster for ξ(X�) than for ξ(X0), and in turn the convergence of X� to μ�

β is expected to be faster than the convergence of 
X0 to μβ .

Finally, the construction of the ABP method (4), in particular the use of weighted empirical distributions μt , is motivated 
by the following almost sure convergence: for any continuous ϕ : Td →R,

1
t

∫ t
0 exp

(−β A�(ξ(X�
r ),β)

)
ϕ(X�

r )dr
1
t

∫ t
0 exp

(−β A�(ξ(X�
r ),β)

)
dr

→
t→+∞ μ�

β

(
ϕ exp

(−β A�(ξ(·),β)
)) = μβ(ϕ). (7)

Theorem 1.1 thus extends this consistency property from a non-adaptive (6) to an adaptive dynamics (4).

3. Proof of Theorem 1.1

In this section, we provide the main ideas of the proof of Theorem 1.1. Some technical arguments are skipped, and will 
be fully detailed in [2], in a more general framework. We first state an important property of At , and then introduce a 
change of variables, which helps us identify a more standard form for self-interacting diffusion processes. We then adapt in 
our context arguments from [3] to establish the consistency of the ABP approach thanks to the ODE method from stochastic 
approximation theory.

3.1. Properties of the ABP dynamics (4)

Our first task in the study of the ABP dynamics is to study the well-posedness of the equation, i.e. the existence of a 
unique global solution t �→ (Xt , μt , At) ∈ T

d × P(Td) × C∞(Tm). In order to apply a standard fixed point/Picard iteration 
strategy, it is essential to control the Lipschitz constant of ∇(

At ◦ ξ
)

(first equation in (4)). This key stability property is 
ensured as follows. Let m = minz,ζ∈Tm K (z, ζ ), and M(n) = maxz,ζ |∂n

z K (z, ζ )| for n ∈ {0,1}, where ∂n
z denotes the differential 

of order n, and introduce

A =
{

A ∈ C∞(Tm) | min
z∈Tm

e−β A(z) ≥ m, max
z∈Tm

|∂n
z e−β A(z)| ≤ M(n),n = 0,1

}
.

Then A is left invariant by the evolution t �→ At , i.e. A0 ∈A implies At ∈A for all t ≥ 0, almost surely.

3.2. Change of variables

The stochastic process t �→ μt , with values in P(Td), is the unique solution of the random Ordinary Differential Equation 
(ODE), interpreted in a weak sense (considering continuous bounded test functions):

dμt

dt
= θ ′(t)

1 + θ(t)

(
δXt − μt

)
, (8)

where θ(t) = ∫ t
0 exp

(−β Ar(ξ(Xr))
)
dr. The random function θ : [0, +∞) → [0, +∞) is a C1-diffeomorphism: indeed, for all 

t ≥ 0, almost surely θ ′(t) = exp
(−β At(ξ(Xt))

) ∈ [m, M]. This fundamental property allows us to apply the following change 
of variables:

s = θ(t) , t = θ−1(s) ; Ys = Xt , νs = μt , Bs = At . (9)

Observe that almost surely s = θ(t) →
t→+∞ +∞ and that t = θ−1(s) →

s→+∞ +∞. Instead of studying the asymptotic behavior 

of μt when t → +∞, it is thus equivalent to study the asymptotic behavior of ν s when s → +∞. In the new variables (9), 
the ABP dynamics (4) writes⎧⎪⎨

⎪⎩
dYs = −∇(

V − Bs ◦ ξ
)
(Ys)eβBs(ξ(Ys))ds + √

2β−1eβBs(ξ(Ys)) dW̃ (s)

νs = ν0+∫ s
0 δYr dr

1+s

exp
(−βBs(z)

) = ∫
Td K (z, ξ(x))νs(dx),

(10)

where W̃ is a new standard Brownian motion on Td , defined from W and θ . Notice that νs is a nonweighted empirical 
distribution and that s �→ νs satisfies the simpler random ODE

dνs

ds
= 1

1 + s

(
δYs − νs

)
. (11)

The change of variable (9) removes both θ(t) from (8) and weights exp
(−β At(ξ(Xt))

) = θ ′(t) from (4).
Thanks to Equation (10), an analogy with the framework of [3] can now be made. Even though we cannot directly apply 

the results therein, due to the specific form of the dynamics on Y , we follow the same strategy for the analysis of ν s when 
s → +∞: we use the ODE method.
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3.3. Application of the ODE method and sketch of proof of Theorem 1.1

The guideline of the so-called ODE approach we wish to apply is as follows: there is an asymptotic time-scale separation 
between the (fast) evolution of Ys and the (slow) evolution of νs (and of Bs). The asymptotic behavior of νs is then 
determined by a so-called limit ODE, where δYs is replaced in (11) with the unique invariant probability distribution of the 
following SDE on Td ,

dY B
s = −∇(

V − B ◦ ξ
)
(Ys)eβB(ξ(Ys))ds +

√
2β−1eβB(ξ(Ys))dW̃ (s), (12)

i.e. the first (fast) equation of (10) where the slowly varying variable Bs is frozen at an arbitrary value B ∈ A. In fact, we 
have the following fundamental result: the invariant distribution of (12) does not depend on B .

Proposition 3.1. For any smooth B :Tm → R, the unique invariant distribution of (12) is μβ .

Proposition 3.1 is essential and its proof is very simple. Indeed, introduce the generator LB
X , resp. the unique invariant 

distribution μB
β (dx) = Z B(β)−1 exp

(−β(V − B ◦ξ)(x)
)
dx, of X B , where dX B

t = −∇(
V − B ◦ξ

)
(Ys)dt +√

2β−1dW (t). Then the 
generator LB

Y of Y B defined by (12) is equal to exp
(
βB ◦ ξ

)
LB

X . Proposition 3.1 is a consequence of the following identity: 
for any smooth φ, ψ : Td → R,∫

Td

φ(y)LB
Y ψ(y)μβ(dy) =

∫

Td

φ(x)LB
Xψ(x)μB

β(dx) = 0.

We now outline the end of the proof of Theorem 1.1, adapting the arguments from [3] in our original case; details in 
a more general setting are given in [2]. The ODE method suggests us to define �(σ , s, ν) = �σ−s(ν), for any σ ≥ s and 
ν ∈ P(Td), where �s(ν) = e−sν + (1 − e−s)μβ →

s→+∞ μβ is the solution of d�s
ds = μβ − �s with �0(ν) = ν . To state (without 

proof) our last technical result, we recall that weak convergence in P(Td) is associated with the following metric

d
(
μ1,μ2) =

+∞∑
n=1

1

2n
min

(
1, |

∫

Td

fndμ1 − fndμ2|),

for a given family 
(

fn
)

n≥1 of C∞ functions, which is dense in C0(Td).

Proposition 3.2. For any S ≥ 0, almost surely �(s, S) = supσ∈[0,S] d
(
νexp(s+σ), �(σ , s, νs)

) →
s→+∞ 0, i.e. almost surely s �→ νs is an 

asymptotic pseudo-trajectory of the semi-flow �.

We refer to [3] for a proof of a similar result in a different context, and to [2] for a detailed proof in a more general 
context; the main difference between the two situations is the use of a specific Poisson equation related to the generator 
of (12).

To conclude, observe that d
(
νexp(s), μβ

) ≤ �(s − S, S) + d
(
�S(νexp(s)), μβ

)
. Letting first s, then S , go to +∞, Proposi-

tion 3.2 implies the main result of this paper, Theorem 1.1.
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