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We consider a dilute flow of granular particles passing through a nozzle under gravity. 
This setting is an analogue to high-speed nozzle flows, which is a classical problem in 
the study of compressible gases. Contrary to the widely held belief that the behavior of 
very dilute granular systems is qualitatively similar to that of gases, we show that dilute 
granular systems can exhibit a type of intermittency that has no analogue in gas dynamics.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous considérons un flux dilué de particules granulaires passant par un tube d’injection 
sous l’action de la gravité. Ce problème est similaire à celui d’un écoulement de flux à 
grande vitesse, ce qui constitue un problème classique dans l’étude des gaz compressibles. 
Contrairement à l’idée très répandue que le comportement des systèmes granulaires très 
dilué est qualitativement semblable à celui des gaz, nous montrons que les systèmes dilués 
granulaires peuvent présenter un type d’intermittences qui n’a pas d’analogue dans la 
dynamique des gaz.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and formulation

Granular flows exhibit rich phenomena in their dynamic behaviors due to unique and complicated particle interactions. 
While the complication of dense granular systems has been attracting more attention, the behavior of dilute granular flows 
is under less investigation. Here we show that random collisional events between particles in dilute granular nozzle flows 
can lead to intermittency, the irregular alternation of phases in dynamical systems. This is of great interest in many appli-
cations where a steady flux of particles through the nozzle is required.

In this study, we will investigate the intermittent behavior of dilute granular flows. To be specific, we will study dilute 
flows of inelastic particles that are injected into a nozzle and fall under gravity g . To illustrate the mechanism in the simplest 
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Fig. 1. Sketch of particles falling through a nozzle under gravity.

possible setting, we consider identical frictionless inelastic particles of radius a injected into a symmetric two-dimensional 
nozzle composed of rigid flat walls aligned at an angle θ to the horizontal. We denote the height of the portion of the 
nozzle above the bottleneck as H and the width of the bottleneck as d (see Fig. 1). The particles are injected from the top 
of the nozzle with zero velocity and injection frequency f . The locations of particle injection are randomly selected from 
a given distribution. We will focus on the simple case of a uniform distribution. We note that the fundamental mechanism 
for intermittency reported here also exists for much more general conditions.

In our system of dilute granular flows, particles travel relatively long distances between collisions and the principal 
mechanism for momentum transport between particles is via instantaneous collisional interactions. For simplicity, we will 
neglect frictional effects. Two different types of collisional interactions occur in this system: (1) collisions between a particle 
and a wall, i.e. particle–wall collisions, and (2) collisions between particles, i.e. interparticle collisions. Both types of colli-
sions are dissipative. To quantify the energy losses inherent in these collisions, we introduce the coefficient of restitution e, 
which is defined as the ratio of relative speeds along the line of impact after and before a collision. Specifically, we have ew
for particle–wall collisions and ep for interparticle collisions.

Each particle, between its entrance into the nozzle and its passage through the bottleneck, experiences a sequence of 
events, including instantaneous events and free-fall motion. Instantaneous events are the ones that occur exactly at a point 
of time t , including (1) entry into the nozzle, (2) collisions with the right wall, (3) collisions with the left wall, (4) collisions 
with other particles, and (5) exit through the bottleneck. Each event applies a change to the particle’s velocity and/or loca-

tion, which are denoted by P (i)(t) = (u(i)(t), v(i)(t), x(i)(t), y(i)(t))
T
. Here u(i)(t) (v(i)(t)) is the horizontal (vertical) velocity 

at time t , x(i)(t) (y(i)(t)) is the horizontal (vertical) location at time t , and the superscript i is the index of the particle based 
on the order in which it was injected. For particle i, the time of the k-th collisional event occurring is denoted by t(i)

k .

Each particle is released with zero velocity at the top of the nozzle, the width of which is 2D with D = d
2 + H cot θ . We 

denote the time when particle i enters the system by t(i)
in , namely, P (i)

0 = P (i)(t(i)
in ) = (0,0, X (i), H)

T
, where X (i) is a random 

variable under the probability density function

p(x) =
{

1/(2D − 2a csc θ), when |x| < D − a csc θ,

0, otherwise.
(1)

When particle i hits the right nozzle wall, i.e. when y(i)/(x(i) − d/2 + a csc θ) = tan θ , its velocity component normal to 
the wall is reduced due to the inelastic collision, while the velocity component tangential to the wall remains unaffected. 
Therefore, its location and velocity are updated using the operator R defined by

P (i)(t(i)+
k ) = R P (i)(t(i)−

k ) =
(

W (θ) 02×2
02×2 I2×2

)
P (i)(t(i)−

k ), (2)

where I2×2 is a 2 × 2 identity matrix, 02×2 is a 2 × 2 zero matrix, and

W (θ) = 1

2

(
2 − 2(1 + ew) sin2 θ (1 + ew) sin 2θ

(1 + ew) sin 2θ 2 − 2(1 + ew) cos2 θ

)
. (3)

Similarly, when particle i collides with the left nozzle wall, i.e. when y(i)/(−x(i) − d/2 + a csc θ) = tan θ , its location and 
velocity are updated using the operator L defined by

P (i)(t(i)+
k ) = L P (i)(t(i)−

k ) =
(

W (−θ) 02×2
02×2 I2×2

)
P (i)(t(i)−

k ). (4)

When particles i and j collide, i.e. when (x(i) − x( j))
2 + (y(i) − y( j))

2 = 4a2, their velocities along the line of impact 
are determined by the conservation of momentum and the coefficient of restitution ep, while the components of velocity 
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perpendicular to the line of impact remain unchanged. Hence, when particle i collides with particle j, the changes of its 
state can be described by the operator C ( j) , which is defined by

P (i)(t(i)+
k ) = C ( j) P (i)(t(i)−

k ) =
(

C1(α) 02×2
02×2 I2×2

)
P (i)(t(i)−

k ) +
(

C2(α) 02×2
02×2 02×2

)
P ( j)(t(i)−

k ), (5)

where α = tan−1[(y(i)(t(i)−
k ) − y( j)(t(i)−

k ))/(x(i)(t(i)−
k ) − x( j)(t(i)−

k ))] and

C1(α) = 1

4

(
4 − 2(1 + ep) cos2 α −(1 + ep) sin 2α

−(1 + ep) sin 2α 4 − 2(1 + ep) sin2 α

)
, C2(α) = 1 + ep

4

(
2 cos2 α sin 2α

sin 2α 2 sin2 α

)
. (6)

Every particle eventually exits the system by going through the bottleneck. When particle i passes through the bottle-
neck, i.e. when y(i) = 0, it is removed from the system, which is denoted by the event E at the exit time t = t(i)

out.
Between instantaneous events, each particle experiences free-fall motion with a parabolic trajectory. During [t, t +�t] in 

which no instantaneous events occur, the changes of particle i can be described by an operator M:

P (i)(t + �t) = M(�t)P (i)(t) =
[

I4×4 + �t

(
02×2 02×2
I2×2 02×2

)]
P (i)(t) + (0,−g�t,0,−g�t2/2)

T
. (7)

Therefore, for each particle, we will obtain a sequence of events as follows:

S(i) = E M(t(i)
out − t(i)

n(i) )Q (i)
n(i) M(t(i)

n(i) − t(i)
n(i)−1

) . . . Q (i)
1 M(t(i)

1 − t(i)
in )P (i)

0 , for particle i, (8)

where Q (i)
k ∈ {R, L, C} for all k. The trajectory of each particle can be determined from its event sequence. Now we describe 

how to determine the event sequence. Consider any particle in the system, e.g., particle i, whose next instantaneous event 
can only be one of the four possible events: colliding with the right wall R , colliding with the left wall L, colliding with 
another particle C , and exiting the system E . From the aforementioned criteria for different types of instantaneous events, 
we can calculate the time increments for the next occurrences of all possible events:

τ
(i)
R = 1

g
(v(i) − u(i) tan θ) + 1

g

[
(v(i) − u(i) tan θ)

2 − 2g[tan θ(x(i) − d/2) + a sec θ − y(i)]
]1/2

, for event R, (9)

τ
(i)
L = 1

g
(v(i) + u(i) tan θ) + 1

g

[
(v(i) + u(i) tan θ)

2 − 2g[tan θ(−x(i) − d/2) + a sec θ − y(i)]
]1/2

, for event L, (10)

τ
(i)
E = 1

g

[
v(i) +

(
v(i)2 + 2gy

)1/2
]

, for event E, (11)

and τ (i)
j for event C ( j) ( j ∈ { j | particle j in the system and j �= i}), which is the smaller positive solution for

[x(i) − x( j) + (u(i) − u( j))τ
(i)
j ]2 + [y(i) − y( j) + (v(i) − v( j))τ

(i)
j ]2 = 4a2, (12)

if it exists. Therefore, the time increment for the next instantaneous event is τ (i) = min{τ (i)
R , τ (i)

L , τ (i)
E , min

j
{τ (i)

j }} for par-

ticle i, and the time increment for the next instantaneous event of the whole system is τ = min
i

{τ (i)}. This allows us to 

determine which particles are involved in the next instantaneous event of the system. Accordingly, we propagate the system 
by the time increment τ and update the event sequences of the particles. By repeating this process, we can determine the 
event sequences and therefore obtain the trajectories of all particles.

2. Main results

The procedure described above gives us an event-driven algorithm for determining the dynamic behavior of the system 
and studying its phenomena. We chose H/a = 100, d/a = 10, ep = ew = 0.9, and varied the dimensionless injection fre-
quency F = f

√
2H/g as well as the angle of the nozzle θ . Note that all quantities in the system are scaled by the particle 

radius a and the characteristic time 
√

2H/g (the time it takes for a particle to fall freely from the inlet to the bottleneck). 
The systems we considered were sufficiently dilute that clustering effects were negligible [1] and inelastic collapse [5] did 
not occur in our studies. We only examined the event sequences after a certain time t0, from which the transient effects 
were negligible and the system reached a statistically steady state. Then we studied this steady state over a period of T . 
Any particle, e.g., particle i, stays in the system for a time period [t(i)

in , t(i)
out]. Therefore, the number of particles in the system 

at time t is N(t) = ∑
i

χ[t(i)
in ,t(i)

out](t), where χ is the indicator function, and the average number of particles in the system over 

the whole time interval [t0, t0 + T ] is 〈N〉 = 1
T

∫ t0+T
t0

N(t)dt = 1
T

∑
i

(t(i)
out − t(i)

in ).

In Fig. 2, we show how 〈N〉 varies with the dimensionless injection frequency F at different angles. Intuitively, one would 
expect that the changes in F would lead to gradual changes in 〈N〉. This is indeed the case for shallow nozzles (e.g., θ = 30◦
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Fig. 2. The time-averaged number of particles in the system 〈N〉 is plotted against the dimensionless injection frequency F = f
√

2H
g for nozzles with 

various angles θ . For nozzles with θ = 70◦ , there is a dramatic increase in 〈N〉 over a relatively small range of frequency (near F = 12). Three representative 
frequencies (F1 = 10.0, F2 = 11.6, and F3 = 14.1) are labeled for θ = 70◦ .

Fig. 3. Time sequences of the number of particles in the system N(t) ((a), (b) and (c)) and the number of interparticle-collision events λ(t) ((d), (e) and (f)) 
at three representative frequencies (F = 10.0, 11.6, and 14.1) for θ = 70◦ . Intermittency is observed in Figs. (b) and (e) for F = 11.6.

and 50◦ in Fig. 2). However, steep nozzles (e.g., θ = 70◦ in Fig. 2) have surprisingly different behavior. Fig. 2 shows that 〈N〉
increases dramatically over a small range of F (near F = 12 for θ = 70◦).

To investigate this rapid change that occurs for θ = 70◦ , we plot N(t) for three representative injection frequencies 
F = 10.0, 11.6, and 14.1 (denoted by F1, F2 and F3 in Fig. 2) in Figs. 3(a), 3(b), and 3(c), respectively. We denote by �(S(i))

the number of interparticle collision events in the event sequence S(i) , the definition of which is given by Eq. (8). The time 
sequences of this random number, λ(t) = ∑

i
�(S(i))χ{t(i)

out}(t), for F = 10.0, 11.6, and 14.1 are plotted in Figs. 3(d), 3(e), and 
3(f), respectively.

Figs. 3(a) and 3(d) show that, at F = 10.0 (low injection frequency), the nozzle has relatively few particles and these 
particles seldom collide with each other. Moreover, the number of particles remains approximately constant. Meanwhile, 
Figs. 3(c) and 3(f) show that, at F = 14.1 (high injection frequency), the number of particles in the system becomes much 
larger and interparticle collisions occur more frequently. Note that N(t) shown in Fig. 3(c) and λ(t) shown in Fig. 3(f) for 
F = 14.1 have much larger fluctuations than those shown in Figs. 3(a) and 3(d) for F = 10.0. Therefore, the system is in 
two very different states at these two frequencies, and the state in which the system remains does not change over time.

One would expect that the system at F = 11.6 (intermediate injection frequency) just resembles those at F = 10.0
and 14.1, only with quantitative differences in N(t) and λ(t). However, Figs. 3(b) and 3(e) demonstrate that the flow 
intermittently switches between two completely different states. In one state, the system behaves almost identically to 
that at F = 10.0. The number of particles in the system N(t) remains relatively small when few interparticle collisions 
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occur. In the other state, the system exhibits qualitative similarity with that at F = 14.1. Both N(t) in Fig. 3(b) and λ(t) in 
Fig. 3(e) show that the flow repeatedly switches from one state to the other, and vice versa. Therefore, the phenomenon of 
intermittency occurs in this dilute granular flow.

This phenomenon is very surprising since gas dynamics contains no analogue of this type of intermittency. It is widely 
believed that, in the absence of cluster formation, highly dilute granular flows exhibit qualitatively similar behavior to 
compressible gases [7]. For high-speed gas flows, nozzle flows readily form shocks, but nevertheless, within the nozzle, the 
flow patterns tend to be relatively simple. Particularly, intermittent flow within the nozzle does not occur. It is therefore 
natural to expect that the flow of a highly dilute granular material through a nozzle would be relatively simple and would 
not exhibit intermittency. However, we have shown here, even in a simple setting, intermittency can exist in dilute granular 
flows. Although intermittency has been observed in several important studies of dense granular flows [9,4,3,6,2], dilute 
and dense granular flows are very different. The mechanisms and behavior that are observed in dense granular flows have 
little relevance to dilute flows [8]. In dense granular flows, particles are heavily constrained and experience long-lasting 
interactions with their neighbors. Moreover, friction between particles is often the principal mechanism for momentum 
transport.
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