Partial differential equations

On uniqueness for a rough transport-diffusion equation

CrossMark

Sur l'unicité pour une équation de transport-diffusion irrégulière

Guillaume Lévy

Laboratoire Jacques-Louis-Lions, Université Pierre-et-Marie-Curie, bureau 15-16 301, 4, place Jussieu, 75005 Paris, France

A R T I C L E I N F O

Article history:

Received 18 February 2016
Accepted after revision 10 May 2016
Available online 24 May 2016
Presented by Haïm Brézis

Abstract

In this Note, we study a transport-diffusion equation with rough coefficients, and we prove that solutions are unique in a low-regularity class. © 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

R É S U M É
Dans cette Note, nous étudions une équation de transport-diffusion à coefficients irréguliers, et nous prouvons l'unicité de sa solution dans une classe de fonctions peu régulières. © 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In this note, we address the problem of uniqueness for a transport-diffusion equation with rough coefficients. Our primary interest and motivation is a uniqueness result for an equation obeyed by the vorticity of a Leray-type solution of the Navier-Stokes equation in the full, three-dimensional space [5]. The main theorem of this note is the following.

Theorem 1.1. Let v be a divergence free vector field in $L^{2}\left(\mathbb{R}_{+}, \dot{H}^{1}\left(\mathbb{R}^{3}\right)\right)$ and a be a function in $L^{2}\left(\mathbb{R}_{+} \times \mathbb{R}^{3}\right)$. Assume that a is a distributional solution of the Cauchy problem

$$
\text { (C) }\left\{\begin{array}{c}
\partial_{t} a+\nabla \cdot(a v)-\Delta a=0 \tag{1}\\
a(0)=0,
\end{array}\right.
$$

where the initial condition is understood in the distributional sense. Then a is identically zero on $\mathbb{R}_{+} \times \mathbb{R}^{3}$.
As a preliminary remark, the assumptions on both v and a entail that $\partial_{t} a$ belongs to $L_{\mathrm{loc}}^{1}\left(\mathbb{R}_{+}, H^{-2}\left(\mathbb{R}^{3}\right)\right.$) and thus, in particular, a is also in $\mathcal{C}\left(\mathbb{R}_{+}, \mathcal{D}^{\prime}\left(\mathbb{R}^{3}\right)\right.$). In Theorem $1.1, a$ is to be thought of as a scalar component of the vorticity of v, which is in the original problem a Leray solution of the Navier-Stokes equation. In particular, we only know that a belongs to $L^{2}\left(\mathbb{R}_{+} \times \mathbb{R}^{3}\right)$ and $L^{\infty}\left(\mathbb{R}_{+}, \dot{H}^{-1}\left(\mathbb{R}^{3}\right)\right)$, though we will not use the second assumption. The reader accustomed to

[^0]three-dimensional fluid mechanics will notice that, comparing the above equation with the actual vorticity equations in $3 D$, a term of the type $a \partial_{i} v$ is missing. In the original problem, where this Theorem first appeared, we actually rely on a double application of Theorem 1.1. For some technical reasons, only the second application of Theorem 1.1 takes in account the above-mentioned term.

As opposed to the standard DiPerna-Lions theory, we cannot assume that a is in $L^{\infty}\left(\mathbb{R}_{+}, L^{p}\left(\mathbb{R}^{3}\right)\right)$ for some $p \geq 1$. However, our proof does bear a resemblance to the work of DiPerna and Lions; our result may thus be viewed as a generalization of their techniques, see [1], [2], [3] and [4]. Because of the low regularity of both the vector field v and the scalar field a, the use of energy-type estimates seems difficult. This is the main reason why we rely instead on a duality argument, embodied by the following theorem.

Theorem 1.2. Given v a divergence free vector field in $L^{2}\left(\mathbb{R}_{+}, \dot{H}^{1}\left(\mathbb{R}^{3}\right)\right)$ and a smooth φ_{0} in $\mathcal{D}\left(\mathbb{R}^{3}\right)$, there exists a distributional solution of the Cauchy problem

$$
\left(C^{\prime}\right)\left\{\begin{array}{c}
\partial_{t} \varphi-v \cdot \nabla \varphi-\Delta \varphi=0 \tag{2}\\
\varphi(0)=\varphi_{0}
\end{array}\right.
$$

with the bounds

$$
\begin{equation*}
\|\varphi(t)\|_{L^{\infty}\left(\mathbb{R}^{3}\right)} \leq\left\|\varphi_{0}\right\|_{L^{\infty}\left(\mathbb{R}^{3}\right)} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\partial_{j} \varphi(t)\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}+\int_{0}^{t}\left\|\nabla \partial_{j} \varphi(s)\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2} \mathrm{~d} s \leq\left\|\partial_{j} \varphi_{0}\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}+\left\|\varphi_{0}\right\|_{L^{\infty}\left(\mathbb{R}^{3}\right)}^{2}\left\|\partial_{j} v\right\|_{L^{2}\left(\mathbb{R}_{+} \times \mathbb{R}^{3}\right)}^{2} \tag{4}
\end{equation*}
$$

for $j=1,2,3$ and any positive time t.
By reversing the arrow of time, this amounts to build, for any strictly positive T, a solution on $[0, T] \times \mathbb{R}^{3}$ of the Cauchy problem

$$
\left(-C^{\prime}\right)\left\{\begin{array}{c}
-\partial_{t} \varphi-v \cdot \nabla \varphi-\Delta \varphi=0 \tag{5}\\
\varphi(T)=\varphi_{T}
\end{array}\right.
$$

where we have set $\varphi_{T}:=\varphi_{0}$ for the reader's convenience.

2. Proofs

We begin with the dual existence result.
Proof (of Theorem 1.2). Let us choose some mollifying kernel $\rho=\rho(t, x)$ and denote $v^{\delta}:=\rho_{\delta} * v$, where $\rho_{\delta}(t, x):=$ $\delta^{-4} \rho\left(\frac{t}{\delta}, \frac{x}{\delta}\right)$. Let $\left(C_{\delta}^{\prime}\right)$ be the Cauchy problem ($\left.C^{\prime}\right)$, where we replaced v by v^{δ}. The existence of a (smooth) solution φ^{δ} to $\left(C_{\delta}^{\prime}\right)$ is then easily obtained thanks to, for instance, a Friedrichs method combined with heat kernel estimates. We now turn to estimates uniform in the regularization parameter δ. The first one is a sequence of energy estimates done in L^{p} with $p \geq 2$, which yields the maximum principle in the limit. Multiplying the equation on φ^{δ} by $\varphi^{\delta}\left|\varphi^{\delta}\right|^{p-2}$ and integrating in space and time, we get

$$
\begin{equation*}
\frac{1}{p}\left\|\varphi^{\delta}(t)\right\|_{L^{p}\left(\mathbb{R}^{3}\right)}^{p}+(p-1) \int_{0}^{t}\left\|\nabla \varphi^{\delta}(s)\left|\varphi^{\delta}(s)\right|^{\frac{p-2}{2}}\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2} \mathrm{~d} s=\frac{1}{p}\left\|\varphi_{0}\right\|_{L^{p}\left(\mathbb{R}^{3}\right)}^{p} \tag{6}
\end{equation*}
$$

Discarding the gradient term, taking the p-th root on both sides and letting p go to infinity gives

$$
\begin{equation*}
\left\|\varphi^{\delta}(t)\right\|_{L^{\infty}\left(\mathbb{R}^{3}\right)} \leq\left\|\varphi_{0}\right\|_{L^{\infty}\left(\mathbb{R}^{3}\right)} \tag{7}
\end{equation*}
$$

To obtain the last estimate, let us derive for $1 \leq j \leq 3$ the equation satisfied by $\partial_{j} \varphi^{\delta}$. We have

$$
\begin{equation*}
\partial_{t} \partial_{j} \varphi^{\delta}-v^{\delta} \cdot \nabla \partial_{j} \varphi^{\delta}-\Delta \partial_{j} \varphi^{\delta}=\partial_{j} v^{\delta} \cdot \nabla \varphi^{\delta} \tag{8}
\end{equation*}
$$

Multiplying this new equation by $\partial_{j} \varphi^{\delta}$ and integrating in space and time gives

$$
\begin{equation*}
\frac{1}{2}\left\|\partial_{j} \varphi^{\delta}(t)\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}+\int_{0}^{t}\left\|\nabla \partial_{j} \varphi^{\delta}(s)\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2} \mathrm{~d} s=\frac{1}{2}\left\|\partial_{j} \varphi_{0}\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}+\int_{0}^{t} \int_{\mathbb{R}^{3}} \partial_{j} \varphi^{\delta}(s, x) \partial_{j} v^{\delta}(s, x) \cdot \nabla \varphi^{\delta}(s, x) \mathrm{d} x \mathrm{~d} s \tag{9}
\end{equation*}
$$

Since v is divergence free, the gradient term in the left-hand side does not contribute to Equation (9). Denote by $I(t)$ the last integral written above. Integrating by parts and recalling that v is divergence free, we have

$$
\begin{aligned}
I(t) & =-\int_{0}^{t} \int_{\mathbb{R}^{3}} \varphi^{\delta}(s, x) \partial_{j} v^{\delta}(s, x) \cdot \nabla \partial_{j} \varphi^{\delta}(s, x) \mathrm{d} x \mathrm{~d} s \\
& \leq\left\|\varphi_{0}\right\|_{L^{\infty}\left(\mathbb{R}^{3}\right)} \int_{0}^{t}\left\|\partial_{j} v^{\delta}(s)\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}\left\|\nabla \partial_{j} \varphi^{\delta}(s)\right\|_{L^{2}\left(\mathbb{R}^{3}\right)} \mathrm{d} s \\
& \leq \frac{1}{2} \int_{0}^{t}\left\|\nabla \partial_{j} \varphi^{\delta}(s)\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2} \mathrm{~d} s+\frac{1}{2}\left\|\varphi_{0}\right\|_{L^{\infty}\left(\mathbb{R}^{3}\right)}^{2} \int_{0}^{t}\left\|\partial_{j} v^{\delta}(s)\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2} \mathrm{~d} s .
\end{aligned}
$$

And finally, the energy estimate on $\partial_{j} \varphi^{\delta}$ reads

$$
\begin{equation*}
\left\|\partial_{j} \varphi^{\delta}(t)\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}+\int_{0}^{t}\left\|\nabla \partial_{j} \varphi^{\delta}(s)\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2} \mathrm{~d} s \leq\left\|\partial_{j} \varphi_{0}\right\|_{L^{2}\left(\mathbb{R}^{3}\right)}^{2}+\left\|\varphi_{0}\right\|_{L^{\infty}\left(\mathbb{R}^{3}\right)}^{2}\left\|\partial_{j} v\right\|_{L^{2}\left(\mathbb{R}_{+}, \times \mathbb{R}^{3}\right)}^{2} \tag{10}
\end{equation*}
$$

Thus, the family $\left(\varphi^{\delta}\right)_{\delta}$ is bounded in $L^{\infty}\left(\mathbb{R}_{+}, H^{1}\left(\mathbb{R}^{3}\right)\right) \cap L^{2}\left(\mathbb{R}_{+}, \dot{H}^{2}\left(\mathbb{R}^{3}\right)\right) \cap L^{\infty}\left(\mathbb{R}_{+} \times \mathbb{R}^{3}\right)$. Up to some extraction, we have the weak convergence of $\left(\varphi^{\delta}\right)_{\delta}$ in $L^{2}\left(\mathbb{R}_{+}, \dot{H}^{2}\left(\mathbb{R}^{3}\right)\right)$ and its weak-* convergence in $L^{\infty}\left(\mathbb{R}_{+}, H^{1}\left(\mathbb{R}^{3}\right)\right) \cap L^{\infty}\left(\mathbb{R}_{+} \times \mathbb{R}^{3}\right)$ to some function φ.

By interpolation, we also have $\nabla \varphi^{\delta} \rightharpoonup \nabla \varphi$ weakly in $L^{4}\left(\mathbb{R}_{+}, \dot{H}^{\frac{1}{2}}\left(\mathbb{R}^{3}\right)\right)$ as $\delta \rightarrow 0$. As a consequence, because $v^{\delta} \rightarrow v$ strongly in $L^{2}\left(\mathbb{R}_{+}, \dot{H}^{1}\left(\mathbb{R}^{3}\right)\right)$ as $\delta \rightarrow 0$, the following convergences hold:

$$
\begin{gathered}
\Delta \varphi^{\delta} \rightharpoonup \Delta \varphi \text { in } L^{2}\left(\mathbb{R}_{+} \times \mathbb{R}^{3}\right) \\
v^{\delta} \cdot \nabla \varphi^{\delta}, \partial_{t} \varphi^{\delta} \rightharpoonup v \cdot \nabla \varphi, \partial_{t} \varphi \text { in } L^{\frac{4}{3}}\left(\mathbb{R}_{+}, L^{2}\left(\mathbb{R}^{3}\right)\right)
\end{gathered}
$$

In particular, such a φ is a distributional solution of $\left(C^{\prime}\right)$ with the desired regularity.
We now state a Lemma that will be useful in the final proof.
Lemma 2.1. Let v be a fixed, divergence-free vector field in $L^{2}\left(\mathbb{R}_{+}, \dot{H}^{1}\left(\mathbb{R}^{3}\right)\right)$. Let $\left(\varphi^{\delta}\right)_{\delta}$ be a bounded family in $L^{\infty}\left(\mathbb{R}_{+} \times \mathbb{R}^{3}\right)$. Let $\rho=\rho(x)$ be some smooth function supported inside the unit ball of \mathbb{R}^{3} and define $\rho_{\varepsilon}:=\varepsilon^{-3} \rho(\dot{\bar{\varepsilon}})$. Define the commutator $C^{\varepsilon, \delta}$ by

$$
C^{\varepsilon, \delta}(s, x):=v(s, x) \cdot\left(\nabla \rho_{\varepsilon} * \varphi^{\delta}(s)\right)(x)-\left(\nabla \rho_{\varepsilon} *\left(v(s) \varphi^{\delta}(s)\right)\right)(x)
$$

Then

$$
\begin{equation*}
\left\|C^{\varepsilon, \delta}\right\|_{L^{2}\left(\mathbb{R}_{+} \times \mathbb{R}^{3}\right)} \leq\|\nabla \rho\|_{L^{1}\left(\mathbb{R}^{3}\right)}\|\nabla v\|_{L^{2}\left(\mathbb{R}_{+}, \dot{H}^{1}\left(\mathbb{R}^{3}\right)\right)}\left\|\varphi^{\delta}\right\|_{L^{\infty}\left(\mathbb{R}_{+}, H^{1}\left(\mathbb{R}^{3}\right)\right)} \tag{11}
\end{equation*}
$$

This type of lemma is absolutely not new. Actually, it is strongly reminiscent of Lemma II. 1 in [2] and serves the same purpose. We are now in position to prove the main theorem of this note.

Proof (of Theorem 1.1). Let $\rho=\rho(x)$ be a radial mollifying kernel and define $\rho_{\varepsilon}(x):=\varepsilon^{-3} \rho\left(\frac{x}{\varepsilon}\right)$. Convolving the equation on a by ρ_{ε} gives, denoting $a_{\varepsilon}:=\rho_{\varepsilon} * a$,

$$
\begin{equation*}
\left(C_{\varepsilon}\right) \partial_{t} a_{\varepsilon}+\nabla \cdot\left(a_{\varepsilon} v\right)-\Delta a_{\varepsilon}=\nabla \cdot\left(a_{\varepsilon} v\right)-\rho_{\varepsilon} * \nabla \cdot(a v) \tag{12}
\end{equation*}
$$

Notice that even without any smoothing in time, $a_{\varepsilon}, \partial_{t} a_{\varepsilon}$ are in $L^{\infty}\left(\mathbb{R}_{+}, \mathcal{C}^{\infty}\left(\mathbb{R}^{3}\right)\right)$ and $L^{1}\left(\mathbb{R}_{+}, \mathcal{C}^{\infty}\left(\mathbb{R}^{3}\right)\right)$ respectively, which is enough to make the upcoming computations rigorous. In what follows, we let φ^{δ} be a solution of the Cauchy problem $\left(-C_{\delta}^{\prime}\right)$, with $\left(-C_{\delta}^{\prime}\right)$ being ($-C^{\prime}$) with v replaced by v^{δ}. Let us now multiply, for $\delta, \varepsilon>0$ the equation (C_{ε}) by φ^{δ} and integrate in space and time. After integrating by parts (which is justified by the high regularity of the terms we have written), we get

$$
\int_{0}^{T} \int_{\mathbb{R}^{3}} \partial_{t} a_{\varepsilon}(s, x) \varphi^{\delta}(s, x) \mathrm{d} x \mathrm{~d} s=\left\langle a_{\varepsilon}(T), \varphi_{T}\right\rangle_{\mathcal{D}^{\prime}\left(\mathbb{R}^{3}\right), \mathcal{D}\left(\mathbb{R}^{3}\right)}-\int_{0}^{T} \int_{\mathbb{R}^{3}} a_{\varepsilon}(s, x) \partial_{t} \varphi^{\delta}(s, x) \mathrm{d} x \mathrm{~d} s
$$

and

$$
\int_{0}^{T} \int_{\mathbb{R}^{3}}\left[\nabla \cdot\left(v(s, x) a_{\varepsilon}(s, x)\right)-\rho_{\varepsilon}(x) * \nabla \cdot(v(s, x) a(s, x))\right] \varphi^{\delta}(s, x) \mathrm{d} x \mathrm{~d} s=\int_{0}^{T} \int_{\mathbb{R}^{3}} a(s, x) C^{\varepsilon, \delta}(s, x) \mathrm{d} x \mathrm{~d} s
$$

where the commutator $C^{\varepsilon, \delta}$ has been defined in the Lemma. From these two identities, it follows that

$$
\begin{aligned}
&\left\langle a_{\varepsilon}(T), \varphi_{T}\right\rangle_{\mathcal{D}^{\prime}\left(\mathbb{R}^{3}\right), \mathcal{D}\left(\mathbb{R}^{3}\right)}=\int_{0}^{T} \int_{\mathbb{R}^{3}} a(s, x) C^{\varepsilon, \delta}(s, x) \mathrm{d} x \mathrm{~d} s \\
&-\int_{0}^{T} \int_{\mathbb{R}^{3}} a_{\varepsilon}(s, x)\left(-\partial_{t} \varphi^{\delta}(s, x)-v(s, x) \cdot \nabla \varphi^{\delta}(s, x)-\Delta \varphi^{\delta}(s, x)\right) \mathrm{d} x \mathrm{~d} s .
\end{aligned}
$$

From the Lemma, we know that $\left(C^{\varepsilon, \delta}\right)_{\varepsilon, \delta}$ is bounded in $L^{2}\left(\mathbb{R}^{+} \times \mathbb{R}^{3}\right)$. Because $v \cdot \nabla \varphi^{\delta} \rightarrow v \cdot \nabla \varphi$ in $L^{\frac{4}{3}}\left(\mathbb{R}^{+}, L^{2}\left(\mathbb{R}^{3}\right)\right)$ as $\delta \rightarrow 0$, the only weak limit point in $L^{2}\left(\mathbb{R}_{+} \times \mathbb{R}^{3}\right)$ of the family $\left(C^{\varepsilon, \delta}\right)_{\varepsilon, \delta}$ as $\delta \rightarrow 0$ is $C^{\varepsilon, 0}$. Thanks to the smoothness of a_{ε} for each fixed ε, we can take the limit $\delta \rightarrow 0$ in the last equation, which leads to

$$
\begin{equation*}
\left\langle a_{\varepsilon}(T), \varphi_{T}\right\rangle_{\mathcal{D}^{\prime}\left(\mathbb{R}^{3}\right), \mathcal{D}\left(\mathbb{R}^{3}\right)}=\int_{0}^{T} \int_{\mathbb{R}^{3}} a(s, x) C^{\varepsilon, 0}(s, x) \mathrm{d} x \mathrm{~d} s \tag{13}
\end{equation*}
$$

Again, the family $\left(C^{\varepsilon, 0}\right)_{\varepsilon}$ is bounded in $L^{2}\left(\mathbb{R}_{+} \times \mathbb{R}^{3}\right)$ and its only limit point as $\varepsilon \rightarrow 0$ is 0 , simply because $v \cdot \nabla \varphi_{\varepsilon}-\rho_{\varepsilon} *$ $(v \cdot \nabla \varphi) \rightarrow 0$ in $L^{\frac{4}{3}}\left(\mathbb{R}^{+}, L^{2}\left(\mathbb{R}^{3}\right)\right)$. Taking the limit $\varepsilon \rightarrow 0$, we finally obtain

$$
\begin{equation*}
\left\langle a(T), \varphi_{T}\right\rangle_{\mathcal{D}^{\prime}\left(\mathbb{R}^{3}\right), \mathcal{D}\left(\mathbb{R}^{3}\right)}=0 \tag{14}
\end{equation*}
$$

This being true for any test function $\varphi_{T}, a(T)$ is the zero distribution and finally $a \equiv 0$.

References

[1] L. Ambrosio, Transport equation and Cauchy problem for BV vector fields, Invent. Math. 158 (2) (2004) 227-260.
[2] R.J. DiPerna, P.-L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math. 98 (1989) 511-547.
[3] C. Fabre, G. Lebeau, Régularité et unicité pour le problème de Stokes, Commun. Partial Differ. Equ. 27 (3-4) (2002) 437-475.
[4] C. Le Bris, P.-L. Lions, Existence and uniqueness of solutions to Fokker-Planck-type equations with irregular coefficients, Commun. Partial Differ. Equ. 33 (7-9) (2008) 1272-1317.
[5] J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math. 63 (1934) 193-248.

[^0]: E-mail address: levy@ljll.math.upmc.fr.
 http://dx.doi.org/10.1016/j.crma.2016.05.003
 1631-073X/© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

