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The aim of this note is to show that lamplighter graphs where the space graph is 
infinite and at most two-ended and the lamp graph is at most two-ended do not admit 
harmonic functions with gradients in �p (i.e. finite p-energy) for any p ∈ [1, ∞[ except 
constants (and, equivalently, that their reduced �p cohomology is trivial in degree one). 
Similar arguments are then applied to many direct products of graphs to conclude the 
same (including all direct products of Cayley graphs). The proof relies on a theorem of 
Thomassen [16] on spanning lines in squares of graphs.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Le but de cette note est de montrer que plusieurs graphes d’allumeurs de réverbères, où 
le graphe d’espace est infini avec au plus deux bouts et le graphe des lampes a au plus 
deux bouts, ne possèdent pas de fonction harmonique non constante à gradient �p (i.e. une 
p-energie finie) qu’importe le p ∈ [1, ∞[ (et, de manière équivalente, que leur cohomologie 
�p réduite est triviale en degré un). Des arguments similaires permettent aussi de conclure 
pour plusieurs produits directs de graphes (y compris tous les graphes de Cayley). Les 
démonstrations reposent sur un théorème de Thomassen [16] sur les lignes couvrantes 
dans le carré des graphes.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Given two graphs H = (X, E) (henceforth the “space” graph) and L = (Y , F ) (henceforth the “lamp” graph), the lamp-
lighter graph G := L � H is the graph constructed as follows. Fix some root vertex o ∈ Y and let 

(⊕X Y
)

be the set of “finitely 
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supported” functions from X → Y (i.e. only finitely many elements of X are not sent to o ∈ Y ). Its vertices are elements of 
X × ( ⊕X Y

)
. Two vertices (x, f ) and (x′, f ′) are adjacent if

• either x ∼ x′ in H and f = f ′ ,
• or x = x′ , f (y) = f ′(y) for all y 	= x and f (x) ∼ f ′(x) in L.

It is easy to see that L � H is connected exactly when both H and L are. In fact, in this note, all graphs will be assumed to 
be connected (this is not important) and the graphs are locally finite.

The number of ends of a [connected] graph is the limit of the number of infinite components in the complement of Bn

(where Bn is a sequence of balls of radius at some fixed vertex). More precisely, an end ξ is a function from finite sets to 
infinite connected components of their complement so that ξ(F ) ∩ ξ(F ′) 	=∅ (for any F and F ′).

Given a graph G , a real-valued function f on its vertices V is said to be harmonic if it satisfies the mean value property

∀v ∈ V , f (v) = 1
deg(v)

∑

w∼v

f (w),

where v is the degree (or valency) of v . The gradient of f is the function on the edges (v, w) defined by ∇ f (v, w) =
f (w) − f (v). The square of the �2-norm of the gradient is often referred to as the energy of the function.

The main result here is:

Proposition 1. Assume H is infinite and has at most two ends, L has at least one edge, L has two ends or less and that both L and H
are locally finite, then there are no non-constant harmonic functions with gradient in �p in L � H for any p ∈ [1, ∞[.

This result is in contrast with the fact that lamplighter graphs have bounded harmonic functions as soon as H is not 
recurrent. Indeed, a bounded function has necessarily its gradient in �∞ .

In fact, Proposition 1 uses (and, when the graphs have bounded valency, is equivalent to) the vanishing of the reduced 
�p cohomology in degree one, see [4] for definitions. The proof of Proposition 1 is essentially a particular case of [4, 
Question 1.6]. This answers partially questions which may be found (in different guises) in Georgakopoulos [2, Problem 3.1]
and Gromov [7, §8.A1.(A2), p. 226]. Regarding [2], Proposition 1 seems hard to adapt to cases with infinitely many ends, but 
covers all p (instead of p = 2).

As for [7], the question there concerns other types of graphs; for lamplighter graphs of Cayley graphs, the answer to this 
question is essentially complete. Indeed, a wreath product (i.e. lamplighter group) is amenable exactly when the lamp and 
space groups are amenable. Since amenable groups have at most 2 ends, Proposition 1 shows the reduced �p -cohomology 
of any amenable wreath product is trivial. Note that Martin & Valette [11, Theorem-(iv)] show this is still true when L is 
not amenable and has infinitely many ends (and H is infinite).

Proposition 1 extends probably to graphs with finitely many ends. To do this, one would need to answer the following 
question. Assume G is the set of graphs obtained by taking a cycle and attaching to it finitely many (half-infinite) rays. Is the 
lamplighter graph L � H with L, H ∈ G Liouville? This seems to follow from classical consideration of Furstenberg (coupling), 
since both H and L are recurrent.

Our other application concerns the direct product. Given two graph H1 = (X1, E1) and H2 = (X2, E2), the direct product 
H1 × H2 is defined as follows. Its vertices are elements of X1 × X2. Two vertices (x1, x2) and (x′

1, x
′
2) are adjacent if either 

x1 ∼ x′
1 or x2 ∼ x′

2, but not both.

Proposition 2. Assume G is a direct product of graphs H1 × H2 , so that H1 has 1 or 2 ends and H2 is a Cayley graph with volume 
growth at least polynomial of degree d, then there are no non-constant harmonic functions with gradient in �p for all p < d+1

2 .

H1 is only locally finite, but H2 will be of bounded valency. This generalises a result of Martin & Valette [11, Theorem-(v)]
(on products of groups and which requires that one group in the direct product be non-amenable):

Corollary 3. Let � be a direct product of infinite [finitely generated] groups. Then there are no non-constant harmonic functions with 
gradient in �p in any Cayley graph of � (and the reduced �p cohomology in degree 1 is trivial for all p ∈ [1, ∞[).

Proposition 1 and Corollary 3 also have consequences on the cohomology of Hilbertian representations with �p -coef-
ficients, see [6, Corollary 2.6]. The same can be said for some representations given by G � Lq (with coefficients in �p ) 
modulo the following remark:

Remark 4. There is a non-linear analogue of harmonic equations called p-harmonic equation (with p ∈ ]1, ∞[). The proofs 
of the Propositions 1 and 2 also apply to q-harmonic functions with gradient in �p . Indeed, q is irrelevant, since only the 
fact that harmonic functions satisfy the maximum principle is required to conclude (and q-harmonic functions also satisfy 
the maximum principle). �
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2. Preliminaries

Let Dp(G) be the space of functions on the vertices of the graph G with gradient in �p and HDp(G) be the subset of 
Dp(G) consisting of functions that are furthermore harmonic. Lastly, B HDp(G) are the bounded functions in HDp(G). The 
notation HDp(G)  R means that the only functions in HDp(G) are constants.

For F ⊂ X a subset of the vertices, let ∂ F be the edges between F and F c . Let d ∈R≥1. Then, a graph G = (X, E) has

ISd if there is a κ > 0 such that for all finite F ⊂ X, |F |(d−1)/d ≤ κ |∂ F |.
Quasi-homogeneous graphs with a certain (uniformly bounded below) volume growth in nd will satisfy these isoperimetric 
profiles, see Woess’ book [17, (4.18) Theorem]. For example, the Cayley graph of a group G satisfies ISd for all d if and only 
if G is not virtually nilpotent.

An important ingredient of the proofs is a result from [4]. Let Bn be a sequence of balls in the graph with the same 
centre and Bc

n its complement. On a connected graph, a function f : X → R takes only one value at infinity if ∃c ∈ R so that 
∀ε > 0, ∃nε satisfying f (Bc

nε
) ⊂ [c − ε, c + ε]. Define for p ≥ 1:

(1p) the reduced �p -cohomology in degree one vanishes (for short, �p H1 = {0});
(2p) all functions in Dp(G) take only one value at infinity;
(3p) there are no non-constant functions in HDp(G);
(4p) there are no non-constant functions in B HDp(G).

For the record, note that (11) ⇐⇒ (21) ⇐⇒ the number of ends is ≤ 1 (see [4, Proposition A.2]). Let us sum up [4, 
Theorem 1.2] here again:

Theorem 5. Assume a graph G is of bounded valency and has ISd. For 1 < p < d/2, (1p) ⇐⇒ (2p) =⇒ (3p) =⇒ (4p) and, for 
q ≥ dp

d−2p , (4q) =⇒ (1p).
If G has ISd for all d, then “∀p ∈ ]1, ∞[, (ip) holds” where i ∈ {1, 2, 3, 4} are four equivalent conditions.

The important corollary of the above theorem (see [4, Corollary 4.2.1]) is that if a graph G has a connected spanning 
subgraph which is Liouville and has ISd for some d (resp. for all d), then (1p), (2p) and (3p) hold for any p < d/2 (resp. 
for all p < ∞). Indeed, Liouville implies that (4q) holds for all q, and the condition (2p) passes from a connected spanning 
subgraph to the whole graph.

3. Proof of Proposition 1

The main second ingredient of the proof of Proposition 1 is the following. Let G0 = L0 � H0 the lamplighter graph where 
L0 is either finite or a Cayley graph of Z and H0 is a Cayley graph of Z. For our current purpose, it will suffice to note that 
G0 has ISd for any d ≥ 1, see Woess’ book [17, (4.16) Corollary]. A second important ingredient is that, using Kaimanovich 
[9, Theorem 3.3], G0 is Liouville, i.e. a bounded harmonic function is constant.

The proof will be split in three steps for convenience.
Step 1 – Assume that H and L have bounded valency. Note that if a spanning subgraph of G has ISd , it implies that G has 

ISd . Summing up, if a graph G admits G0 as a subgraph then (1q) holds in G for any q < ∞ and, equivalently, (3p) holds in 
G for any p < ∞.

It is also possible to work only up to quasi-isometry: if two graphs of bounded valency � and �′ are quasi-isometric, 
then they have the same �p -cohomology (in all degrees, reduced or not), see Élek [1, §3] or Pansu [12].

Recall that the k-fuzz of a graph G , is the graph G[k] with the same vertices as G , but now two vertices are neighbours 
in G[k] if their distance in G is ≤ k. G[2] is often called the square of G .

Lastly, using either Thomassen [16] or Seward [14, Theorem 1.6], the graphs L and H in Proposition 1 are bi-Lipschitz 
equivalent to graphs containing a spanning line (or a cycle if the graph is finite). In fact, this bi-Lipschitz equivalence is 
given by taking the k-fuzz of these graphs. An interested reader could probably show that k = 4 is sufficient. This means 
that L � H is bi-Lipschitz equivalent (and so quasi-isometric) to a graph containing G0. This finishes the proof of Proposition 1
when both H and L have bounded valency.

Step 2 – Assume from now on that both H and L have connected spanning subgraphs of bounded valency, say H ′ and L′ , 
respectively. If there is a non-constant f ∈ HDp(G) (where G = L � H). Then f is not constant at infinity. Indeed, since f is 
harmonic, the maximum principle would then imply that f is constant.

But f is also a function on the vertices of G ′ = L′ � H ′ and it is also in Dp(G ′) (because deleting edges only reduces the 
�p norm of the gradient). So (2p) cannot hold on G ′ . On the other hand, G ′ contains G0 up to quasi-isometry (as in step 1) 
and hence �p H1

(G ′) = {0}. However, by Theorem 5 above, “(1p) for all p” implies “(2p) for all p”.
Step 3 – Now assume H and L are only locally finite. The result of Thomassen [16] still implies that (for some k) the 

k-fuzz of H and L have a spanning line (or cycle if the graph L is finite). However, given a function f ∈ Dp(G), it may no 
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longer be in Dp(G[k]) if k > 1 and G does not have bounded valency. To circumvent this problem, construct a graph H† by 
adding (when necessary) to H the edges of the spanning line in H [k] . Construct L† similarly.

Given f ∈ Dp(G) where G = L � H , one has that f ∈ Dp(G†) with G† = L† � H†. Indeed, in passing from G to G†, at most 
four edges are added to each vertex, and the gradient along these edges is expressed as a sum of k values of the gradient 
of f on G . The triangle inequality ensures that the �p -norm of ∇ f (on G†) is at most (4k + 1) times the �p-norm of the 
gradient of f on G .

This last reduction yields the conclusion. Indeed, if there is an f ∈ HDp(G) that is not constant, then there is an 
f ∈ Dp(G†) that takes different values at infinity. This is however excluded by step 2 (since H† and L† have connected 
spanning subgraphs which are of valency ≤ 2).

4. Proof of Proposition 2 and Corollary 3

The main second ingredient for the proof of Proposition 2 is that if G is a Cayley graph of a [finitely generated] group 
and this group has infinitely many finite conjugacy classes (e.g., infinite centre) then �p H1

(G) = {0} (there are many possible 
proofs: see Kappos [10, Theorem 6.4], Martin & Valette [11, Theorem 4.3] Puls [13, Theorem 5.3], Tessera [15, Proposition 3]
or [3, Theorem 3.2]).

Proof of Proposition 2. Let � be the group whose Cayley graph is H2, let �0 = Z × � and let G0 be the direct product of 
the bi-infinite line and H2 (a Cayley graph of �0). By the result quoted in the previous paragraph, �p H1

(G0) = {0}. The 
growth condition (see Woess’ book [17, (4.16) Corollary]) implies that G0 has ISd+1. By Theorem 5, one deduces that G has 
no non-constant harmonic functions with gradient in �p for p < d+1

2 .
To realise G0 as a spanning subgraph, the arguments are absolutely identical to those of the proof of Proposition 1

(§ 3 above). �
Proof of Corollary 3. The proof requires to distinguish two cases:

• if one of the two groups (say �2) is not virtually nilpotent, then its Cayley graphs have ISd for all d. By Theorem 5, 
“(3p) for all p” is equivalent to “(1p) for all p” (which does not depend on the generating set). Take a generating set so 
the graph is a direct product and take H2 to be a Cayley graph of �2. Apply Proposition 2 to conclude.

• if both groups are virtually nilpotent, so is the direct product, then it is well known that there are no non-constant 
harmonic functions with gradient in c0 (see for example [5, Lemma 5]) and even no non-constant functions with 
sublinear growth (see Hebisch & Saloff-Coste [8, Theorem 6.1]). Note that in this second case, one still has that (1p )

holds ∀p ∈ ]1, ∞[. �
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