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Motivated by a question of J. Globevnik, we show that a proper holomorphic immersion of 
the unit disk D into C2 or a proper holomorphic embedding f : D →C

3 may have arbitrary 
growth. Also, using tropical power series, we characterize those radial weights w on the 
complex plane for which there exist n ∈N and a proper holomorphic map f : C →C

n such 
that | f (z)| is equivalent to w(z).
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r é s u m é

Motivés par une question de J. Globevnik, nous montrons qu’une immersion holomorphe 
propre du disque unité D dans C2 ou un plongement holomorphe propre f : D → C

3 peut 
avoir une croissance arbitraire. En outre, en utilisant les séries entières tropicales, nous 
caractérisons les poids radiaux w sur le plan complexe pour lesquels il existe n ∈N et une 
application holomorphe propre f : C →C

n tels que | f (z)| soit équivalente à w(z).
© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let D denote Cd or the unit ball Bd of Cd , d ≥ 1. For the unit disk B1, we also use the symbol D.

1.1. Proper holomorphic maps

A holomorphic map f : D → C
n , n ≥ 2, is called proper if the preimage of every compact set is compact. A proper 

holomorphic map is an immersion if its Jacobian is non-degenerate everywhere. By definition, a proper holomorphic embedding
is a proper holomorphic immersion which is one-to-one. It is not easy to construct a proper holomorphic embedding 
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f : D →C
2; the first example was obtained by K. Kasahara and T. Nishino (see [13,21]). Later the unit disk was replaced by 

an annulus (see [17]), the punctured disk (see [3]) and more sophisticated planar domains. However, the following problem 
remains open (see [9,11]): Can any planar domain be properly holomorphically embedded into C2?

J. Globevnik [10] proves that a proper holomorphic embedding f : D → C
2 may grow arbitrarily rapidly; also, he asks 

whether such an embedding may grow arbitrarily slowly. Motivated by this question, we will show that results from [1]
provide quantitative assertions related to the growth of proper holomorphic immersions and embeddings of the unit disk D. 
In fact, a proper holomorphic immersion f : D → C

2 or a proper holomorphic embedding f : D → C
3 may have arbitrary 

growth.
For d ≥ 2, proper holomorphic embeddings f : Bd → C

n have been investigated by many authors in a more general 
setting of Stein manifolds Md of dimension d. The following essentially sharp result was obtained by Y. Eliashberg and 
M. Gromov [7]: every Stein manifold Md of dimension d can be properly holomorphically embedded into Cn(d) for the 
minimal integer n(d) > (3d + 1)/2.

1.2. Organization of the paper

We apply results from [1] in Section 2 to study the possible growth of proper holomorphic immersions and embeddings 
of certain bounded planar domains and of the unit ball Bd , d ≥ 2. In Section 3, the corresponding condition of approximation 
by finite sums of moduli of holomorphic functions on D is shown to be equivalent to several natural or well-known 
approximation properties. The arguments are essentially known for D = Bd , d ≥ 1; in the interesting case D = C

d , d ≥ 1, 
we use tropical power series.

2. Growth of proper holomorphic maps of the unit ball

For R = 1 or R = +∞, let w : [0, R) → (0, +∞) be a weight function, that is, let w be non-decreasing, continuous and 
unbounded. Setting w(z) = w(|z|) for z ∈ D, we extend w to a radial weight on D. In what follows, we freely exchange a 
weight function and its extension to a radial weight.

Given a set X and functions u, v : X → (0, +∞), we write u � v and we say that u and v are equivalent if C1u(x) ≤
v(x) ≤ C2u(x), x ∈ X , for some constants C1, C2 > 0.

Let Hol(D) denote the space of holomorphic functions on D.

Definition 2.1. A radial weight w on D is called approximable by a finite sum of moduli if there exist f1, f2, . . . , fn ∈ Hol(D), 
n ∈N, such that

| f1(z)| + | f2(z)| + · · · + | fn(z)| � w(z), z ∈ D.

Clearly, a radial weight w has the above property if and only if there exists a proper holomorphic map f : D → C
n for 

which | f (z)| � w(z).
A function v : [0, R) → (0, +∞) is called log-convex if log v(t) is a convex function of log t , 0 < t < R . We have the 

following theorem for D = Bd .

Theorem 2.2. (See [2, Theorems 1.2 and 1.3].) Let w be a radial weight on Bd, d ≥ 1. Then the following properties are equivalent:

– w is approximable by a finite sum of moduli on Bd;
– w is equivalent to a log-convex weight function.

Moreover, if d = 1, then any log-convex radial weight is approximable by the sum of moduli of two holomorphic functions.

Let f : D → C
n be a proper holomorphic immersion such that | f | � w for a radial weight w . For D = Bd , Theorem 2.2

guarantees that w is equivalent to a log-convex weight function. Applying Hadamard’s three-circle theorem, we obtain the 
same conclusion for D = C

d . The results of the present section show that this is the only restriction on w for D = Bd and 
sufficiently large n = n(Bd). However, the restrictions on w are more stringent for D =C

d; see Section 3.3.

Corollary 2.3. Let w be a log-convex radial weight on D. Then there exists a proper holomorphic immersion f : D → C
2 such that 

| f | � w.

Proof. Given a log-convex radial weight w , the proof of Theorem 1.2 in [2] provides a holomorphic map (g1, g2) : D → C
2

such that g j(0) �= 0, j = 1, 2, and |g1(z)| +|g2(zeiθ )| � w(z), z ∈ D, θ ∈ [0, 2π) \ Q , where Q is a finite set. Put h1(z) = g1(z)
and h2(z) = zg2(z). Then h1(0) �= 0 and h′

2(0) �= 0. Observe that two strictly positive continuous functions are equivalent in 
D if they are equivalent in a neighborhood of the unit circle. Also, the zero sets of h j and h′

j , j = 1, 2, are countable ones. 
Therefore, there exists θ ∈ [0, 2π) such that, for f1(z) = h1(z) and f2(z) = h2(zeiθ ), we have ( f1(z), f2(z)) �= (0, 0) for all 
z ∈ D, | f1| + | f2| � w and ( f ′

1(z), f ′
2(z)) �= (0, 0) for all z ∈D. �
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Corollary 2.4. Let w be a log-convex radial weight on D. Then there exists a proper holomorphic embedding f : D → C
3 such that 

| f | � w.

Proof. Corollary 2.3 provides a proper holomorphic immersion ( f1, f2) : D →C
2 such that | f1| + | f2| � w . It suffices to set 

f = ( f1, f2, f3), where f3(z) = z, z ∈ D. �
Remark 1. For the radial weights on D, the log-convexity is a regularity condition, not a growth one. In particular, a log-
convex weight function may grow arbitrarily slowly or arbitrarily rapidly. So, a proper holomorphic immersion f : D → C

2

may grow arbitrarily slowly. It would be interesting to know whether Corollary 2.3 extends to appropriate embeddings.

Remark 2. There are certain analogs of Corollaries 2.3 and 2.4 for multiply connected planar domains. For example, let 
D j � D, j = 1, . . . , J , be open disks such that D j ∩ Dk = ∅, j �= k. Put � = D \ ⋃ J

j=1 D j . Assume that a continuous function 
w : � → (0, +∞) has appropriate radial log-convex growth in certain neighborhoods of ∂D and ∂ D j , j = 1, . . . , J , with 
respect to the corresponding centers. Then, using Theorem 2.2 with d = 1, it is possible to construct a proper holomorphic 
embedding f : � →C

2 J+3 such that | f | � w .

For arbitrary d ≥ 1, Theorem 2.2 implies the following assertion.

Corollary 2.5. Let w be a log-convex radial weight on Bd. Then there exists a number n = n(d) and a proper holomorphic embedding 
f : Bd →C

n(d) such that | f | � w.

It would be interesting to learn the optimal value of n(d) in the above corollary.

3. Holomorphic approximation of radial weights

In this section, we show that the property of being approximable by a finite sum of moduli is equivalent to several 
natural or well-known conditions formulated below. The proofs will be given elsewhere.

3.1. Related approximation problems and properties

Recall that D denotes Cd or Bd , d ≥ 1. Given a radial weight w on D, the associated weight w̃ is defined as w̃(z) =
sup {| f (z)| : f ∈Hol(D), | f | ≤ w on D}, z ∈ D. The notion of associated weight naturally arises in the study of the growth 
space Aw(D), which consists of those f ∈ Hol(D) for which | f | ≤ C w on D with some constant C > 0. The definition of 
w̃ was formally introduced in [4] in a more general setting; see [4] for basic properties of w̃ . In particular, w̃ is a radial 
weight, so the associated weight function w̃ : [0, R) → (0, +∞) is correctly defined (R = 1 for D = Bd and R = +∞ for 
D =C

d). Also, w̃ is known to be log-convex.
In applications, many results related to the growth space Aw (D) are formulated in terms of w̃ , so it is important to 

distinguish those w that are equivalent to w̃ .

Definition 3.1. (See [4].) A weight function w : [0, R) → (0, +∞) is called essential if

w̃(t) � w(t), 0 ≤ t < R.

Definition 3.2. A weight function w : [0, R) → (0, +∞) is called approximable by the maximum of a holomorphic function 
modulus if there exists f ∈Hol(D) such that

M f (t) � w(t), 0 ≤ t < R, where M f (t) = max{| f (z)| : |z| = t}.

Recall that Hadamard’s three-circle theorem says that M f (t) is a log-convex function.

Definition 3.3. We say that a weight function w : [0, R) → (0, +∞) is approximable by power series with positive coefficients if 
there exist ak ≥ 0, k = 0, 1, . . . , such that

∞∑
k=0

aktk � w(t), 0 ≤ t < R.

Conditions related to the above property are of interest in weighted polynomial approximation problems (see, for exam-
ple, [16,18,19]) and in numerical applications. To investigate this property, P. Erdös and T. Kövári [8], and U. Schmid [20]
use the function
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P w(t) = max

{
tk

uk
: k = 0,1, . . .

}
, where uk = sup

{
tk

w(t)
: 0 ≤ t < R

}
, k = 0,1, . . . .

In other words, one considers the pointwise maximum of the monomials yk(t) = aktk such that yk(t) ≤ w(t) and yk(t)
reaches w(t) from below. Clearly, P w(t) ≤ w(t). So, the reverse inequality is of interest.

Definition 3.4. We say that a weight function w : [0, R) → (0, +∞) is approximable from below by monomials if

w(t) ≤ C P w(t), 0 ≤ t < R, for a constant C > 1.

3.2. Holomorphic approximation on Bd

For D = Bd , Theorem 2.2 and results from [5] and [6] provide direct relations between the properties under consid-
eration and the log-convexity. Namely, let w : [0, 1) → (0, +∞) be an arbitrary weight function. Then the properties in 
Definitions 2.1 and 3.1–3.4 with D = B1 (or in Definitions 2.1, 3.1 and 3.2 with D = Bd for all d ≥ 1) are equivalent. In fact, 
w has the required properties if and only if w is equivalent to a log-convex weight function.

3.3. Tropical power series and holomorphic approximation on Cd

Trivial examples wn(t) = 1 + tn+ 1
2 , t ≥ 0, show that the statement of Theorem 2.2 is no longer true for D = C. To 

avoid such examples, in what follows we assume that w : [0, +∞) → (0, +∞) is rapid; this means, by definition, that 
limt→∞ t−n w(t) = ∞ for all n ∈ N. However, there exists a log-convex rapid radial weight w on C such that w is not 
essential, and hence w is not approximable by finite sums of moduli; see, e.g., [4, Example 3.3]. In fact, assuming that w
is rapid, we show that the equivalence to a log-convex function should be replaced by the equivalence to a log-tropical
function.

Recall that a tropical polynomial in one variable is defined as

�(x) = sup
j∈E

(a j + jx), x ∈R, a j ∈ R, j ∈ E,

where E is a finite subset of Z+ . Such polynomials are natural objects of tropical geometry (see, for example, monograph 
[12]). Following Kiselman [15], we say that �(x) is a tropical power series if E = Z+ and the supremum is finite for all x ∈R.

Given a weight function v : [0, +∞) → (0, +∞), consider its logarithmic transformation

�(x) = �v(x) = log v(ex), −∞ < x < +∞.

Clearly, v is log-convex if and only if �v is convex. We say that v is log-tropical if �v is a tropical power series. Any 
tropical power series is convex, hence, any log-tropical weight is log-convex; but not every log-convex weight is equivalent 
to a log-tropical function, cf. Example 1 below. Also, observe that the properties of being equivalent to a log-convex function 
and to a log-tropical function coincide in the case of the unit disk.

Example 1. Let α > 1, and let wα be a weight function such that wα(t) = e(log t)α , t > e. Then wα is equivalent to a 
log-tropical weight function if and only if α ≥ 2.

We have �wα (x) = xα , x > 1, in the above example. In fact, if w is a smooth log-convex weight such that 
lim infx→∞ �′′

w(x) > 0, then w is equivalent to a log-tropical function; if limx→∞ �′′
w(x) = 0, then w is not equivalent 

to a log-tropical function. Observe that log-tropical weight functions may grow arbitrarily rapidly; however, a log-tropical 
weight function may grow slower than any given rapid weight function.

Theorem 3.5. Let w : [0, +∞) → (0, +∞) be a rapid weight function. Then the following properties are equivalent:

– the radial weight w on C is approximable by a finite sum of moduli;
– the radial weight w on Cd is approximable by a finite sum of moduli for all (some) d ≥ 1;
– w is approximable by the maximum of a holomorphic function modulus on C;
– w is approximable by the maximum of a holomorphic function modulus on Cd for all (some) d ≥ 1;
– w is essential on C;
– w is essential on Cd for all (some) d ≥ 1;
– w is approximable by power series with positive coefficients;
– w is approximable from below by monomials;
– w is equivalent to a log-tropical function.
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About the proof of Theorem 3.5 We use results from [8,14,20] to prove an abridged Theorem 3.5 without two key properties 
related to the approximation by a finite sum of moduli. The main technical result is the following implication: if w is 
equivalent to a log-tropical function, then the radial weight w on Cd is approximable by a finite sum of moduli for all 
d ≥ 1.

Remark 3. If a radial weight w on Cd is approximable by a finite sum of moduli for all d ≥ 1, then standard applications 
are related to various concrete operators on the growth space Aw(Cd). See [1,2] and references therein for analogous 
applications in the setting of the growth spaces on the unit ball of Cd , d ≥ 1.

Remark 4. Let w : [0, +∞) → (0, +∞) be a log-tropical rapid weight function. Then Theorem 3.5 implies analogs of Corol-
laries 2.3, 2.4 and 2.5. In fact, there exists a proper holomorphic immersion f : C → C

3 such that | f | � w . If w is 
not equivalent to a log-tropical weight function, then Theorem 3.5 guarantees that there is no proper holomorphic map 
f : C →C

n , n ∈N, such that | f (z)| � w(z).
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