

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Complex analysis

Growth of proper holomorphic maps and tropical power series

Croissance d'applications holomorphes propres et séries entières tropicales

Evgeny Abakumov^a, Evgueni Doubtsov^{b,c}

^a Université Paris-Est, LAMA (UMR 8050), 77454 Marne-la-Vallée, France

^b St. Petersburg Department of V.A. Steklov Mathematical Institute, Fontanka 27, St. Petersburg 191023, Russia

^c Department of Mathematics and Mechanics, St. Petersburg State University, Universitetski pr. 28, St. Petersburg 198504, Russia

A R T I C L E I N F O

Article history: Received 12 January 2016 Accepted after revision 3 March 2016 Available online 29 March 2016

Presented by Jean-Pierre Demailly

ABSTRACT

Motivated by a question of J. Globevnik, we show that a proper holomorphic immersion of the unit disk \mathbb{D} into \mathbb{C}^2 or a proper holomorphic embedding $f : \mathbb{D} \to \mathbb{C}^3$ may have arbitrary growth. Also, using tropical power series, we characterize those radial weights w on the complex plane for which there exist $n \in \mathbb{N}$ and a proper holomorphic map $f : \mathbb{C} \to \mathbb{C}^n$ such that |f(z)| is equivalent to w(z).

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Motivés par une question de J. Globevnik, nous montrons qu'une immersion holomorphe propre du disque unité \mathbb{D} dans \mathbb{C}^2 ou un plongement holomorphe propre $f: \mathbb{D} \to \mathbb{C}^3$ peut avoir une croissance arbitraire. En outre, en utilisant les séries entières tropicales, nous caractérisons les poids radiaux *w* sur le plan complexe pour lesquels il existe $n \in \mathbb{N}$ et une application holomorphe propre $f: \mathbb{C} \to \mathbb{C}^n$ tels que |f(z)| soit équivalente à w(z).

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let \mathcal{D} denote \mathbb{C}^d or the unit ball B_d of \mathbb{C}^d , $d \ge 1$. For the unit disk B_1 , we also use the symbol \mathbb{D} .

1.1. Proper holomorphic maps

A holomorphic map $f : \mathcal{D} \to \mathbb{C}^n$, $n \ge 2$, is called *proper* if the preimage of every compact set is compact. A proper holomorphic map is *an immersion* if its Jacobian is non-degenerate everywhere. By definition, *a proper holomorphic embedding* is a proper holomorphic immersion which is one-to-one. It is not easy to construct a proper holomorphic embedding

http://dx.doi.org/10.1016/j.crma.2016.03.001

E-mail addresses: evgueni.abakoumov@u-pem.fr (E. Abakumov), dubtsov@pdmi.ras.ru (E. Doubtsov).

¹⁶³¹⁻⁰⁷³X/© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

 $f : \mathbb{D} \to \mathbb{C}^2$; the first example was obtained by K. Kasahara and T. Nishino (see [13,21]). Later the unit disk was replaced by an annulus (see [17]), the punctured disk (see [3]) and more sophisticated planar domains. However, the following problem remains open (see [9,11]): Can any planar domain be properly holomorphically embedded into \mathbb{C}^2 ?

J. Globevnik [10] proves that a proper holomorphic embedding $f : \mathbb{D} \to \mathbb{C}^2$ may grow arbitrarily rapidly; also, he asks whether such an embedding may grow arbitrarily slowly. Motivated by this question, we will show that results from [1] provide quantitative assertions related to the growth of proper holomorphic immersions and embeddings of the unit disk \mathbb{D} . In fact, a proper holomorphic immersion $f : \mathbb{D} \to \mathbb{C}^2$ or a proper holomorphic embedding $f : \mathbb{D} \to \mathbb{C}^3$ may have arbitrary growth.

For $d \ge 2$, proper holomorphic embeddings $f : B_d \to \mathbb{C}^n$ have been investigated by many authors in a more general setting of Stein manifolds M_d of dimension d. The following essentially sharp result was obtained by Y. Eliashberg and M. Gromov [7]: every Stein manifold M_d of dimension d can be properly holomorphically embedded into $\mathbb{C}^{n(d)}$ for the minimal integer n(d) > (3d + 1)/2.

1.2. Organization of the paper

We apply results from [1] in Section 2 to study the possible growth of proper holomorphic immersions and embeddings of certain bounded planar domains and of the unit ball B_d , $d \ge 2$. In Section 3, the corresponding condition of approximation by finite sums of moduli of holomorphic functions on \mathcal{D} is shown to be equivalent to several natural or well-known approximation properties. The arguments are essentially known for $\mathcal{D} = B_d$, $d \ge 1$; in the interesting case $\mathcal{D} = \mathbb{C}^d$, $d \ge 1$, we use tropical power series.

2. Growth of proper holomorphic maps of the unit ball

For R = 1 or $R = +\infty$, let $w : [0, R) \to (0, +\infty)$ be *a weight function*, that is, let *w* be non-decreasing, continuous and unbounded. Setting w(z) = w(|z|) for $z \in D$, we extend *w* to *a radial weight* on D. In what follows, we freely exchange a weight function and its extension to a radial weight.

Given a set *X* and functions $u, v : X \to (0, +\infty)$, we write $u \asymp v$ and we say that *u* and *v* are *equivalent* if $C_1 u(x) \le v(x) \le C_2 u(x)$, $x \in X$, for some constants $C_1, C_2 > 0$.

Let $Hol(\mathcal{D})$ denote the space of holomorphic functions on \mathcal{D} .

Definition 2.1. A radial weight w on \mathcal{D} is called *approximable by a finite sum of moduli* if there exist $f_1, f_2, \ldots, f_n \in Hol(\mathcal{D})$, $n \in \mathbb{N}$, such that

 $|f_1(z)| + |f_2(z)| + \dots + |f_n(z)| \asymp w(z), \quad z \in \mathcal{D}.$

Clearly, a radial weight *w* has the above property if and only if there exists a proper holomorphic map $f : \mathcal{D} \to \mathbb{C}^n$ for which $|f(z)| \simeq w(z)$.

A function $v : [0, R) \to (0, +\infty)$ is called *log-convex* if $\log v(t)$ is a convex function of $\log t$, 0 < t < R. We have the following theorem for $\mathcal{D} = B_d$.

Theorem 2.2. (See [2, Theorems 1.2 and 1.3].) Let w be a radial weight on B_d , $d \ge 1$. Then the following properties are equivalent:

- w is approximable by a finite sum of moduli on B_d ;
- w is equivalent to a log-convex weight function.

Moreover, if d = 1, then any log-convex radial weight is approximable by the sum of moduli of two holomorphic functions.

Let $f : \mathcal{D} \to \mathbb{C}^n$ be a proper holomorphic immersion such that $|f| \simeq w$ for a radial weight w. For $\mathcal{D} = B_d$, Theorem 2.2 guarantees that w is equivalent to a log-convex weight function. Applying Hadamard's three-circle theorem, we obtain the same conclusion for $\mathcal{D} = \mathbb{C}^d$. The results of the present section show that this is the only restriction on w for $\mathcal{D} = B_d$ and sufficiently large $n = n(B_d)$. However, the restrictions on w are more stringent for $\mathcal{D} = \mathbb{C}^d$; see Section 3.3.

Corollary 2.3. Let w be a log-convex radial weight on \mathbb{D} . Then there exists a proper holomorphic immersion $f : \mathbb{D} \to \mathbb{C}^2$ such that $|f| \simeq w$.

Proof. Given a log-convex radial weight *w*, the proof of Theorem 1.2 in [2] provides a holomorphic map $(g_1, g_2) : \mathbb{D} \to \mathbb{C}^2$ such that $g_j(0) \neq 0$, j = 1, 2, and $|g_1(z)| + |g_2(ze^{i\theta})| \approx w(z)$, $z \in \mathbb{D}$, $\theta \in [0, 2\pi) \setminus Q$, where *Q* is a finite set. Put $h_1(z) = g_1(z)$ and $h_2(z) = zg_2(z)$. Then $h_1(0) \neq 0$ and $h'_2(0) \neq 0$. Observe that two strictly positive continuous functions are equivalent in \mathbb{D} if they are equivalent in a neighborhood of the unit circle. Also, the zero sets of h_j and h'_j , j = 1, 2, are countable ones. Therefore, there exists $\theta \in [0, 2\pi)$ such that, for $f_1(z) = h_1(z)$ and $f_2(z) = h_2(ze^{i\theta})$, we have $(f_1(z), f_2(z)) \neq (0, 0)$ for all $z \in \mathbb{D}$, $|f_1| + |f_2| \approx w$ and $(f'_1(z), f'_2(z)) \neq (0, 0)$ for all $z \in \mathbb{D}$. \square **Corollary 2.4.** Let *w* be a log-convex radial weight on \mathbb{D} . Then there exists a proper holomorphic embedding $f : \mathbb{D} \to \mathbb{C}^3$ such that $|f| \asymp w$.

Proof. Corollary 2.3 provides a proper holomorphic immersion $(f_1, f_2) : \mathbb{D} \to \mathbb{C}^2$ such that $|f_1| + |f_2| \asymp w$. It suffices to set $f = (f_1, f_2, f_3)$, where $f_3(z) = z, z \in \mathbb{D}$. \Box

Remark 1. For the radial weights on \mathbb{D} , the log-convexity is a regularity condition, not a growth one. In particular, a log-convex weight function may grow arbitrarily slowly or arbitrarily rapidly. So, a proper holomorphic immersion $f : \mathbb{D} \to \mathbb{C}^2$ may grow arbitrarily slowly. It would be interesting to know whether Corollary 2.3 extends to appropriate *embeddings*.

Remark 2. There are certain analogs of Corollaries 2.3 and 2.4 for multiply connected planar domains. For example, let $D_j \in \mathbb{D}$, j = 1, ..., J, be open disks such that $\overline{D}_j \cap \overline{D}_k = \emptyset$, $j \neq k$. Put $\Omega = \mathbb{D} \setminus \bigcup_{j=1}^J D_j$. Assume that a continuous function $w : \Omega \to (0, +\infty)$ has appropriate radial log-convex growth in certain neighborhoods of $\partial \mathbb{D}$ and ∂D_j , j = 1, ..., J, with respect to the corresponding centers. Then, using Theorem 2.2 with d = 1, it is possible to construct a proper holomorphic embedding $f : \Omega \to \mathbb{C}^{2J+3}$ such that $|f| \asymp w$.

For arbitrary $d \ge 1$, Theorem 2.2 implies the following assertion.

Corollary 2.5. Let *w* be a log-convex radial weight on B_d . Then there exists a number n = n(d) and a proper holomorphic embedding $f : B_d \to \mathbb{C}^{n(d)}$ such that $|f| \asymp w$.

It would be interesting to learn the optimal value of n(d) in the above corollary.

3. Holomorphic approximation of radial weights

In this section, we show that the property of being approximable by a finite sum of moduli is equivalent to several natural or well-known conditions formulated below. The proofs will be given elsewhere.

3.1. Related approximation problems and properties

Recall that \mathcal{D} denotes \mathbb{C}^d or B_d , $d \ge 1$. Given a radial weight w on \mathcal{D} , the associated weight \widetilde{w} is defined as $\widetilde{w}(z) = \sup\{|f(z)| : f \in \mathcal{H}ol(\mathcal{D}), |f| \le w \text{ on } \mathcal{D}\}, z \in \mathcal{D}$. The notion of associated weight naturally arises in the study of the growth space $\mathcal{A}^w(\mathcal{D})$, which consists of those $f \in \mathcal{H}ol(\mathcal{D})$ for which $|f| \le Cw$ on \mathcal{D} with some constant C > 0. The definition of \widetilde{w} was formally introduced in [4] in a more general setting; see [4] for basic properties of \widetilde{w} . In particular, \widetilde{w} is a radial weight, so the associated weight function $\widetilde{w} : [0, R) \to (0, +\infty)$ is correctly defined $(R = 1 \text{ for } \mathcal{D} = B_d \text{ and } R = +\infty \text{ for } \mathcal{D} = \mathbb{C}^d$). Also, \widetilde{w} is known to be log-convex.

In applications, many results related to the growth space $\mathcal{A}^{w}(\mathcal{D})$ are formulated in terms of \widetilde{w} , so it is important to distinguish those w that are equivalent to \widetilde{w} .

Definition 3.1. (See [4].) A weight function $w : [0, R) \to (0, +\infty)$ is called *essential* if

$$\widetilde{w}(t) \simeq w(t), \quad 0 \leq t < R.$$

Definition 3.2. A weight function $w : [0, R) \to (0, +\infty)$ is called *approximable by the maximum of a holomorphic function modulus* if there exists $f \in Hol(\mathcal{D})$ such that

$$M_f(t) \simeq w(t), \quad 0 \le t < R, \text{ where } M_f(t) = \max\{|f(z)| : |z| = t\}.$$

Recall that Hadamard's three-circle theorem says that $M_f(t)$ is a log-convex function.

Definition 3.3. We say that a weight function $w : [0, R) \to (0, +\infty)$ is *approximable by power series with positive coefficients* if there exist $a_k \ge 0, k = 0, 1, ...$, such that

$$\sum_{k=0}^{\infty} a_k t^k \asymp w(t), \quad 0 \le t < R.$$

Conditions related to the above property are of interest in weighted polynomial approximation problems (see, for example, [16,18,19]) and in numerical applications. To investigate this property, P. Erdös and T. Kövári [8], and U. Schmid [20] use the function

$$P_w(t) = \max\left\{\frac{t^k}{u_k} : k = 0, 1, \dots\right\}, \text{ where } u_k = \sup\left\{\frac{t^k}{w(t)} : 0 \le t < R\right\}, k = 0, 1, \dots.$$

In other words, one considers the pointwise maximum of the monomials $y_k(t) = a_k t^k$ such that $y_k(t) \le w(t)$ and $y_k(t)$ reaches w(t) from below. Clearly, $P_w(t) \le w(t)$. So, the reverse inequality is of interest.

Definition 3.4. We say that a weight function $w : [0, R) \to (0, +\infty)$ is approximable from below by monomials if

 $w(t) \le C P_w(t), \quad 0 \le t < R, \text{ for a constant } C > 1.$

3.2. Holomorphic approximation on B_d

For $\mathcal{D} = B_d$, Theorem 2.2 and results from [5] and [6] provide direct relations between the properties under consideration and the log-convexity. Namely, let $w : [0, 1) \rightarrow (0, +\infty)$ be an arbitrary weight function. Then the properties in Definitions 2.1 and 3.1–3.4 with $\mathcal{D} = B_1$ (or in Definitions 2.1, 3.1 and 3.2 with $\mathcal{D} = B_d$ for all $d \ge 1$) are equivalent. In fact, w has the required properties if and only if w is equivalent to a log-convex weight function.

3.3. Tropical power series and holomorphic approximation on \mathbb{C}^d

Trivial examples $w_n(t) = 1 + t^{n+\frac{1}{2}}$, $t \ge 0$, show that the statement of Theorem 2.2 is no longer true for $\mathcal{D} = \mathbb{C}$. To avoid such examples, in what follows we assume that $w : [0, +\infty) \to (0, +\infty)$ is *rapid*; this means, by definition, that $\lim_{t\to\infty} t^{-n}w(t) = \infty$ for all $n \in \mathbb{N}$. However, there exists a log-convex rapid radial weight w on \mathbb{C} such that w is not essential, and hence w is not approximable by finite sums of moduli; see, e.g., [4, Example 3.3]. In fact, assuming that w is rapid, we show that the equivalence to a log-convex function should be replaced by the equivalence to a *log-tropical* function.

Recall that a tropical polynomial in one variable is defined as

$$\Psi(x) = \sup_{j \in E} (a_j + jx), \quad x \in \mathbb{R}, \ a_j \in \mathbb{R}, \ j \in E,$$

where *E* is a finite subset of \mathbb{Z}_+ . Such polynomials are natural objects of tropical geometry (see, for example, monograph [12]). Following Kiselman [15], we say that $\Psi(x)$ is *a tropical power series* if $E = \mathbb{Z}_+$ and the supremum is finite for all $x \in \mathbb{R}$. Given a weight function $v : [0, +\infty) \to (0, +\infty)$, consider its logarithmic transformation

$$\Phi(x) = \Phi_v(x) = \log v(e^x), \quad -\infty < x < +\infty.$$

Clearly, v is log-convex if and only if Φ_v is convex. We say that v is *log-tropical* if Φ_v is a tropical power series. Any tropical power series is convex, hence, any log-tropical weight is log-convex; but not every log-convex weight is equivalent to a log-tropical function, cf. Example 1 below. Also, observe that the properties of being equivalent to a log-convex function and to a log-tropical function coincide in the case of the unit disk.

Example 1. Let $\alpha > 1$, and let w_{α} be a weight function such that $w_{\alpha}(t) = e^{(\log t)^{\alpha}}$, t > e. Then w_{α} is equivalent to a log-tropical weight function if and only if $\alpha \ge 2$.

We have $\Phi_{W_{\alpha}}(x) = x^{\alpha}$, x > 1, in the above example. In fact, if w is a smooth log-convex weight such that $\liminf_{x\to\infty} \Phi''_w(x) > 0$, then w is equivalent to a log-tropical function; if $\lim_{x\to\infty} \Phi''_w(x) = 0$, then w is not equivalent to a log-tropical function. Observe that log-tropical weight functions may grow arbitrarily rapidly; however, a log-tropical weight function may grow slower than any given rapid weight function.

Theorem 3.5. Let $w : [0, +\infty) \to (0, +\infty)$ be a rapid weight function. Then the following properties are equivalent:

- the radial weight w on \mathbb{C} is approximable by a finite sum of moduli;
- the radial weight w on \mathbb{C}^d is approximable by a finite sum of moduli for all (some) $d \ge 1$;
- w is approximable by the maximum of a holomorphic function modulus on \mathbb{C} ;
- w is approximable by the maximum of a holomorphic function modulus on \mathbb{C}^d for all (some) $d \ge 1$;
- w is essential on \mathbb{C} ;
- w is essential on \mathbb{C}^d for all (some) $d \ge 1$;
- w is approximable by power series with positive coefficients;
- w is approximable from below by monomials;
- w is equivalent to a log-tropical function.

468

About the proof of Theorem 3.5 We use results from [8,14,20] to prove an abridged Theorem 3.5 without two key properties related to the approximation by a finite sum of moduli. The main technical result is the following implication: if w is equivalent to a log-tropical function, then the radial weight w on \mathbb{C}^d is approximable by a finite sum of moduli for all $d \ge 1$.

Remark 3. If a radial weight w on \mathbb{C}^d is approximable by a finite sum of moduli for all $d \ge 1$, then standard applications are related to various concrete operators on the growth space $\mathcal{A}^w(\mathbb{C}^d)$. See [1,2] and references therein for analogous applications in the setting of the growth spaces on the unit ball of \mathbb{C}^d , $d \ge 1$.

Remark 4. Let $w : [0, +\infty) \to (0, +\infty)$ be a log-tropical rapid weight function. Then Theorem 3.5 implies analogs of Corollaries 2.3, 2.4 and 2.5. In fact, there exists a proper holomorphic immersion $f : \mathbb{C} \to \mathbb{C}^3$ such that $|f| \asymp w$. If w is not equivalent to a log-tropical weight function, then Theorem 3.5 guarantees that there is no proper holomorphic map $f : \mathbb{C} \to \mathbb{C}^n$, $n \in \mathbb{N}$, such that $|f(z)| \asymp w(z)$.

Acknowledgements

The authors are grateful to Pascal Thomas for helpful discussions. The second author was supported by the Russian Science Foundation (grant No. 14-41-00010).

References

- [1] E. Abakumov, E. Doubtsov, Reverse estimates in growth spaces, Math. Z. 271 (1-2) (2012) 399-413.
- [2] E. Abakumov, E. Doubtsov, Moduli of holomorphic functions and logarithmically convex radial weights, Bull. Lond. Math. Soc. 47 (3) (2015) 519–532.
- [3] H. Alexander, Explicit imbedding of the (punctured) disc into C², Comment. Math. Helv. 52 (4) (1977) 539–544.
- [4] K.D. Bierstedt, J. Bonet, J. Taskinen, Associated weights and spaces of holomorphic functions, Stud. Math. 127 (2) (1998) 137-168.
- [5] J. Bonet, P. Domański, M. Lindström, Essential norm and weak compactness of composition operators on weighted Banach spaces of analytic functions, Can. Math. Bull. 42 (2) (1999) 139–148.
- [6] E. Doubtsov, Harmonic approximation by finite sums of moduli, J. Math. Anal. Appl. 430 (2) (2015) 685-694.
- [7] Y. Eliashberg, M. Gromov, Embeddings of Stein manifolds of dimension n into the affine space of dimension 3n/2 + 1, Ann. Math. (2) 136 (1) (1992) 123–135.
- [8] P. Erdös, T. Kövári, On the maximum modulus of entire functions, Acta Math. Acad. Sci. Hung. 7 (1956) 305–317.
- [9] F. Forstnerič, E.F. Wold, Embeddings of infinitely connected planar domains into C², Anal. PDE 6 (2) (2013) 499–514.
- [10] J. Globevnik, On growth of holomorphic embeddings into \mathbb{C}^2 , Proc. R. Soc. Edinb., Sect. A 132 (4) (2002) 879–889.
- [11] J. Globevnik, B. Stensønes, Holomorphic embeddings of planar domains into C², Math. Ann. 303 (4) (1995) 579–597.
- [12] I. Itenberg, G. Mikhalkin, E. Shustin, Tropical Algebraic Geometry, second ed., Oberwolfach Seminars, vol. 35, Birkhäuser Verlag, Basel, Switzerland, 2009.
- [13] K. Kasahara, T. Nishino, As announced in Math. Rev. 38 (1969) #4721.
- [14] C.O. Kiselman, Croissance des fonctions plurisousharmoniques en dimension infinie, Ann. Inst. Fourier (Grenoble) 34 (1) (1984) 155–183.
- [15] C.O. Kiselman, Questions inspired by Mikael Passare's mathematics, Afr. Math. 25 (2) (2014) 271-288.
- [16] P. Koosis, Sur l'approximation pondérée par des polynômes et par des sommes d'exponentielles imaginaires, Ann. Sci. Éc. Norm. Super. (3) 81 (1964) 387-408.
- [17] H.B. Laufer, Imbedding annuli in C², J. Anal. Math. 26 (1973) 187–215.
- [18] D.S. Lubinsky, Strong Asymptotics for Extremal Errors and Polynomials Associated with Erdős-Type Weights, Pitman Research Notes in Mathematics Series, vol. 202, Longman Scientific & Technical, Harlow, 1989.
- [19] S.N. Mergelyan, Weighted Approximations by Polynomials, American Mathematical Society Translations, Ser. 2, vol. 10, American Mathematical Society, Providence, RI, USA, 1958, pp. 59–106.
- [20] U. Schmid, On the approximation of positive functions by power series. II, J. Approx. Theory 92 (3) (1998) 486–501.
- [21] J.-L. Stehlé, Plongements du disque dans C², in: Séminaire Pierre-Lelong (Analyse), Année 1970–1971, in: Lecture Notes in Math., vol. 275, Springer, Berlin, 1972, pp. 119–130.