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We obtain a formula for the number of genus one curves with a fixed complex structure of 
a given degree on a del-Pezzo surface that pass through an appropriate number of generic 
points of the surface. This enumerative problem is expressed as the difference between the 
symplectic invariant and an intersection number on the moduli space of rational curves.
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r é s u m é

Nous obtenons une formule pour le nombre de courbes de genre un avec une structure 
complexe fixée, de degré donné, et passant par un nombre approprié de points génériques 
de la surface. La solution est exprimée comme la différence entre l’invariant symplectique 
et un nombre d’intersection sur l’espace de modules de courbes rationnelles.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Enumerative Geometry of rational curves in P2
C

is a classical question in algebraic geometry. A natural generalization is 
to ask how many elliptic curves, with a fixed j-invariant, are there of a given degree that pass through the right number 
of generic points. In [8] and [4], using methods of algebraic and symplectic geometry respectively, Pandharipande and Ionel 
obtain a formula for the number of degree d genus one curves with a fixed complex structure in P2

C
that pass through 

3d − 1 generic points. In this paper, we extend their result to del-Pezzo surfaces.
Let X be a complex del-Pezzo surface and β ∈ H2(X, Z) a given homology class. Let n0,β denote the number of rational 

curves of degree β in X that pass through δβ generic points, where δβ := 〈c1(TX), β〉 − 1. We prove the following.
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Theorem 1.1. Let X and β be as above. Let n j
1,β denote the number of elliptic curves with fixed j invariant of degree β in X that pass 

through δβ generic points. Then

n j
1,β = 2gβ

|Aut(�1, j)|n0,β where gβ := β · β − c1(TX) · β + 2

2
,

|Aut(�1, j)| denotes the number of automorphisms of a genus one Riemann surface with fixed j invariant that fixes a point and “·” 
denotes topological intersection.

Note that gβ in Theorem 1.1 coincides with the genus of a smooth degree β curve on X . The numbers n0,β are computed 
in [6, p. 29] and [2, Theorem 3.6] using a recursive formula. When X := P

2, our formula for n j
1,β is consistent with the 

formula of Pandharipande and Ionel in [8] and [4]. In [6], the authors actually give a formula to compute the genus 0
Gromov–Witten invariants of the del-Pezzo surfaces, which a priori need not be enumerative. It is shown in [2, page 63, 
last paragraph] that the numbers obtained in [6] are actually equal to n0,β .

The results of Pandharipande and Ionel generalize the result of P. Aluffi; in [1], he computes the number of genus one 
cubics with a fixed complex structure in P2 through 8 generic points.

The problem of enumerating elliptic curves with a fixed j-invariant has also been studied by tropical geometers. In [5], 
Kerber and Markwig compute the number of tropical elliptic curves in P2 with a fixed j-invariant. Combined with the 
correspondence theorem [7, Theorem A], one can conclude that the number computed is indeed the same as the number of 
plane elliptic curves with a fixed j-invariant. Currently, this question is also being studied for other surfaces. In [7], Len and 
Ranganathan obtain a formula for the number of elliptic curves with a fixed j-invariant of a given degree for Hirzebruch 
surfaces, using methods from tropical geometry.

2. Enumerative versus symplectic invariant

We now explain the basic idea to compute n j
1,β . Let (X, J , ω) be a compact semi-positive symplectic manifold, with a 

compatible almost complex structure J of dimension 2m and β ∈ H2(X, Z) be a homology class. Let k be a nonnegative 
integer such that k + 2g ≥ 3. Let α1, · · · , αk and γ1, · · · , γl be integral homology classes in H∗(X, Z) such that

k∑
i=1

2m − deg(αi) +
l∑

j=1

(2m − 2 − deg(γ j)) = 2m(1 − g) + 2〈c1(TX), β〉 . (2.1)

Fix pseudocycles Ai , 1 ≤ i ≤ k, and B j , 1 ≤ j ≤ l, on X representing the homology classes αi and γ j . Fix a compact 
Riemann surface �g of genus g; its complex structure will be denoted by j. Define

Mν, j
g,k(X, β;α1, · · · ,αk;γ1, · · · , γk) := {(u, y1, · · · , yk) ∈ C∞(�g, X) × Xk | u∗[�g] = β,

∂ j, J u = ν, u(yi) ∈ Ai ∀ i = 1, · · · ,k, Im(u) ∩ B j �= ∅ ∀ j = 1, · · · , l} ,

where ν : �g × X −→ T ∗�g ⊗ TX is a generic smooth perturbation and

∂ j, J u := 1

2

(
du + J ◦ du ◦ j

)
.

The symplectic invariant (or the Ruan–Tian invariant) is defined to be the signed cardinality of the above set, i.e.,

RTg,β(α1, · · · ,αk;γ1, · · · , γl) := ±|Mν, j
g,k(X, β;α1, · · · ,αk;γ1, · · · , γk)| .

When k = 0, we denote the invariant as

RTg,β(∅;γ1, · · · , γl).

Furthermore, when γ1, . . . , γl all denote the class of a point, then we abbreviate the invariant as RTg,β . Similarly, when l = 0
we denote the invariant as

RTg,β(α1, · · · ,αk; ∅).

If (2.1) is not satisfied, then we formally define the invariant to be zero.
A natural question is to ask whether the symplectic invariant RTg,β is equal to the enumerative invariant n j

g,β . For P2, 
and more generally for del-Pezzo surfaces, the genus zero symplectic invariant is equal to the enumerative invariant [9, 
page 267]. However, even for P2, the genus one symplectic invariant is not enumerative. In general, the following fact is 
true ([11, Theorem 1.1]),

RT1,β = |Aut(�1, j)|n j + CR , (2.2)
1,β
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where CR denotes a correction term. Let us explain what this term means. First we note that the factor of |Aut(�1, j)| is 
there because we do not mod out by automorphisms in the definition of Mν, j

g,k . Hence, if u : (�1, j) −→ X is a solution to 
the ∂-equation and the complex structure on X is genus one regular, then there will be |Aut(�1, j)| new solutions close to 
u to the perturbed ∂-equation. Next, we note that as ν → 0, a sequence of ( J , ν)-holomorphic maps can also converge to a 
bubble tree whose base (the torus) is a constant (ghost) map [4, page 2]. These maps will also contribute to the computation 
of RT1,β invariant. This extra contribution is defined to be the correction term CR.

We now explain how to compute the correction term. Let M0,n(X, β) denote the moduli space of rational degree β
curves on X that represent the class β ∈ H2(X, Z) and are equipped with n ordered marked points, modulo equivalence. 
In other words,

M0,n(X, β) := {(u, y1, · · · , yn) ∈ C∞(P1, X) × (P1)n | ∂u = 0, u∗[P1] = β}/PSL(2,C) ,

with PSL(2, C) acting diagonally on P1 × (P1)n . Let M0,n(X, β) denote the stable map compactification of M0,n(X, β).
Let us now focus on M0,1(X, β), the moduli space of curves with one marked point. Let H be the divisor in 

M0,1(X, β) corresponding to the extra condition that the curve passes through a given point. Let L −→ M0,1(X, β) and 
ev : M0,1(X, β) −→ X be the universal tangent bundle and the evaluation map at the marked point. Following the same 
argument as in [4, Lemma 1.23], we conclude that the bundle ev∗TX −→ M0,1(X, β) ∩ Hδβ admits a nowhere vanishing 
section ν . This is because the rank of ev∗TX is two, while the dimension of the variety M0,1(X, β) ∩ Hδβ is one. Hence 
ev∗TX −→ M0,1(X, β) ∩ Hδβ admits a trivial sub bundle spanned by ν , which we denote as C〈ν〉. When X := P

2, it is 
shown in [4, Lemma 1.25], that the correction term is given by

CR = 〈c1(L∗ ⊗ ev∗TX/C〈ν〉), [M0,1(X, β)] ∩Hδβ 〉. (2.3)

A more detailed justification of (2.3) is given in [11], by using the results of [12]. Furthermore, the gluing construction in 
[12] is valid in general for Kähler manifolds [12, page 8]. Hence, we conclude that (2.3) holds for del-Pezzo surfaces as well. 
Zinger also pointed out this fact to the second author of this paper in a personal communication ([13]).

In the next section we will obtain a formula for c1(L∗) and compute the right-hand side of (2.3). The left-hand side of 
(2.2) is computed using the formula given in [9]. Hence, we obtain n j

1,β .

3. Computation of the correction term

We will now give a self-contained proof of obtaining a formula for c1(L∗) and hence computing the correction term. 
Alternatively, one can also compute the Chern classes by using the dilaton equation and the divisor equation as given in [3, 
Section 26.3].

Lemma 3.1. On M0,1(X, β), the following equality of divisors holds:

c1(L∗) = 1

(β · x1)2

(
(x1 · x1)H− 2(β · x1)ev∗(x1) +

∑
β1+β2=β,
β1,β2 �=0

Bβ1,β2(β2 · x1)
2
)

, (3.1)

where H is the locus satisfying the extra condition that the curve passes through a given point, Bβ1,β2 denotes the boundary stratum 
corresponding to the splitting into a degree β1 curve and degree β2 curve with the last marked point lying on the degree β1 component 
and xi := ci(TX).

Proof. The proof is similar to the one given in [4]. Let μ1 , μ2 ∈ X be two generic pseudocycles in X that represent the 
class Poincaré dual to x1. Let M̃ be a cover of M0,1(X, β) with two additional marked points with the last two marked 
points lying on μ1 and μ2 respectively. More precisely,

M̃ := ev−1
2 (μ1) ∩ ev−1

3 (μ2) ⊂ M0,3(X, β) ,

where ev2 and ev3 denote the evaluation maps at the second and third marked points respectively. Note that the projection 
π : M̃ −→ M0,1(X, β) that forgets the last two marked points is a (β · x1)

2-to-one map. We now construct a meromorphic 
section

φ : M̃ −→ π∗L∗ given by φ([u, y1; y2, y3]) := (y2 − y3)dy1

(y1 − y2)(y1 − y3)
. (3.2)

The right-hand side of (3.2) involves an abuse of notation: it is to be interpreted in an affine coordinate chart and then 
extended as a meromorphic section on the whole of P1. Note that on (P1)3, the holomorphic line bundle

η := q∗KP1 ⊗O(P1)3(�12 + �13 − �23)
1
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is trivial, where q1 : (P1)3 −→ P
1 is the projection to the first factor and � jk ⊂ (P1)3 is the divisor consisting of all points 

(zi , z2 , z3) such that z j = zk . The diagonal action of PSL(2, C) on (P1)3 lifts to η preserving its trivialization. The section φ
in (3.2) is given by this trivialization of η.

Since c1(π∗L∗) is the zero divisor minus the pole divisor of φ, we gather that

c1(π∗L∗) = {y2 = y3} − {y1 = y2} − {y1 = y3} .

When projected down to M0,1(X, β), the divisor {y2 = y3} becomes

(x1 · x1)H+ (β2 · x1)
2Bβ1,β2 ,

while both the divisors {y1 = y2} and {y1 = y3} become (β · x1)ev∗(x1). Since M̃ is a (β · x1)
2-to-one cover of M0,1(X, β), 

we obtain (3.1). �
Using Lemma 3.1, we conclude that

〈c1(L∗), [M0,1(X, β)] ∩Hδβ 〉 = −2n0,β . (3.3)

To see why this is so, we first note that M0,1(X, β) ∩Hδβ+1 is zero. This is because the number of rational curves through 
δβ + 1 generic points is zero. Next, we note that M0,1(X, β) ∩ Hδβ ∩ Bβ1,β2 is also zero. This is because the number of β
curves which pass through δβ points cannot split into a degree β1 curve and a degree β2 curve. This is because such a split 
curve will pass through δβ1 + δβ2 points, which is one less than δβ . So a split curve cannot pass through δβ generic points. 
Finally we note that for any homology class μ ∈ H2(X, Z), the following is true

[M0,1(X, β)] ∩Hδβ ∩ ev∗[μ] = n0,β(β · μ). (3.4)

To see why this is so, we note that the left-hand side of (3.4) counts the number of degree β rational curves through δβ

points and one marked point, such that the marked point lies on some cycle representing the class β . There are β ·μ choices 
for that marked point to lie, which gives us the right hand side of (3.4). These three facts give us (3.3). Note that, when we 
say ev∗[μ], we mean the pullback of the cohomology class Poincaré dual to μ (inside X). Using (3.4) (with μ := c1(TX)), 
we conclude that

〈c1(ev∗TX), [M0,1(X, β)] ∩Hδβ 〉 =
(
β · c1(TX)

)
n0,β . (3.5)

From (3.3), (3.5) and (2.3) it follows that

CR =
(
β · c1(TX) − 2

)
n0,β . (3.6)

4. Computation of the symplectic invariant

We now compute the symplectic invariant RT1,β := RT1,β (∅; p1, . . . , pδβ ) using the formula [9, page 263, (1.2)]. Let 
e1 , e2 , · · · , ek be a basis for H∗(X, Z). Let

gij := ei · e j and gij :=
(

g−1
)

i j
.

If the degrees of ei and e j do not add up to be the dimension of X then define gij to be zero. Using [9, page 263, (1.2)] we 
conclude that

RT1,β(∅; p1, . . . , pδβ ) =
∑
i, j

gi jRT0,β(ei, e j; p1, . . . , pδβ ) =
∑
i, j

gi jn0,β(β · ei)(β · e j)

= (β · β)n0,β . (4.1)

The last equality follows by writing β in the given basis ei and using the definition of gij ; the second equality follows from 
the same we justify (3.4). Equations (4.1), (3.6) and (2.2) give us the formula of Theorem 1.1.

5. Regularity of the complex structure for del-Pezzo surfaces

We now show that the complex structure on the del-Pezzo surfaces is genus one regular for immersion. In the statement 
of Theorem 1.1, the curve u passes through δβ generic points. Hence the curve is going to be an immersion and hence it 
suffices to prove regularity for immersions.

Lemma 5.1. Let X be P2 blown up at k points and (�1, j) a compact genus 1 Riemann surface with a complex structure j. Let 
u : �1 −→ X be a holomorphic map representing the class β := dL − m1 E1 − . . . − mk Ek ∈ H2(X, Z), where L and Ei denote the 
class of a line and the exceptional divisors respectively. Then Du, the linearization of the ∂ j, J at u is surjective, provided d > 0 and u is 
an immersion. In particular, the complex structure on the del-Pezzo surface is genus 1 regular for immersions.
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Proof. We first note that if L is a holomorphic line bundle on (�1, j) of positive degree, then the cup product

H0(�1,L) ⊗ H1(�1,L∗) −→ H1(�1,L) ⊗L∗) = C

is nondegenerate. Indeed, this coincides with the Serre duality pairing because the canonical line bundle of �1 is trivial, 
and hence the pairing is nondegenerate. Next consider the short exact sequence of vector bundles on �1 given by the 
differential of u

0 −→ T �1
du−→ u∗TX −→ Q := (u∗TX)/T �1 −→ 0 . (5.1)

Let

H0(�1, Q )
ρ−→ H1(�1, T �1) −→ H1(�1, u∗TX) −→ H1(�1, Q ) (5.2)

be the long exact sequence of cohomologies associated with it. We have H1(�1, Q ) = 0 because degree(Q ) > 0 (note 
that degree(u∗TX) > 0 and degree(T �1) = 0). The exact sequence in (5.1) does not split; for the corresponding extension 
class ψ ∈ H1(�1, (T �1) ⊗ Q ∗) = H1(�1, Q ∗), as observed before, there is ψ ′ ∈ H0(�1, Q ) such that ψ ∪ ψ ′ �= 0. Hence 
ρ in (5.2) is nonzero. This implies that ρ is surjective because dim H1(�1, u∗TX) = 1. Hence from (5.2) we conclude that 
H1(�1, u∗TX) = 0, which proves that the cokernel of Du is zero (i.e., Du is surjective). �

When X := P
1 × P

1, the complex structure is genus one regular; that is because for P1 the complex structure is genus 
one regular (by [10, Corollary 6.5]). Hence, the same fact holds for products of P1.
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