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We show that quite universally the holonomicity of the complexity function of a divisor 
does not predict whether the Newton–Okounkov body is polyhedral for every choice of a 
flag.
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r é s u m é

Nous montrons que, pratiquement universellement, une condition de régularité de la 
cohomologie d’un diviseur grand sur une variété projective ne signifie pas que le corps 
de Newton–Okounkov correspondant est polyédrique.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Let X be a complex projective variety of dimension d with a complete flag of subvarieties Y• : X = Y0 ⊃ . . . ⊃ Yd such 
that Yd is a smooth point for all Yi . For any big divisor D on X , [9] and [4] construct a convex body �Y• (X; D) ⊆ R

d . This 
Newton–Okounkov body encodes asymptotic information about the sections of multiples of D . For example, its Euclidean 
volume and the volume of D as a divisor on X (cf. [8, §2.2.C]) coincide up to a normalization factor.

Work of [9] and [2] suggests that the Newton–Okounkov bodies encode many important invariants of the divisor D . For 
example [2] shows that the set of bodies �Y• (X; D) considering all flags Y• as above recovers the numerical class of D . 
More recently, [5,6] recover the non-ample locus B+(D) and non-nef locus B−(D) of D from the bodies associated with 
certain flags. On the other hand, [7] shows that the particular shape of �Y• (X; D) for many flags Y• is not necessarily 
descriptive of the positivity properties of D .

In this note we further this investigation on algebro-geometric consequences of the shape of Newton–Okounkov bodies. 
We show that quite universally a certain regularity condition on the cohomology of D that has been considered by Katzarkov 
and Liu [3] among others does not determine the polyhedrality of �Y• (X; D). The strategy is to lift a generalization of an 
example of [7] to some representative of each birational class of varieties of dimension d � 4.
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The complexity function of a functor F on a category C with respect to objects E1, E2 in C is defined in [1,3] by

E E1,E2,F (x,q) =
∑
n,i

dim Exti(E1, F n E2)xnqi .

In particular, they ask whether E E1,E2,F is holonomic. This would imply that the function E E1,E2,F (x, q) is determined by 
a finite set of data. Concretely, a formal power series f = ∑

i,n ai,nxnqi is holonomic, or D-finite (see [11, Definition 15]), if 
there exist tuples of not all zero polynomials p0, . . . , pk and g0, . . . , gk in x and q such that f satisfies linear differential 
equations

p0
∂k f

∂xk
+ p1

∂k−1 f

∂xk−1
+ · · · + pk f = 0

g0
∂k f

∂qk
+ g1

∂k−1 f

∂qk−1
+ · · · + gk f = 0.

In general, E E1,E2,F (x, q) cannot be expected to be holonomic. [1] gives an example where X is a P1-bundle over a product 
of elliptic curves, E1 = E2 = OX , and F is the twist by an appropriately chosen big divisor. The authors suggest that this 
failure of being holonomic can be linked to the non-polyhedrality of the categorical Okounkov-body of D (cf. [3, Section 4]). 
We consider the following

Question. Let X = Y0 ⊃ Y1 ⊃ . . . ⊃ Yd be an admissible flag on the projective variety X of dimension d, i.e., Yk is irreducible 
of codimension k and smooth at the point Yd for all k. Let D be a big divisor on X whose associated Newton–Okounkov 
body �Y•(X; D) is nonpolyhedral. Is the complexity function

E X,D(x,q) :=
∑
n,i

dim Hi(X;OX (nD))xnqi

necessarily non-holonomic?

Our first counterexample has D ample:

Example 1. (See [7].) Let X = P
2 × P

2. Consider E ⊆ P
2 an elliptic curve without complex multiplication. Construct the flag:

• Y0 = X .
• Y1 = P

2 × E .
• Y2 = E × E .
• Y3 is general in the complete linear series | f1 + f2 + �E | on Y2. Here f1, f2 are the fibers of the projections to the 

factors in the product, and � is the diagonal.
• Y4 is a general point on Y3.

Let D be a divisor with associated line bundle O(3, 1). [7, Example 3.4] shows that the associated Newton–Okounkov body 
�Y•(X; D) is not polyhedral.

On the other hand, the complexity function of an ample divisor is holonomic by the following lemma. �
Lemma 2. Let X be a projective variety of dimension d and let D be a semi-ample divisor on it. Then the complexity function E X,D(x, q)

is holonomic.

Proof. Assume first that OX (D) is globally generated. Let π : X → P
N be the morphism determined by the complete linear 

series |D|. Then D = π∗OPN (1). The ampleness of the hyperplane class on PN , the Leray spectral sequence, and Serre 
vanishing imply

Hi(X;OX (nD)) = H0
(
P

N ; Riπ∗OX ⊗OPN (n)
)

for n sufficiently large. There exists polynomials Pi such that Pi(n) = dim H0(PN ; Riπ∗OX ⊗OPN (n)) for any i and sufficiently 
large n. Then up to finitely many terms, which in any case do not influence holonomicity (cf. [10, Proposition 2.3.(ii)]),

E X,D(x,q) =
d∑

i=0

qi
∑

r

P i(r)xr .

This is a rational function in x, polynomial in q. As such it is algebraic, and in particular holonomic (cf. [10, Proposition 2.3]).
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When D is only semi-ample, let m be such that |mD| is basepoint free. Let π : X → P
N be the morphism determined by 

this linear series so that OX (mD) = π∗OPN (1). Write n = am + r with 0 � r < m. Then

Hi(X;OX (nD)) = H0(PN ; Riπ∗OX (rD) ⊗OPN (a)).

For large n, as in the globally generated case, its dimension is Pi,r(a) for some polynomial Pi,r . It is then easy to see that 
the complexity function is again algebraic. �

We have so far seen that the answer to the question above is negative by giving one example. In the remainder of 
this note we will see that in a sense it is universally negative. Concretely, we show that in each birational equivalence 
class of varieties of dimension d � 4 there exists a smooth model X carrying an admissible flag and a big and semi-ample 
divisor such that the corresponding Newton–Okounkov body is non-polyhedral, while by Lemma 2 the complexity function 
E X,D(x, q) is holonomic.

Theorem 3. Let X be a normal projective variety of dimension d � 4. Then there exists a birational model X̃ → X containing an 
admissible flag X• and a semi-ample divisor H such that the Newton–Okounkov body �X•( X̃; H) is non-polyhedral.

Proof. Let us first assume that d = 4. Up to blowing-up, we may assume that there exists a generically finite morphism 
π : X → P

2 × P
2 with X smooth (e.g. choose an appropriate birational model of a Noether normalization X → P

4).
We may choose the flag elements in the example of [7] in the previous section such that Xk := π−1Yk is irreducible and 

smooth for all k < 4. (If Y1 = P
2 × E is general in |O(0, 3)|, then its inverse image X1 is smooth irreducible. To construct Y2, 

consider the first projection P2 × E → P
2 and pullback a general PGL(3) translate of E ⊆ P

2. The pullback X2 of Y2 to X1 is 
then smooth by Kleiman transversality, connected by the Fulton–Hansen theorem [8, Theorem 3.3.6], hence also irreducible. 
See also [8, Example 3.3.10]. The curve Y3 can be chosen general in a very ample linear series, thus its pullback to X2 is 
smooth irreducible.) Let X4 be an arbitrary point in π−1Y4. Then X• is an admissible flag on X . Put H := π∗D

We claim that for some ε > 0, the slice �X• (X; H) ∩ ({0} ×[0, ε] ×R
2
)

is non-polyhedral. Pick ε > 0 such that D|Y1 − sY2
is ample for all s ∈ [0, ε]. It is not hard to check that for s ∈ [0, ε] the identity

�X•(X; H) ∩ ({0} × {s} ×R
2) = �X•(X2;π∗(D|Y1 − sY2))

holds: [7, Proposition 3.1] handles the case of restricting ample divisors. The big and semiample case follows from this by 
the continuity of slices in the global Newton–Okounkov body of X by considering a collection of divisors Es on X1 such 
that π∗(D|Y1 − sY2) − t Es is ample on X1 for all t ∈ [0, 1] and s ∈ (0, ε].

As in [7, Remark 3.3, Example 3.4], to conclude that �X• (X; H) is not polyhedral, it is enough to show that the cone 
which is the translation by [H |X2 ] of the convex span of −[X2|X2 ] and −[X3] meets the boundary of Nef(X2) along a curve 
that is not piecewise linear.

For this, observe that π∗α ∈ Nef(X2) iff α ∈ Nef(Y2), and π∗α ∈ NE(X2) iff α ∈ NE(Y2). Similar equivalences hold for 
ample and for big classes respectively. Furthermore, Nef(Y2) = NE(Y2) by [7, Example 3.4] and π∗ : NS(Y2) → NS(X2) is a 
linear injection, since π is dominant. Therefore the boundary curve (in the sense of the previous paragraph) on Nef(X2) is 
identified via pullback with the boundary curve on Nef(Y2). By [7, Example 3.4], the latter is conic, not piecewise linear.

For X of arbitrary dimension d � 4, as above we can assume that there is a generically finite dominant morphism 
π : X → P

d−2 × P
2 with X smooth. Consider in the image the flag Y• given as follows:

Yk = P
d−2−k × P

2

for k � d −4, and Yd−3, . . . , Yd is the flag from Example 1. We can again argue by Bertini type arguments that the pre-images 
Xk := π−1Yk for k < d are smooth and irreducible, thus any choice of the point Xd makes X• into an admissible flag. Now 
the same arguments as above yield that for D = π∗O

Pd−2×P2 (3, 1) and some ε > 0 the slice

�X•(X; D) ∩ ({0}d−3 × [0, ε] ×R
2)

is non-polyhedral. �
Remark 4. Considering the original question, it is natural to ask whether at least the reverse implication is true, i.e., whether 
the polyhedrality of some Newton–Okounkov body implies holonomicity of the corresponding complexity function. How-
ever, the fact that Newton–Okounkov bodies do not carry information about all sections in each degree of a graded linear 
series suggests a negative answer to this question as well. A good candidate would be a linear series whose semi-group of 
valuation vectors is not finitely generated but whose Newton–Okounkov body is polyhedral nonetheless.
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