
C. R. Acad. Sci. Paris, Ser. I 354 (2016) 453–458
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Homological algebra/Algebraic geometry

On A1-fundamental groups of isotropic reductive groups

Sur le groupe fondamental au sens de la A1-homotopie des groupes 

réductifs isotropes

Konrad Voelkel a,1, Matthias Wendt b

a Mathematisches Institut, Albert-Ludwigs-Universität Freiburg, Eckerstraße 1, 79104, Freiburg im Breisgau, Germany
b Fakultät für Mathematik, Universität Duisburg-Essen, Thea-Leymann-Strasse 9, 45127 Essen, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 October 2015
Accepted after revision 19 January 2016
Available online 24 March 2016

Presented by the Editorial Board

For an isotropic reductive group G satisfying a suitable rank condition over an infinite field 
k, we show that the sections of the A1-fundamental group sheaf of G over an extension 
field L/k can be identified with the second group homology of G(L). For a split group G , 
we provide explicit loops representing all elements in the A1-fundamental group. Using 
A

1-homotopy theory, we deduce a Steinberg relation for these explicit loops.
© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Pour un groupe réductif isotrope G défini sur un corps infini k, satisfaisant une condition 
de rang approprié, nous montrons que l’ensemble des sections du A1-faisceau de groupe 
fondamental de G sur une extension des corps L/k s’identifient avec la deuxième 
homologie des groupes de G(L). Pour un groupe déployé G , nous définissons des lacets 
explicites représentant tous les elements du groupe A1-fondamental. En utilisant la théorie 
de la A1-homotopie, on déduit une rélation de Steinberg pour ces lacets explicites.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The goal of the present note is to describe the A1-fundamental group sheaves for isotropic reductive groups, improv-
ing the computations of [13, Proposition 5.2]. Moreover, for split groups, we obtain more precise information on the 
A

1-fundamental groups by providing explicit loops representing elements in the A1-fundamental groups. The precise state-
ment of our result is the following, cf. Lemma 2.2 and Proposition 3.2.
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Theorem 1. Let k be an infinite field and let G be an isotropic reductive group over k, assuming that all components of the relative root 
system of G have at least rank 2. Then there is an isomorphism

H2(G(k),Z) ∼= π1(G(k[�•])) ∼= πA
1

1 (G)(k).

In the case of split G, the isomorphism can be described by an explicit map

K M(W)
2 (k)

∼−→ π1(G(k[�•])).
There, K M(W)

2 means K MW
2 or K M

2 depending on whether G is symplectic or not.

To prove the result, we use the homotopy invariance of the group homology, cf. [14], and a definition of Steinberg’s 
groups based on the work by Petrov and Stavrova to identify H2(G(k), Z) with π1(G(k[�•])). The results of [1] and [2] on 
affine excision and descent for isotropic groups relate the latter to A1-homotopy theory. A slightly different approach is 
described in Remark 2. The Steinberg relation for explicit loops in H2(G(k), Z) follows from the results of Hu and Kriz.

Using Morel’s theory of strictly A1-invariant sheaves [8], we also get the following:

Corollary 1.1. Let k be an infinite perfect field and let G be as above. Then the assignment L/k �→ H2(G(L), Z) extends to a strictly 
A

1-invariant sheaf of Abelian groups.

Another implication of the above theorem is that Rehmann’s computation of H2(SLn(D), Z), cf. [10], can be seen as a 
description of πA

1

1 (SLn(D)), for n ≥ 3. The corollary implies the existence of well-behaved residue maps on H2(SLn(D), Z), 
which seem to be new.

2. Preliminaries

In this article, we always assume k to be an infinite field. We consider reductive groups G over k, and we assume that 
they are isotropic, as in [9], so that all irreducible components of the relative root system of such G are of rank at least 2. 
This implies that the results of [9] and [2] are applicable.

For a commutative unital k-algebra R , the (abstract) group of R-points of the group scheme G is denoted by G(R). 
The elementary subgroup E(R) ⊂ G(R) is defined, as in [9, §1], as being the subgroup of G(R) generated by R-points of 
unipotent radicals of opposite parabolics P+, P− of G . By [9, Theorem 1], E(R) is normal in G(R), and by [6, Theorem 1], 
the group E(R) is perfect. Moreover, by [11, Theorem 1.3], K G

1 (R) := G(R)/ E(R) is invariant under polynomial extensions.

Definition 2.1. Let G be an isotropic reductive group over a commutative ring R . We define the Steinberg group StG(R) to 
be the abstract group generated by elements X̃ A(u), u ∈ V A(R) subject to the commutator formulas from [9, Lemma 9, 10]. 
We define the group K G

2 (R) := ker
(
StG(R) → EG(R)

)
.

Remark 1. It is known that K G
2 (k[�n]) ↪→ StG(k[�n]) � EG(k[�n]) is a universal central extension for G split of type Al, l ≥ 3

(van der Kallen), Cl, l ≥ 3 (Lavrenov) and El (Sinchuk). It is not even a central extension for split rank-2 groups.

Using the standard cosimplicial object given by polynomial rings, one can associate a simplicial group with the reductive 
group G and a unital commutative k-algebra A, cf. [5]. This is denoted by G(A[�•]) or (more commonly in the A1-homotopy 
literature) by SingA

1

• (G)(A). The A1-homotopy groups of an isotropic reductive group can be computed from the singular 
resolution, cf. [2, Corollary 4.3.3].

Lemma 2.2. Let k be an infinite field and let G be an isotropic reductive group over k.

Then SingA
1

• (G) has affine Nisnevich excision in the sense of [1, Definition 3.2.1] and there are isomorphisms

πi(SingA
1

• (G)(A))
∼−→ πA

1

i (G)(A)

for any essentially smooth k-algebra A and any i ≥ 0.

Remark 2. Alternatively, one can prove the affine Nisnevich excision exactly as in [13, Theorem 4.10], using homotopy 
invariance for unstable K G

1 of isotropic groups from [11, Theorem 1.3]. The above result then follows from the gen-
eral representability result [1, Theorem 3.3.5]. This was the approach taken in an earlier version of the present paper 
(arXiv:1207.2364v1), before the appearance of [1,2].
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3. The second homology as a fundamental group

We now show how homotopy invariance for homology of linear groups can be used to identify the fundamental group of 
the singular resolution G(k([�•])) with the second group homology. We define for an isotropic reductive group G simplicial 
groups G(k[�•]), EG(k[�•]) and StG(k[�•]) associated with the group, its elementary subgroup and its Steinberg group. The 
first thing to note is that homotopy invariance of K G

1 implies an isomorphism π1(G(k[�•])) ∼= π1(E(k[�•])), which allows 
us to work with E(k[�•]) henceforth. We define further simplicial objects: denote by K G

2 (k[�•]) the singular resolution of 
the functor

A �→ K G
2 (A) := ker

(
StG(A) → EG(A)

)
,

by UEG(k[�•]) the singular resolution of the functor A �→ UEG(A), which assigns to each algebra A the universal central 
extension UEG(A) of the perfect group EG(A), and by HG

2 (k[�•]) the singular resolution of the functor

A �→ HG
2 (A) := H2(G(A),Z) = ker

(
UEG(A) → EG(A)

)
.

We chose slightly unusual notation in HG
2 to distinguish the above object from H2(G(k[�•]), Z), which has a different 

meaning.
With these notations, we have the following.

Lemma 3.1. There are fibre sequences of simplicial sets:

HG
2 (k[�•]) → UEG(k[�•]) → EG(k[�•]), and

K G
2 (k[�•]) → StG(k[�•]) → EG(k[�•]).

Proof. It follows from Moore’s lemma, e.g., [3, Lemma I.3.4], that the morphisms UEG(k[�•]) → EG(k[�•]) and StG(k[�•]) →
EG(k[�•]) are fibrations of fibrant simplicial sets. The fibres are by definition HG

2 (k[�•]) and K G
2 (k[�•]), respectively. �

Proposition 3.2. Let k be an infinite field, and let G be an isotropic reductive group over k. Then the boundary morphism 
� EG(k[�•]) → HG

2 (k[�•]) associated with the fibration UEG(k[�•]) → EG(k[�•]) induces an isomorphism:

π1(EG(k[�•]),1)
∼−→ H2(G(k),Z).

If the Steinberg group does not have non-trivial central extensions, i.e. for all n

StG(k[�n])/
[

K G
2 (k[�n]),StG(k[�n])

]
→ EG(k[�n])

is the universal central extension, then the boundary morphism � EG(k[�•]) → K G
2 (k[�•]) associated with the fibration StG(k[�•]) →

EG(k[�•]) induces an isomorphism

π1(EG(k[�•]),1)
∼−→ K G

2 (k).

Proof. By [14, Theorem 1.1], all the usual maps (inclusion of constants, evaluation at 0) induce the isomorphisms 
H2(G(k), Z) ∼= H2(G(k[T ]), Z). Therefore, we have

π0(HG
2 (k[�•])) = H2(G(k),Z), and π1(HG

2 (k[�•])) = 0.

Moreover, EG(k) and StG(k) are generated by X A(u), u ∈ V A . These elements are all homotopic to the identity by the 
homotopy X A(uT ). Therefore,

π0(EG(k[�•])) ∼= π0(StG(k[�•])) = 0.

The long exact sequence associated with the first fibre sequence from Lemma 3.1 yields via the above computations a short 
exact sequence

0 → π1(UEG(k[�•])) → π1(EG(k[�•])) → π0(HG
2 (k[�•])) → 0.

Now let ẼG(k[�•]) → EG(k[�•]) be the universal covering of the simplicial group EG(k[�•]). This has the structure of a 
simplicial group, and by uniqueness of liftings is degree-wise a central extension by π1(EG(k[�•])). Therefore, the above 
injective map factors as π1(UEG(k[�•])) → π1(ẼG(k[�•])) → π1(EG(k[�•])), which together with π1(ẼG(k[�•])) = 0 implies 
the required isomorphism.

The second claim concerning K2 follows by the same argument, replacing UEG by

StG(k[�n])/[K G
2 (k[�n]),StG(k[�n])]. �
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Remark 3. It should be noted that the isomorphism in Proposition 3.2 has been established in the case of Chevalley groups 
over algebraically closed fields in [5, Theorem 2.1]. Jardine’s proof uses the spectral sequence for the homology of G(k[�•])
to establish this isomorphism. This is not too far away from our proof above; however, there are better methods available 
now to establish the necessary A1-invariance of H2.

4. Explicit description of loops and relations

Fix a root system �. For a commutative unital ring R , denote G(�, R) the split Chevalley group, E(�, R) its elementary 
subgroup and St(�, R) its Steinberg group. We now describe explicit loops in π1(G(�, k[�•])), which is a direct translation 
of the Steinberg symbols for H2. This also gives rise to an explicit isomorphism H2(G(�, k), Z) ∼−→ π1(G(�, k[�•]), 1)

Definition 4.1. For every α ∈ �, we denote by xα(u) the corresponding root group elements and then define morphisms

Xα : Ga(R) → E(�, R[T ]), R � u �→ Xα
T (u) := xα(T u),

W α : Gm(R) → E(�, R[T ]), R× � u �→ W α
T (u) := Xα

T (u)X−α
T (−u−1)Xα

T (u),

Hα : Gm(R) → E(�, R[T ]), R× � u �→ Hα
T (u) := W α

T (u)W α
T (1)−1,

Cα : Gm ×Gm → E(�, R[T ]),
R× × R× � (a,b) �→ Cα

T (a,b) := Hα
T (a)Hα

T (b)Hα
T (ab)−1 ∈ E(�, R[T ]).

We will use the same letters with an additional tilde to denote the corresponding lifts to St(�, R[�•]).

Example 1. We give an example of the “symbol loops” in the group SL2. With the obvious choice xα(u) = e12(u), we have

Cα
T (u, v) =

(
1 0
0 1

)
+ T (T 2 − 1)

(1 − u)(1 − v)

u2 v
Dα

T (u, v), where

Dα
T (u, v) =

(
u(1 − u)T (T 2 − 1)(T 2 − 2) −vu2((T 2 − 1)2(1 − u) + u)(T 2 − 2)

(1 − u)(T 2 − 1)2 − 1 −uv(1 − u)T (T 2 − 1)(T 2 − 2)

)
�

Remark 4. Philosophically, what is happening here is the following: choosing a maximal torus S in G , the associated root 
system and root subgroups xα allows us to write down a contraction of the (elementary part of the) torus, i.e. a homotopy 
H : S ×A

1 → G , where H(−, 0) factors through the identity 1 ∈ G and H(−, 1) is the inclusion of S as maximal torus of G . 
This is nothing but a more elaborate version of the lemma of Whitehead. After fixing such a contraction, there is a preferred 
choice of path H(u) for any u ∈ S . Given two units in the torus, one can concatenate the paths H(u), uH(v) and H(uv)−1

to obtain a loop. This is basically what happens in Definition 4.1.

The translation between elements (and symbols) in the Steinberg group and loops (and symbol loops) in the singular 
resolution G(�, k[�•]) is given as in covering space theory:

(i) an element of the Steinberg group is given by a product ỹ = ∏
i x̃αi (ui). Setting yT = ∏

i xα(T ui) produces a path in 
E(�, R[T ]). If ỹ is in the kernel of the projection St(�, R) → E(�, R), the path yT is in fact a loop;

(ii) a path yT ∈ E(�, k[T ]) with yT (0) = 1 can be factored as a product of elementary matrices 
∏

i xαi ( f i(T )), which in 
turn can be lifted to St(�, k[T ]). Evaluating at T = 1 yields an element 

∏
i x̃αi ( f i(1)) ∈ St(�, R). If the path yT was in fact a 

loop, then the resulting element 
∏

i x̃αi ( f i(1)) ∈ St(�, R) lies in fact in the kernel of the projection St(�, R) → E(�, R).
It is then possible to derive elementary relations between the above loops in just the same way as the relations for 

Steinberg symbols in [7]. The contraction of the torus Hα
T (u) is chosen such that Hα

T (1) is the constant loop. From this, it 
follows immediately that Cα

T (x, 1) = Cα
T (1, x) = 1 for all x, y ∈ k× . The symbol loops Cα

T (x, y) in G(�, k[T ]) are not central on 
the nose, but are central up to homotopy because the fundamental group of a simplicial group is Abelian, and conjugation 
by paths acts trivially on the fundamental group. Then the conjugation formulas in [7, Lemma 5.2] can be translated into 
statements of homotopies between corresponding products of paths W α

T (u) resp. Hα
T (u). In particular, the (weak) bilinearity 

of symbol loops in the fundamental group can be proved exactly as in [7]. For details, cf. [12]. It is not clear how to prove 
the Steinberg relation simply by computing with loops and homotopies inside E(k[�•]). We derive a general Steinberg 
relation from A1-homotopy theory in the next section.

5. The Steinberg relation from AAA1-homotopy theory

In the case of split groups, the Steinberg relation in H2(G(k), Z) can be deduced from A1-homotopy as follows. We 
denote by � and � the simplicial suspension and loop space functors, respectively.
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Proposition 5.1. Let C : Gm ∧ Gm → �G• be any morphism with G• a simplicial group satisfying the affine Nisnevich excision. Let 
s : A1 \ {0, 1} → Gm ∧ Gm be the Steinberg morphism a �→ (a, 1 − a). Then the composition of C with the Steinberg morphism 
C ◦ s : A1 \ {0, 1} → �G• has trivial homotopy class in the simplicial and A1-local homotopy category.

Proof. We have the natural adjunction [�X, Y ] ∼= [X, �Y ] both in the simplicial and A1-local homotopy category. Choose a 
fibrant resolution r : G• → Ex∞

A1 (G•). Under the adjunction, the morphism r ◦ C ◦ s corresponds to the composition

�A
1 \ {0,1} �s−→ �Gm ∧Gm

Cad−→ Ex∞
A1(G•).

By [4, Prop. 1], this composition factors through the A1-contractible space �A
1 and is therefore trivial. More specifically, 

we have the following equality in [�A
1 \ {0, 1}, Ex∞

A1 (G•)]A1 :

r ◦ Cad ◦ �s = r ◦ Cad ◦ � s̃ ◦ �ι = r ◦ Cad ◦ 0 = 0.

This implies the A1-local statement. The simplicial statement follows from [1, Theorem 3.3.5], which gives a bijection

[A1 \ {0,1}, G•]s
∼= [A1 \ {0,1},Ex∞

A1(G•)]A1 . �
The result and Lemma 2.2 imply that for split G , all the loops Cα(u, 1 −u), u ∈ k× , described in Section 3 are contractible 

in the singular resolution G(k[�•]): the symbol Cα(x, y) can be interpreted as a morphism of simplicial groups Gm ×
Gm → � SingA

1

• G . But since Cα(1, y) = Cα(x, 1) = 1 is equal to the identity, this morphism factors through a morphism 
of simplicial presheaves Gm ∧ Gm → � SingA

1

• G . The above corollary then yields the Steinberg relation. Even better, since 
SingA

1

• G has affine excision, there is a single algebraic morphism A1 \ {0, 1} × A
1 → G realizing all the Steinberg loops 

Cα(u, 1 − u), u ∈ k× \ {1} at once; and there is a single algebraic homotopy (A1 \ {0, 1} × A
1) × A

1 → G providing all the 
contractions of the Steinberg loops at once. This is one instance where a computation in group homology can be deduced 
from A1-homotopy theory.

We want to point out the following generalization of the Steinberg relation for non-split groups. Let D be a central simple 
algebra over k. There is an associated reduced norm which can be interpreted as a regular morphism NrdD : Adim D → A

1. 
In Adim D we have two open subschemes, the linear algebraic group GL1(D) defined by NrdD(u) �= 0, and another open 
subscheme UD defined by NrdD(u) �= 0 and NrdD(1 − u) �= 0. There is an obvious analogue of the Steinberg morphism:

sD : UD → GL1(D) × GL1(D) → GL1(D) ∧ GL1(D) : u �→ (u,1 − u).

Proposition 5.2. Let sD : UD → GL1(D) ∧ GL1(D) be the Steinberg morphism defined above. Then there exists a space XD and a 
commutative diagram

UD

A
dim D

GL1(D) ∧ GL1(D)

XD

ι

s̃D

sD

ψD

with the suspension �ψD of ψD being an A1-local weak equivalence.

Proof. The argument is the same as in [4, Prop. 1], replacing A1 by Adim D , Gm by GL1(D), and A1 \ {0, 1} by UD . The 
varieties V and W have to be replaced by VD = [y − 1 = x ·D z, y �= 0] and WD = [x − 1 = y ·D z, x �= 0]. The space XD is 
then the pushout VD ∪GL1(D)×GL1(D) WD . �

This provides an A1-homotopy proof of the Steinberg relation in H2(SLn(D), Z), n ≥ 3. All Steinberg relations are given 
by a single algebraic map UD ×A

1 → SLn(D), and they are all contracted by a single (inexplicit) algebraic homotopy (UD ×
A

1) ×A
1 → SLn(D).
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