

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Homological algebra/Algebraic geometry

On \mathbb{A}^1 -fundamental groups of isotropic reductive groups

Sur le groupe fondamental au sens de la A1-homotopie des groupes réductifs isotropes

Konrad Voelkel^{a,1}, Matthias Wendt^b

^a Mathematisches Institut, Albert-Ludwigs-Universität Freiburg, Eckerstraße 1, 79104, Freiburg im Breisgau, Germany ^b Fakultät für Mathematik, Universität Duisburg-Essen, Thea-Leymann-Strasse 9, 45127 Essen, Germany

ARTICLE INFO

Article history: Received 23 October 2015 Accepted after revision 19 January 2016 Available online 24 March 2016

Presented by the Editorial Board

ABSTRACT

For an isotropic reductive group *G* satisfying a suitable rank condition over an infinite field k, we show that the sections of the \mathbb{A}^1 -fundamental group sheaf of *G* over an extension field L/k can be identified with the second group homology of G(L). For a split group *G*, we provide explicit loops representing all elements in the \mathbb{A}^1 -fundamental group. Using \mathbb{A}^1 -homotopy theory, we deduce a Steinberg relation for these explicit loops.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Pour un groupe réductif isotrope *G* défini sur un corps infini *k*, satisfaisant une condition de rang approprié, nous montrons que l'ensemble des sections du \mathbb{A}^1 -faisceau de groupe fondamental de *G* sur une extension des corps L/k s'identifient avec la deuxième homologie des groupes de G(L). Pour un groupe déployé *G*, nous définissons des lacets explicites représentant tous les elements du groupe \mathbb{A}^1 -fondamental. En utilisant la théorie de la \mathbb{A}^1 -homotopie, on déduit une rélation de Steinberg pour ces lacets explicites.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The goal of the present note is to describe the \mathbb{A}^1 -fundamental group sheaves for isotropic reductive groups, improving the computations of [13, Proposition 5.2]. Moreover, for split groups, we obtain more precise information on the \mathbb{A}^1 -fundamental groups by providing explicit loops representing elements in the \mathbb{A}^1 -fundamental groups. The precise statement of our result is the following, cf. Lemma 2.2 and Proposition 3.2.

http://dx.doi.org/10.1016/j.crma.2016.01.026

E-mail addresses: konrad.voelkel@math.uni-freiburg.de (K. Voelkel), matthias.wendt@uni-due.de (M. Wendt).

¹ Konrad Voelkel acknowledges support by the DFG-Forschergruppe 570 (FOR 570) "Algebraic cycles and L-functions".

¹⁶³¹⁻⁰⁷³X/© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Theorem 1. Let k be an infinite field and let G be an isotropic reductive group over k, assuming that all components of the relative root system of G have at least rank 2. Then there is an isomorphism

 $\mathrm{H}_{2}(G(k),\mathbb{Z})\cong \pi_{1}(G(k[\Delta^{\bullet}]))\cong \pi_{1}^{\mathbb{A}^{1}}(G)(k).$

In the case of split G, the isomorphism can be described by an explicit map

$$K_2^{\mathrm{M}(\mathrm{W})}(k) \xrightarrow{\sim} \pi_1(G(k[\Delta^{\bullet}]))$$

There, $K_2^{M(W)}$ means K_2^{MW} or K_2^M depending on whether G is symplectic or not.

To prove the result, we use the homotopy invariance of the group homology, cf. [14], and a definition of Steinberg's groups based on the work by Petrov and Stavrova to identify $H_2(G(k),\mathbb{Z})$ with $\pi_1(G(k[\Delta^{\bullet}]))$. The results of [1] and [2] on affine excision and descent for isotropic groups relate the latter to \mathbb{A}^1 -homotopy theory. A slightly different approach is described in Remark 2. The Steinberg relation for explicit loops in $H_2(G(k), \mathbb{Z})$ follows from the results of Hu and Kriz. Using Morel's theory of strictly \mathbb{A}^1 -invariant sheaves [8], we also get the following:

Corollary 1.1. Let k be an infinite perfect field and let G be as above. Then the assignment $L/k \mapsto H_2(G(L), \mathbb{Z})$ extends to a strictly \mathbb{A}^1 -invariant sheaf of Abelian groups.

Another implication of the above theorem is that Rehmann's computation of $H_2(SL_n(D), \mathbb{Z})$, cf. [10], can be seen as a description of $\pi_1^{\mathbb{A}^1}(SL_n(D))$, for $n \ge 3$. The corollary implies the existence of well-behaved residue maps on $H_2(SL_n(D), \mathbb{Z})$, which seem to be new.

2. Preliminaries

In this article, we always assume k to be an infinite field. We consider reductive groups G over k, and we assume that they are *isotropic*, as in [9], so that all irreducible components of the relative root system of such G are of rank at least 2. This implies that the results of [9] and [2] are applicable.

For a commutative unital k-algebra R, the (abstract) group of R-points of the group scheme G is denoted by G(R). The elementary subgroup $E(R) \subset G(R)$ is defined, as in [9, §1], as being the subgroup of G(R) generated by R-points of unipotent radicals of opposite parabolics P^+ , P^- of G. By [9, Theorem 1], E(R) is normal in G(R), and by [6, Theorem 1], the group E(R) is perfect. Moreover, by [11, Theorem 1.3], $K_1^G(R) := G(R)/E(R)$ is invariant under polynomial extensions.

Definition 2.1. Let G be an isotropic reductive group over a commutative ring R. We define the Steinberg group $St^{G}(R)$ to be the abstract group generated by elements $\widetilde{X}_{A}(u)$, $u \in V_{A}(R)$ subject to the commutator formulas from [9, Lemma 9, 10]. We define the group $K_{2}^{G}(R) := \ker (\operatorname{St}^{G}(R) \to \operatorname{E}^{G}(R))$.

Remark 1. It is known that $K_2^G(k[\Delta^n]) \hookrightarrow St^G(k[\Delta^n]) \twoheadrightarrow E^G(k[\Delta^n])$ is a universal central extension for *G* split of type $A_l, l \ge 3$ (van der Kallen), $C_l, l \ge 3$ (Lavrenov) and E_l (Sinchuk). It is not even a central extension for split rank-2 groups.

Using the standard cosimplicial object given by polynomial rings, one can associate a simplicial group with the reductive group *G* and a unital commutative *k*-algebra *A*, cf. [5]. This is denoted by $G(A[\Delta^{\bullet}])$ or (more commonly in the \mathbb{A}^1 -homotopy literature) by $\operatorname{Sing}_{\bullet}^{\mathbb{A}^1}(G)(A)$. The \mathbb{A}^1 -homotopy groups of an isotropic reductive group can be computed from the singular resolution, cf. [2, Corollary 4.3.3].

Lemma 2.2. Let k be an infinite field and let G be an isotropic reductive group over k.

Then $\operatorname{Sing}_{\bullet}^{\mathbb{A}^1}(G)$ has affine Nisnevich excision in the sense of [1, Definition 3.2.1] and there are isomorphisms

 $\pi_i(\operatorname{Sing}^{\mathbb{A}^1}_{\bullet}(G)(A)) \xrightarrow{\sim} \pi_i^{\mathbb{A}^1}(G)(A)$

for any essentially smooth k-algebra A and any $i \ge 0$.

Remark 2. Alternatively, one can prove the affine Nisnevich excision exactly as in [13, Theorem 4.10], using homotopy invariance for unstable K_1^G of isotropic groups from [11, Theorem 1.3]. The above result then follows from the general representability result [1, Theorem 3.3.5]. This was the approach taken in an earlier version of the present paper (arXiv:1207.2364v1), before the appearance of [1,2].

3. The second homology as a fundamental group

We now show how homotopy invariance for homology of linear groups can be used to identify the fundamental group of the singular resolution $G(k([\Delta^{\bullet}]))$ with the second group homology. We define for an isotropic reductive group G simplicial groups $G(k[\Delta^{\bullet}])$, $E^G(k[\Delta^{\bullet}])$ and $St^G(k[\Delta^{\bullet}])$ associated with the group, its elementary subgroup and its Steinberg group. The first thing to note is that homotopy invariance of K_1^G implies an isomorphism $\pi_1(G(k[\Delta^{\bullet}])) \cong \pi_1(E(k[\Delta^{\bullet}]))$, which allows us to work with $E(k[\Delta^{\bullet}])$ henceforth. We define further simplicial objects: denote by $K_2^G(k[\Delta^{\bullet}])$ the singular resolution of the functor

$$A \mapsto K_2^G(A) := \ker\left(\operatorname{St}^G(A) \to \operatorname{E}^G(A)\right),$$

by $UE^G(k[\Delta^{\bullet}])$ the singular resolution of the functor $A \mapsto UE^G(A)$, which assigns to each algebra A the universal central extension $UE^G(A)$ of the perfect group $E^G(A)$, and by $H_2^G(k[\Delta^{\bullet}])$ the singular resolution of the functor

$$A \mapsto \mathrm{H}_{2}^{\mathrm{G}}(A) := \mathrm{H}_{2}(\mathrm{G}(A), \mathbb{Z}) = \ker\left(\mathrm{UE}^{\mathrm{G}}(A) \to \mathrm{E}^{\mathrm{G}}(A)\right)$$

We chose slightly unusual notation in H_2^G to distinguish the above object from $H_2(G(k[\Delta^{\bullet}]), \mathbb{Z})$, which has a different meaning.

With these notations, we have the following.

Lemma 3.1. There are fibre sequences of simplicial sets:

$$H_2^G(k[\Delta^{\bullet}]) \to UE^G(k[\Delta^{\bullet}]) \to E^G(k[\Delta^{\bullet}]), and$$

$$K_2^G(k[\Delta^{\bullet}]) \to St^G(k[\Delta^{\bullet}]) \to E^G(k[\Delta^{\bullet}]).$$

Proof. It follows from Moore's lemma, e.g., [3, Lemma I.3.4], that the morphisms $UE^G(k[\Delta^{\bullet}]) \rightarrow E^G(k[\Delta^{\bullet}])$ and $St^G(k[\Delta^{\bullet}]) \rightarrow E^G(k[\Delta^{\bullet}])$ are fibrations of fibrant simplicial sets. The fibres are by definition $H_2^G(k[\Delta^{\bullet}])$ and $K_2^G(k[\Delta^{\bullet}])$, respectively. \Box

Proposition 3.2. Let k be an infinite field, and let G be an isotropic reductive group over k. Then the boundary morphism $\Omega E^{G}(k[\Delta^{\bullet}]) \rightarrow H_{2}^{G}(k[\Delta^{\bullet}])$ associated with the fibration $UE^{G}(k[\Delta^{\bullet}]) \rightarrow E^{G}(k[\Delta^{\bullet}])$ induces an isomorphism:

$$\pi_1(\mathbb{E}^G(k[\Delta^{\bullet}]), 1) \xrightarrow{\sim} H_2(G(k), \mathbb{Z}).$$

If the Steinberg group does not have non-trivial central extensions, i.e. for all n

$$\operatorname{St}^{G}(k[\Delta^{n}])/\left[K_{2}^{G}(k[\Delta^{n}]),\operatorname{St}^{G}(k[\Delta^{n}])\right] \to \operatorname{E}^{G}(k[\Delta^{n}])$$

is the universal central extension, then the boundary morphism $\Omega E^G(k[\Delta^{\bullet}]) \rightarrow K_2^G(k[\Delta^{\bullet}])$ associated with the fibration $St^G(k[\Delta^{\bullet}]) \rightarrow E^G(k[\Delta^{\bullet}])$ induces an isomorphism

$$\pi_1(\mathsf{E}^{\mathsf{G}}(k[\Delta^{\bullet}]), 1) \xrightarrow{\sim} K_2^{\mathsf{G}}(k).$$

Proof. By [14, Theorem 1.1], all the usual maps (inclusion of constants, evaluation at 0) induce the isomorphisms $H_2(G(k), \mathbb{Z}) \cong H_2(G(k[T]), \mathbb{Z})$. Therefore, we have

$$\pi_0(\mathrm{H}_2^G(k[\Delta^{\bullet}])) = \mathrm{H}_2(G(k),\mathbb{Z}), \text{ and } \pi_1(\mathrm{H}_2^G(k[\Delta^{\bullet}])) = 0.$$

Moreover, $E^{G}(k)$ and $St^{G}(k)$ are generated by $X_{A}(u)$, $u \in V_{A}$. These elements are all homotopic to the identity by the homotopy $X_{A}(uT)$. Therefore,

$$\pi_0(\mathsf{E}^G(k[\Delta^\bullet])) \cong \pi_0(\mathsf{St}^G(k[\Delta^\bullet])) = 0.$$

The long exact sequence associated with the first fibre sequence from Lemma 3.1 yields via the above computations a short exact sequence

$$0 \to \pi_1(\mathrm{UE}^{\mathsf{G}}(k[\Delta^{\bullet}])) \to \pi_1(\mathrm{E}^{\mathsf{G}}(k[\Delta^{\bullet}])) \to \pi_0(\mathrm{H}_2^{\mathsf{G}}(k[\Delta^{\bullet}])) \to 0.$$

Now let $\widetilde{E^G}(k[\Delta^{\bullet}]) \to E^G(k[\Delta^{\bullet}])$ be the universal covering of the simplicial group $E^G(k[\Delta^{\bullet}])$. This has the structure of a simplicial group, and by uniqueness of liftings is degree-wise a central extension by $\pi_1(E^G(k[\Delta^{\bullet}]))$. Therefore, the above injective map factors as $\pi_1(UE^G(k[\Delta^{\bullet}])) \to \pi_1(\widetilde{E^G}(k[\Delta^{\bullet}])) \to \pi_1(\widetilde{E^G}(k[\Delta^{\bullet}]))$, which together with $\pi_1(\widetilde{E^G}(k[\Delta^{\bullet}])) = 0$ implies the required isomorphism.

The second claim concerning K_2 follows by the same argument, replacing UE^G by

$$\operatorname{St}^{G}(k[\Delta^{n}])/[K_{2}^{G}(k[\Delta^{n}]), \operatorname{St}^{G}(k[\Delta^{n}])].$$

Remark 3. It should be noted that the isomorphism in Proposition 3.2 has been established in the case of Chevalley groups over algebraically closed fields in [5, Theorem 2.1]. Jardine's proof uses the spectral sequence for the homology of $G(k[\Delta^{\bullet}])$ to establish this isomorphism. This is not too far away from our proof above; however, there are better methods available now to establish the necessary \mathbb{A}^1 -invariance of H_2 .

4. Explicit description of loops and relations

Fix a root system Φ . For a commutative unital ring R, denote $G(\Phi, R)$ the split Chevalley group, $E(\Phi, R)$ its elementary subgroup and $St(\Phi, R)$ its Steinberg group. We now describe explicit loops in $\pi_1(G(\Phi, k[\Delta^{\bullet}]))$, which is a direct translation of the Steinberg symbols for H₂. This also gives rise to an explicit isomorphism H₂($G(\Phi, k, \mathbb{Z}) \xrightarrow{\sim} \pi_1(G(\Phi, k[\Delta^{\bullet}]), 1)$

Definition 4.1. For every $\alpha \in \Phi$, we denote by $x_{\alpha}(u)$ the corresponding root group elements and then define morphisms

$$\begin{split} X^{\alpha} &: \mathbb{G}_{a}(R) \to \mathsf{E}(\Phi, R[T]), & R \ni u \mapsto X^{\alpha}_{T}(u) := x_{\alpha}(Tu), \\ W^{\alpha} &: \mathbb{G}_{m}(R) \to \mathsf{E}(\Phi, R[T]), & R^{\times} \ni u \mapsto W^{\alpha}_{T}(u) := X^{\alpha}_{T}(u)X^{-\alpha}_{T}(-u^{-1})X^{\alpha}_{T}(u), \\ H^{\alpha} &: \mathbb{G}_{m}(R) \to \mathsf{E}(\Phi, R[T]), & R^{\times} \ni u \mapsto H^{\alpha}_{T}(u) := W^{\alpha}_{T}(u)W^{\alpha}_{T}(1)^{-1}, \\ \mathcal{C}^{\alpha} &: \mathbb{G}_{m} \times \mathbb{G}_{m} \to \mathsf{E}(\Phi, R[T]), \\ R^{\times} \times R^{\times} \ni (a, b) \mapsto \mathcal{C}^{\alpha}_{T}(a, b) := H^{\alpha}_{T}(a)H^{\alpha}_{T}(b)H^{\alpha}_{T}(ab)^{-1} \in \mathsf{E}(\Phi, R[T]). \end{split}$$

We will use the same letters with an additional tilde to denote the corresponding lifts to $St(\Phi, R[\Delta^{\bullet}])$.

Example 1. We give an example of the "symbol loops" in the group SL_2 . With the obvious choice $x_{\alpha}(u) = e_{12}(u)$, we have

$$C_T^{\alpha}(u,v) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + T(T^2 - 1) \frac{(1-u)(1-v)}{u^2 v} D_T^{\alpha}(u,v), \text{ where}$$

$$D_T^{\alpha}(u,v) = \begin{pmatrix} u(1-u)T(T^2 - 1)(T^2 - 2) & -vu^2((T^2 - 1)^2(1-u) + u)(T^2 - 2) \\ (1-u)(T^2 - 1)^2 - 1 & -uv(1-u)T(T^2 - 1)(T^2 - 2) \end{pmatrix} \square$$

Remark 4. Philosophically, what is happening here is the following: choosing a maximal torus *S* in *G*, the associated root system and root subgroups x_{α} allows us to write down a contraction of the (elementary part of the) torus, i.e. a homotopy $H: S \times \mathbb{A}^1 \to G$, where H(-, 0) factors through the identity $1 \in G$ and H(-, 1) is the inclusion of *S* as maximal torus of *G*. This is nothing but a more elaborate version of the lemma of Whitehead. After fixing such a contraction, there is a preferred choice of path H(u) for any $u \in S$. Given two units in the torus, one can concatenate the paths H(u), uH(v) and $H(uv)^{-1}$ to obtain a loop. This is basically what happens in Definition 4.1.

The translation between elements (and symbols) in the Steinberg group and loops (and symbol loops) in the singular resolution $G(\Phi, k[\Delta^{\bullet}])$ is given as in covering space theory:

(i) an element of the Steinberg group is given by a product $\tilde{y} = \prod_i \tilde{\chi}_{\alpha_i}(u_i)$. Setting $y_T = \prod_i \chi_{\alpha}(Tu_i)$ produces a path in $E(\Phi, R[T])$. If \tilde{y} is in the kernel of the projection $St(\Phi, R) \to E(\Phi, R)$, the path y_T is in fact a loop;

(ii) a path $y_T \in E(\Phi, k[T])$ with $y_T(0) = 1$ can be factored as a product of elementary matrices $\prod_i x_{\alpha_i}(f_i(T))$, which in turn can be lifted to $St(\Phi, k[T])$. Evaluating at T = 1 yields an element $\prod_i \widetilde{x_{\alpha_i}}(f_i(1)) \in St(\Phi, R)$. If the path y_T was in fact a loop, then the resulting element $\prod_i \widetilde{x_{\alpha_i}}(f_i(1)) \in St(\Phi, R)$ lies in fact in the kernel of the projection $St(\Phi, R) \to E(\Phi, R)$.

It is then possible to derive elementary relations between the above loops in just the same way as the relations for Steinberg symbols in [7]. The contraction of the torus $H_T^{\alpha}(u)$ is chosen such that $H_T^{\alpha}(1)$ is the constant loop. From this, it follows immediately that $C_T^{\alpha}(x, 1) = C_T^{\alpha}(1, x) = 1$ for all $x, y \in k^{\times}$. The symbol loops $C_T^{\alpha}(x, y)$ in $G(\Phi, k[T])$ are not central on the nose, but are central up to homotopy because the fundamental group of a simplicial group is Abelian, and conjugation by paths acts trivially on the fundamental group. Then the conjugation formulas in [7, Lemma 5.2] can be translated into statements of homotopies between corresponding products of paths $W_T^{\alpha}(u)$ resp. $H_T^{\alpha}(u)$. In particular, the (weak) bilinearity of symbol loops in the fundamental group can be proved exactly as in [7]. For details, cf. [12]. It is not clear how to prove the Steinberg relation simply by computing with loops and homotopies inside $E(k[\Delta^{\bullet}])$. We derive a general Steinberg relation from \mathbb{A}^1 -homotopy theory in the next section.

5. The Steinberg relation from \mathbb{A}^1 -homotopy theory

In the case of split groups, the Steinberg relation in $H_2(G(k), \mathbb{Z})$ can be deduced from \mathbb{A}^1 -homotopy as follows. We denote by Σ and Ω the simplicial suspension and loop space functors, respectively.

Proposition 5.1. Let $C: \mathbb{G}_m \wedge \mathbb{G}_m \to \Omega G_{\bullet}$ be any morphism with G_{\bullet} a simplicial group satisfying the affine Nisnevich excision. Let $s: \mathbb{A}^1 \setminus \{0, 1\} \to \mathbb{G}_m \wedge \mathbb{G}_m$ be the Steinberg morphism $a \mapsto (a, 1 - a)$. Then the composition of C with the Steinberg morphism $C \circ s: \mathbb{A}^1 \setminus \{0, 1\} \to \Omega G_{\bullet}$ has trivial homotopy class in the simplicial and \mathbb{A}^1 -local homotopy category.

Proof. We have the natural adjunction $[\Sigma X, Y] \cong [X, \Omega Y]$ both in the simplicial and \mathbb{A}^1 -local homotopy category. Choose a fibrant resolution $r: G_{\bullet} \to \operatorname{Ex}_{\mathbb{A}^1}^{\infty}(G_{\bullet})$. Under the adjunction, the morphism $r \circ C \circ s$ corresponds to the composition

$$\Sigma\mathbb{A}^1\setminus\{0,1\}\xrightarrow{\Sigma_S}\Sigma\mathbb{G}_m\wedge\mathbb{G}_m\xrightarrow{C^{ad}}\mathsf{Ex}^\infty_{\mathbb{A}^1}(G_\bullet).$$

By [4, Prop. 1], this composition factors through the \mathbb{A}^1 -contractible space $\Sigma \mathbb{A}^1$ and is therefore trivial. More specifically, we have the following equality in $[\Sigma \mathbb{A}^1 \setminus \{0, 1\}, Ex^{\infty}_{\mathbb{A}^1}(G_{\bullet})]_{\mathbb{A}^1}$:

$$r \circ C^{\mathrm{ad}} \circ \Sigma s = r \circ C^{\mathrm{ad}} \circ \Sigma \tilde{s} \circ \Sigma \iota = r \circ C^{\mathrm{ad}} \circ 0 = 0.$$

This implies the \mathbb{A}^1 -local statement. The simplicial statement follows from [1, Theorem 3.3.5], which gives a bijection

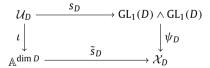
$$[\mathbb{A}^1 \setminus \{0, 1\}, G_{\bullet}]_s \cong [\mathbb{A}^1 \setminus \{0, 1\}, \operatorname{Ex}_{\mathbb{A}^1}^{\infty}(G_{\bullet})]_{\mathbb{A}^1}. \quad \Box$$

The result and Lemma 2.2 imply that for split *G*, all the loops $C^{\alpha}(u, 1-u)$, $u \in k^{\times}$, described in Section 3 are contractible in the singular resolution $G(k[\Delta^{\bullet}])$: the symbol $C^{\alpha}(x, y)$ can be interpreted as a morphism of simplicial groups $\mathbb{G}_{m} \times \mathbb{G}_{m} \to \Omega \operatorname{Sing}_{\bullet}^{\mathbb{A}^{1}} G$. But since $C^{\alpha}(1, y) = C^{\alpha}(x, 1) = 1$ is equal to the identity, this morphism factors through a morphism of simplicial presheaves $\mathbb{G}_{m} \wedge \mathbb{G}_{m} \to \Omega \operatorname{Sing}_{\bullet}^{\mathbb{A}^{1}} G$. The above corollary then yields the Steinberg relation. Even better, since $\operatorname{Sing}_{\bullet}^{\mathbb{A}^{1}} G$ has affine excision, there is a single algebraic morphism $\mathbb{A}^{1} \setminus \{0, 1\} \times \mathbb{A}^{1} \to G$ realizing all the Steinberg loops $C^{\alpha}(u, 1-u), u \in k^{\times} \setminus \{1\}$ at once; and there is a single algebraic homotopy $(\mathbb{A}^{1} \setminus \{0, 1\} \times \mathbb{A}^{1}) \times \mathbb{A}^{1} \to G$ providing all the contractions of the Steinberg loops at once. This is one instance where a computation in group homology can be deduced from \mathbb{A}^{1} -homotopy theory.

We want to point out the following generalization of the Steinberg relation for non-split groups. Let *D* be a central simple algebra over *k*. There is an associated reduced norm which can be interpreted as a regular morphism $\operatorname{Nrd}_D : \mathbb{A}^{\dim D} \to \mathbb{A}^1$. In $\mathbb{A}^{\dim D}$ we have two open subschemes, the linear algebraic group $\operatorname{GL}_1(D)$ defined by $\operatorname{Nrd}_D(u) \neq 0$, and another open subscheme \mathcal{U}_D defined by $\operatorname{Nrd}_D(u) \neq 0$ and $\operatorname{Nrd}_D(1-u) \neq 0$. There is an obvious analogue of the Steinberg morphism:

$$s_D: \mathcal{U}_D \to \mathrm{GL}_1(D) \times \mathrm{GL}_1(D) \to \mathrm{GL}_1(D) \wedge \mathrm{GL}_1(D): u \mapsto (u, 1-u).$$

Proposition 5.2. Let $s_D : U_D \to GL_1(D) \land GL_1(D)$ be the Steinberg morphism defined above. Then there exists a space \mathcal{X}_D and a commutative diagram



with the suspension $\Sigma \psi_D$ of ψ_D being an \mathbb{A}^1 -local weak equivalence.

Proof. The argument is the same as in [4, Prop. 1], replacing \mathbb{A}^1 by $\mathbb{A}^{\dim D}$, \mathbb{G}_m by $GL_1(D)$, and $\mathbb{A}^1 \setminus \{0, 1\}$ by \mathcal{U}_D . The varieties *V* and *W* have to be replaced by $\mathcal{V}_D = [y - 1 = x \cdot_D z, y \neq 0]$ and $\mathcal{W}_D = [x - 1 = y \cdot_D z, x \neq 0]$. The space \mathcal{X}_D is then the pushout $\mathcal{V}_D \cup_{GL_1(D) \times GL_1(D)} \mathcal{W}_D$. \Box

This provides an \mathbb{A}^1 -homotopy proof of the Steinberg relation in $H_2(SL_n(D), \mathbb{Z})$, $n \ge 3$. All Steinberg relations are given by a single algebraic map $\mathcal{U}_D \times \mathbb{A}^1 \to SL_n(D)$, and they are all contracted by a single (inexplicit) algebraic homotopy ($\mathcal{U}_D \times \mathbb{A}^1$) $\times \mathbb{A}^1 \to SL_n(D)$.

Acknowledgements

The results presented here originate from the first named author's Diplomarbeit [12] at the Albert-Ludwigs-Universität Freiburg.

References

- [1] A. Asok, M. Hoyois, M. Wendt, Affine representability results in A¹-homotopy theory I: vector bundles, ArXiV preprint, arXiv:1506.07093, 2015.
- [2] A. Asok, M. Hoyois, M. Wendt, Affine representability results in A¹-homotopy theory II: principal bundles and homogeneous spaces, ArXiV preprint, arXiv:1507.08020, 2015.
- [3] P.G. Goerss, J.F. Jardine, Simplicial Homotopy Theory, Prog. Math., vol. 174, Birkhäuser, 1999.
- [4] P. Hu, I. Kriz, The Steinberg relation in A¹-stable homotopy, Int. Math. Res. Not. (17) (2001) 907–912.
- [5] J.F. Jardine, On the homotopy groups of algebraic groups, J. Algebra 81 (1) (1983) 180-201.
- [6] A.Yu. Luzgarev, A.A. Stavrova, The elementary subgroup of an isotropic reductive group is perfect, Algebra Anal. 23 (5) (2011) 140-154; translation in St. Petersburg Math. J. 23 (5) (2012) 881-890.
- [7] H. Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Sci. Éc. Norm. Super. (4) 2 (1969) 1-62.
- [8] F. Morel, A¹-Algebraic Topology over a Field, Lecture Notes in Mathematics, vol. 2052, Springer, 2012.
- [9] V.A. Petrov, A. Stavrova, Elementary subgroups in isotropic reductive groups, Algebra Anal. 20 (4) (2008) 160–188; translation in St. Petersburg Math. J. 20 (4) (2009) 625–644.
- [10] U. Rehmann, Zentrale Erweiterungen der speziellen linearen Gruppe eines Schiefkörpers, J. Reine Angew. Math. 301 (1978) 77-104.
- [11] A. Stavrova, Homotopy invariance of non-stable K1-functors, J. K-Theory 13 (2) (2014) 199-248.
- [12] K. Voelkel, Matsumotos Satz und A¹-Homotopietheorie, Diplomarbeit, Albert-Ludwigs-Universität Freiburg, 2011.
- [13] M. Wendt, A¹-homotopy of Chevalley groups, J. K-Theory 5 (2) (2010) 245–287.
- [14] M. Wendt, On homology of linear groups over k[t], Math. Res. Lett. 21 (6) (2014) 1483–1500.