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r é s u m é

Nous fournissons une preuve simple d’une version en plusieurs dimensions du théorème de 
Poincaré–Birkhoff qui s’applique aux applications de Poincaré des systèmes hamiltoniens. 
Ces applications ne sont tenues, ni d’être proches de l’identité, ni d’avoir une torsion 
monotone.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Statement of the result

The aim of this short note is to give a simple proof, following the ideas developed in [3,4], of a higher-dimensional 
version of the Poincaré–Birkhoff theorem, which applies to Poincaré time maps of a Hamiltonian system, say

(HS) ż = J∇H(t, z) .

Here, J =
( 0 IN

−IN 0

)
denotes the standard 2N × 2N symplectic matrix and ∇ stands for the gradient with respect to the 

z variables. The Hamiltonian function H : R × R
2N → R is assumed to be T -periodic in its first variable t and C∞-smooth 

with respect to all variables.
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Consequently, for every initial position ζ ∈ R
2N , i.e., ζ = (ξ, η) ∈ R

N ×R
N , there is a unique solution Z(·, ζ ) = Z(·, ξ, η)

of (HS) satisfying Z(0, ζ ) = ζ . Let us further assume that, for η in some closed ball B ⊂ R
N centered at the origin, these 

solutions can be continued to the whole time interval [0, T ]. We can then consider the so-called Poincaré time map: this is 
the function P : RN × B →R

N ×R
N , defined by

P(ζ ) = Z(T , ζ ) ,

whose fixed points give rise to T -periodic solutions of (HS).
We use the notation z = (x, y), with x = (x1, . . . , xN ) ∈ R

N and y = (y1, . . . , yN) ∈ R
N , and assume that H(t, x, y) is 

2π-periodic in each of the variables x1, . . . , xN . Then, once a T -periodic solution z(t) = (x(t), y(t)) has been found, many 
others appear by just adding an integer multiple of 2π to some of the components xi(t); for this reason, we will call 
geometrically distinct two T -periodic solutions to (HS) (or two fixed points of P) which cannot be obtained from each other 
in this way.

The result we want to prove is the following.

Theorem 1.1. Writing

P(x, y) = (x + ϑ(x, y),ρ(x, y)) , (x, y) ∈R
N × B ,

assume that, either

ϑ(x, y) /∈ {αy : α ≥ 0} , for every (x, y) ∈R
N × ∂ B , (1)

or

ϑ(x, y) /∈ {−αy : α ≥ 0} , for every (x, y) ∈ R
N × ∂ B . (2)

Then, P has at least N + 1 geometrically distinct fixed points in RN × B. Moreover, if all fixed points are nondegenerate, then there are 
at least 2N of them.

This is a special case of [4, Theorem 2.1], where a much more general situation was considered. However, we believe 
that the simple proof proposed below will clarify the main ideas and help the interested reader towards possible further 
generalizations.

2. The proof

In order to fix ideas, we assume that B is the open unit ball in RN and that (1) holds. As before, for ζ = (ξ, η) ∈
R

N ×R
N , we denote by Z(t, ζ ) the value at time t of the solution z of (HS) with z(0) = ζ . The Hamiltonian H(t, x, y) being 

2π-periodic in the variables xi , the continuous image by Z of [0, T ] × (RN/2πZN ) × B will be bounded in the cylinder 
(RN/2πZN) ×R

N and, after multiplying H by a smooth cutoff function of y, there is no loss of generality in assuming that:

(•) there is some R ≥ 2 such that H(t, x, y) = 0, if |y| ≥ R .

In particular, the C∞-smooth map Z : R ×R
2N → R

2N is now globally defined. For any t , we write Zt :=Z(t, ·) :R2N →
R

2N , and denote by Xt , Yt : R2N → R
N the corresponding components, i.e., Zt = (Xt , Yt). The following assertions are 

standard consequences from our assumptions.

(i) Z0 is the identity map in R2N ;
(ii) Zt(ζ + p) =Zt(ζ ) + p, if p ∈ 2πZN × {0};
(iii) each Zt is a (C∞-smooth) canonical transformation of R2N on itself 1;
(iv) Z(t, ξ, η) = (ξ, η), if |η| ≥ R;
(v) there is some constant ε ∈ ]0, 1[ such that

XT (ξ,η) − ξ �∈ {αη : α ≥ 0} , if 1 ≤ |η| ≤ 1 + ε .

Choose now a C∞-function γ : [0, +∞[ → R, with

[h]
{
γ (s) = 0 on [0,1] , γ ′(s) ≥ 0 on ]1,1 + ε[ ,
γ ′(s) ≥ 1 on [1 + ε,2] , γ (s) = s2 on [2,+∞[ ,

and let λ > 0 be a parameter, to be fixed later. We define the function Rλ :R2N → R as

1 This means that each Zt : R2N →R
2N is a diffeomorphism and (∂Z/∂ζ )∗ J (∂Z/∂ζ ) = J at any point. See, e.g., Proposition 3 (p. 4) in [2].
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Rλ(ξ,η) := −λγ (|η|) ,

and the function Rλ :R ×R
2N →R by

Rλ(t, ·) := Rλ ◦Z−1
t , if 0 ≤ t < T ,

extended by T -periodicity in t . Now, set

H̃λ(t, z) := H(t, z) + Rλ(t, z) .

This function H̃λ :R ×R
2N →R will be referred to as ‘the modified Hamiltonian’, and one easily checks that:

(vi) H̃λ(t, z) = H̃λ(t + T , z) = H̃λ(t, z + p), if p ∈ 2πZN × {0};
(vii) H̃λ(t, x, y) = −λ|y|2 , if |y| ≥ R;
(viii) H̃λ and H coincide on the open set 

{
(t, Z(t, ξ, η)) : 0 < t < T , η ∈ B

}
.

At this point, we would like to apply either [1, Theorem 3], [5, Theorem 4.2], or [6, Theorem 8.1]; the main assumptions 
of these results are ensured by (vi) and (vii) above. They would provide the existence of at least N + 1 geometrically 
distinct T -periodic solutions to the Hamiltonian system (H̃S)λ associated with the modified Hamiltonian, and 2N of them if 
nondegenerate.

There is, however, a difficulty: these three theorems also assume that the Hamiltonian function is continuous in all 
variables, but our modified Hamiltonian H̃λ will probably be discontinuous when t is an integer multiple of T . Nevertheless, 
one observes that the restriction of H̃λ to ]0, T [×R

2N can be continuously extended to [0, T ] × R
2N (just by the same 

formula (t, z) → H(t, z) + Rλ ◦ Z−1
t ), and this extension is now C∞-smooth on [0, T ] × R

2N . Under this condition, the 
proofs of the results above keep their validity. Let us briefly justify this assertion in the case of Szulkin’s results [5,6], which 
are sufficient for our purposes.

In broad terms, Szulkin’s arguments are based on the study of the functional

�(z) = 1

2

T∫
0

ż(t)∗ J z(t)dt −
T∫

0

H(t, z(t))dt, z ∈ H1/2(R/TZ,R2N ) ,

whose critical points are the T -periodic solutions to (HS). The periodicity of H in the xi variables can be used to see �
as being defined on the product of the N-torus RN/2πZN and a suitable Hilbert space, along which � has the geometry 
of a (strongly indefinite) saddle. Now, it is well known that a smooth function on the N-torus has at least N + 1 critical 
points (Lusternik–Schnirelmann) and 2N if nondegenerate (Morse). This result has an infinite-dimensional analogue; under 
assumptions (vi)–(vii), our functional has at least N + 1 critical points and 2N in the nondegenerate case. The continuity 
in the time variable of H , which was a natural assumption in Szulkin’s work, is, in fact, not used in the discussion. These 
different critical points are geometrically distinct T -periodic solutions to (H̃S)λ .

As a consequence of (viii), the Hamiltonian systems (HS) and (H̃S)λ have the same T -periodic solutions z(t) = (x(t), y(t))
departing with y(0) ∈ B . Thus, in order to complete the proof of Theorem 1.1, it will suffice to check the following

Proposition. If λ > 0 is large enough, then (H̃S)λ does not have T -periodic solutions z(t) = (x(t), y(t)) departing with y(0) �∈ B.

Proof. In view of (•), we may choose some constant c > 0 such that∣∣∣∣∂ H

∂ y
(t, x, y)

∣∣∣∣ ≤ c , for every (t, x, y) ∈R×R
N ×R

N ,

and observe that, consequently,

|XT (ξ,η) − ξ | ≤ cT , for any ξ,η ∈R
N . (3)

It will be shown that, if

λ > c , (4)

then the conclusion holds. We prove this result by a contradiction argument and assume instead that z = (x, y) : [0, T ] →
R

N × R
N is a solution to (H̃S)λ for such a value of λ, with z(0) = z(T ), departing with |y(0)| ≥ 1. We consider the 

C∞-function ζ : [0, T ] →R
2N , defined by

ζ(t) := Z−1
t (z(t)) .

Claim. ζ̇ = J∇Rλ(ζ ).
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Proof of the Claim. Differentiating in the equality z(t) = Z(t, ζ(t)), we find

ż = ∂Z
∂t

(t, ζ ) + ∂Z
∂ζ

(t, ζ )ζ̇ ,

so that

∂Z
∂ζ

(t, ζ )ζ̇ = J∇ H̃λ(t, z) − J∇H(t, z) = J∇Rλ(t, z) . (5)

By (iii) above, Zt is canonical, so that

∂Z
∂ζ

(t, ζ(t))∗ J
∂Z
∂ζ

(t, ζ(t)) = J , for every t ∈ [0, T ] .

Hence, if we multiply both sides of (5) by − J (∂Z/∂ζ )∗ J , we get

ζ̇ = J
∂Z
∂ζ

(t, ζ )∗ ∇Rλ(t, z) = J∇Rλ(ζ ) ,

the last equality coming from the fact that Rλ(t, Z(t, ζ )) = Rλ(ζ ). This finishes the proof of the Claim. �
Let us now complete the proof of our Proposition. We write ζ(t) = (ξ(t), η(t)); combining the Claim and the definition 

of Rλ , we have

ξ̇ = −λγ ′(|η|) η

|η| , η̇ = 0 ,

and consequently, recalling (i),

η(t) = η(0) = y(0) , ξ(t) = x(0) − tλγ ′(|y(0)|) y(0)

|y(0)| ,

for every t ∈ [0, T ]. In particular,

x(T ) = XT
(
ξ(T ),η(T )

) = XT

(
x(0) − T λγ ′(|y(0)|) y(0)

|y(0)| , y(0)

)
. (6)

In order to obtain the desired contradiction, we shall show that x(T ) �= x(0). We distinguish three cases:

Case I: 1 ≤ |y(0)| < 1 + ε . Since γ ′(|y(0)|) ≥ 0, by [h], the combination of (6) and (v) gives

x(T ) − x(0) + T λγ ′(|y(0)|) y(0)

|y(0)| �∈ {αy(0) : α ≥ 0} ,

implying that x(T ) �= x(0).
Case II: 1 + ε ≤ |y(0)| ≤ R . By the triangle inequality,

|x(T ) − x(0)| ≥ T λγ ′(|y(0)|) −
∣∣∣∣x(T ) − x(0) + T λγ ′(|y(0)|) y(0)

|y(0)|
∣∣∣∣ ,

and remembering that γ ′(|y(0)|) ≥ 1, by [h], the joint action of (3), (4) and (6) gives

|x(T ) − x(0)| ≥ T λ − T c > 0 ,

implying again that x(T ) �= x(0).
Case III: |y(0)| > R . Now γ ′(|y(0)|) = 2|y(0)|, by [h]; combining (6) and (iv), we have that x(T ) = x(0) − 2T λy(0). In 

particular, x(T ) �= x(0) also in this case.

The proof is complete. �
Remark. Even though we have always assumed, for the sake of simplicity, that H is C∞-smooth with respect to all variables, 
everything in the proof works just the same by assuming that this dependence is merely of class C2 (for the N +1 solutions) 
or C3 (for the 2N solutions) with respect to the state variable z.
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