Harmonic analysis

L^{p} harmonic analysis for differential-reflection operators

Salem Ben Saïd ${ }^{\text {a }}$, Asma Boussen ${ }^{\text {b }}$, Mohamed Sifi ${ }^{\text {b }}$
${ }^{a}$ Institut Élie Cartan de Lorraine, Université de Lorraine, BP 239, 54506 Vandœuvre-Lès-Nancy, France
${ }^{\text {b }}$ Université de Tunis El Manar, Faculté des sciences de Tunis, LR11ES11 Laboratoire d'analyse mathématiques et applications, 2092 Tunis, Tunisia

A R T I CLE IN F O

Article history:

Received 6 July 2015
Accepted after revision 26 January 2016
Presented by the Editorial Board

Abstract

We introduce and study differential-reflection operators $\Lambda_{A, \varepsilon}$ acting on smooth functions defined on \mathbb{R}. Here A is a Sturm-Liouville function with additional hypotheses and $\varepsilon \in \mathbb{R}$. For special pairs (A, ε), we recover Dunkl's, Heckman's and Cherednik's operators (in one dimension). As, by construction, the operators $\Lambda_{A, \varepsilon}$ are mixture of $\mathrm{d} / \mathrm{d} x$ and reflection operators, we prove the existence of an operator $V_{A, \varepsilon}$ so that $\Lambda_{A, \varepsilon} \circ V_{A, \varepsilon}=V_{A, \varepsilon} \circ \mathrm{~d} / \mathrm{d} x$. The positivity of the intertwining operator $V_{A, \varepsilon}$ is also established. Via the eigenfunctions of $\Lambda_{A, \varepsilon}$, we introduce a generalized Fourier transform $\mathscr{F}_{A, \varepsilon}$. For $-1 \leq \varepsilon \leq 1$ and $0<p \leq \frac{2}{1+\sqrt{1-\varepsilon^{2}}}$, we develop an L^{p}-Fourier analysis for $\mathscr{F}_{A, \varepsilon}$, and then we prove an L^{p}-Schwartz space isomorphism theorem for $\mathscr{F}_{A, \varepsilon}$. Details of this paper will be given in other articles [3] and [4]. © 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

R É S U M É

Nous introduisons et étudions des opérateurs différentiels aux différences $\Lambda_{A, \varepsilon}$ agissant sur les fonctions régulières définies sur \mathbb{R}. Ici A est une fonction de Sturm-Liouville avec des hypothèses supplémentaires et $\varepsilon \in \mathbb{R}$. Pour des cas particuliers de paires (A, ε), nous obtenons les opérateurs de Dunkl, de Heckman et de Cherednik (unidimensionnels).
Comme, par construction, les opérateurs $\Lambda_{A, \varepsilon}$ entremêlent $\mathrm{d} / \mathrm{d} x$ et des opérateurs de réflexion, nous prouvons qu'il existe un opérateur $V_{A, \varepsilon}$ tel que $\Lambda_{A, \varepsilon} \circ V_{A, \varepsilon}=V_{A, \varepsilon} \circ \mathrm{~d} / \mathrm{d} x$. La positivité de l'opérateur $V_{A, \varepsilon}$ a été établie.
À l'aide des fonctions propres de $\Lambda_{A, \varepsilon}$, nous introduisons une transformée de Fourier généralisée $\mathscr{F}_{A, \varepsilon}$. Nous développons de l'analyse de Fourier de type L^{p} pour $\mathscr{F}_{A, \varepsilon}$ quand $-1 \leq \varepsilon \leq 1$ et $0<p \leq \frac{2}{1+\sqrt{1-\varepsilon^{2}}}$, et nous caractérisons l'image des p-espaces de Schwartz par $\mathscr{F}_{A, \varepsilon}$.
Les détails seront publiés dans d'autres articles [3] et [4].
© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

[^0]
1. A family of differential-reflection operators

It became apparent long ago that radial Fourier analysis on real-rank-one symmetric spaces is closely connected to certain classes of special functions in one variable:

- Bessel functions in connection with radial Fourier analysis on Euclidean spaces,
- Jacobi functions in connection with radial Fourier analysis on hyperbolic spaces.

We refer to [12] for a detailed exposition.
In the late 80 's/early 90 's Dunkl [10] found a remarkable family of commuting operators that now bear his name. In one dimension, this reads

$$
\begin{equation*}
D_{\alpha} f(x)=f^{\prime}(x)+\frac{2 \alpha+1}{x}\left(\frac{f(x)-f(-x)}{2}\right) \quad \alpha \geq-1 / 2 \tag{1.1}
\end{equation*}
$$

The eigenfunctions of Dunkl's operators, known as the Dunkl kernel, are the nonsymmetric version of Bessel functions.
Some years after [10], in [8] Cherednik wrote down a trigonometric variant of the Dunkl operator. In one dimension, this reads

$$
\begin{equation*}
T_{\alpha, \beta} f(x)=f^{\prime}(x)+\{(2 \alpha+1) \operatorname{coth} x+(2 \beta+1) \tanh x\}\left(\frac{f(x)-f(-x)}{2}\right)-\varrho f(-x) \tag{1.2}
\end{equation*}
$$

where $\alpha \geq \beta \geq-1 / 2, \alpha \neq-1 / 2$, and $\varrho=\alpha+\beta+1$. The eigenfunctions of Cherednik's operators, known as the Opdam functions [14], are the nonsymmetric version of the Jacobi functions. We mention that the trigonometric Dunkl operators were originally introduced by Heckman [11] in a different form. In one dimension, his operator reads:

$$
S_{\alpha, \beta} f(x)=f^{\prime}(x)+\{(2 \alpha+1) \operatorname{coth} x+(2 \beta+1) \tanh x\}\left(\frac{f(x)-f(-x)}{2}\right)
$$

This paper gives some aspects of harmonic analysis associated with the following family of one dimensional (A, ε)-operators

$$
\Lambda_{A, \varepsilon} f(x)=f^{\prime}(x)+\frac{A^{\prime}(x)}{A(x)}\left(\frac{f(x)-f(-x)}{2}\right)-\varepsilon \varrho f(-x)
$$

where $\varepsilon \in \mathbb{R}$ and $A: \mathbb{R} \rightarrow \mathbb{R}^{+}$satisfies the following conditions (cf. [5,6,16]):
(C1) $A(x)=|x|^{2 \alpha+1} B(x)$, where $\alpha>-\frac{1}{2}$ and $B \in C^{\infty}(\mathbb{R})$ is even, positive, and $B(0)=1$.
(C2) On $\mathbb{R}^{+} \backslash\{0\}, A$ is increasing, whereas A^{\prime} / A is decreasing. This condition implies that the limit $\varrho:=\lim _{x \rightarrow+\infty} A^{\prime}(x) /$ $2 A(x) \geq 0$ exists.
(C3) There exists a constant $\delta>0$ such that for $x \gg 0$,

$$
\frac{A^{\prime}(x)}{A(x)}= \begin{cases}2 \varrho+e^{-\delta x} D(x) & \text { if } \varrho>0 \tag{1.3}\\ \frac{2 \alpha+1}{x}+e^{-\delta x} D(x) & \text { if } \varrho=0\end{cases}
$$

with $\left|D^{(k)}(x)\right| \leq c_{k}$ for all $x \gg 0$ and $k \in \mathbb{N}$.
The function A and the real number ε are the deformation parameters giving back the above three operators (as special examples) when:
(1) $A(x)=A_{\alpha}(x)=|x|^{2 \alpha+1}$ and ε arbitrary (Dunkl's operators D_{α}),
(2) $A(x)=A_{\alpha, \beta}(x)=|\sinh x|^{2 \alpha+1}(\cosh x)^{2 \beta+1}$ and $\varepsilon=0$ (Heckman's operators $S_{\alpha, \beta}$),
(3) $A(x)=A_{\alpha, \beta}(x)=|\sinh x|^{2 \alpha+1}(\cosh x)^{2 \beta+1}$ and $\varepsilon=1$ (Cherednik's operators $T_{\alpha, \beta}$).

Let $\lambda \in \mathbb{C}$ and consider the initial data problem

$$
\begin{equation*}
\Lambda_{A, \varepsilon} f(x)=i \lambda f(x), \quad f(0)=1 \tag{1.4}
\end{equation*}
$$

where $f: \mathbb{R} \rightarrow \mathbb{C}$. We prove that:

Theorem 1.1.

I) For $\lambda \in \mathbb{C}$, there exists a unique solution $\Psi_{A, \varepsilon}(\lambda, \cdot)$ to the problem (1.4). Further, for every $x \in \mathbb{R}$, the function $\lambda \mapsto \Psi_{A, \varepsilon}(\lambda, x)$ is analytic on \mathbb{C}.
II) Under the restriction $-1 \leq \varepsilon \leq 1$, for all $x \in \mathbb{R}$ we have:

1) for $\lambda \in \mathbb{R}$, we have $\left|\Psi_{A, \varepsilon}(\lambda, x)\right| \leq \sqrt{2}$.
2) for $\lambda \in i \mathbb{R}$, we have $\Psi_{A, \varepsilon}(\lambda, x)>0$.
3) Assume that $\lambda \in \mathbb{C}$ and $|x| \geq x_{0}$ with $x_{0}>0$. Then

$$
\left|\partial_{x}^{N} \Psi_{A, \varepsilon}(\lambda, x)\right| \leq c(|\lambda|+1)^{N}(|x|+1) e^{\left(|\operatorname{Im} \lambda|-\varrho\left(1-\sqrt{1-\varepsilon^{2}}\right)\right)|x|}
$$

4) Assume that $\lambda \in \mathbb{C}$ and $x \in \mathbb{R}$. Then

$$
\left|\partial_{\lambda}^{M} \Psi_{A, \varepsilon}(\lambda, x)\right| \leq c|x|^{M}(|x|+1) e^{\left(|\operatorname{Im} \lambda|-\varrho\left(1-\sqrt{1-\varepsilon^{2}}\right)\right)|x|}
$$

Sketch of Proof. I) The proof is based on the following facts:
Fact 1) Under the conditions (C1) and (C2), the Cauchy problem

$$
\left\{\begin{array}{l}
h^{\prime \prime}(x)+\frac{A^{\prime}(x)}{A(x)} h^{\prime}(x)=-\left(\mu^{2}+\varrho^{2}\right) h(x) \tag{1.5}\\
h(0)=1, \quad h^{\prime}(0)=0
\end{array}\right.
$$

with $\mu \in \mathbb{C}$, admits a unique solution, which we denote by φ_{μ} (see [6,7]).
Fact 2) Define μ_{ε} so that $\mu_{\varepsilon}^{2}=\lambda^{2}+\left(\varepsilon^{2}-1\right) \varrho^{2}$. For $i \lambda \neq \varepsilon \varrho$, the function

$$
\begin{equation*}
\Psi_{A, \varepsilon}(\lambda, x):=\varphi_{\mu_{\varepsilon}}(x)+\frac{1}{i \lambda-\varepsilon \varrho} \varphi_{\mu_{\varepsilon}}^{\prime}(x) \tag{1.6}
\end{equation*}
$$

satisfies the problem (1.4).
Fact 3) We may rewrite (1.6) as

$$
\begin{equation*}
\Psi_{A, \varepsilon}(\lambda, x)=\varphi_{\mu_{\varepsilon}}(x)+(i \lambda+\varepsilon \varrho) \frac{\operatorname{sg}(x)}{A(x)} \int_{0}^{|x|} \varphi_{\mu_{\varepsilon}}(t) A(t) \mathrm{d} t \tag{1.7}
\end{equation*}
$$

which implies that $\lambda \mapsto \Psi_{A, \varepsilon}(\lambda, x)$ is analytic, and therefore the restriction on λ can be dropped. The uniqueness follows by standard arguments.
II.1) The proof is inspired by Opdam's proof of Proposition 6.1 in [14]. Using the fact that $\Psi_{A, \varepsilon}$ satisfies

$$
\begin{equation*}
\Psi_{A, \varepsilon}^{\prime}(\lambda, x)=-\frac{A^{\prime}(x)}{2 A(x)}\left(\Psi_{A, \varepsilon}(\lambda, x)-\Psi_{A, \varepsilon}(\lambda,-x)\right)+\varepsilon \varrho \Psi_{A, \varepsilon}(\lambda,-x)+\mathrm{i} \lambda \Psi_{A, \varepsilon}(\lambda, x), \tag{1.8}
\end{equation*}
$$

we prove that for all $x \in \mathbb{R}^{+}$, the derivative $\left\{\left|\Psi_{A, \varepsilon}(\lambda,-x)\right|^{2}+\left|\Psi_{A, \varepsilon}(\lambda, x)\right|^{2}\right\}^{\prime} \leq 0$. This implies that for $x \in \mathbb{R}^{+}$, we have $\left|\Psi_{A, \varepsilon}(\lambda,-x)\right|^{2}+\left|\Psi_{A, \varepsilon}(\lambda, x)\right|^{2} \leq\left|\Psi_{A, \varepsilon}(\lambda, 0)\right|^{2}+\left|\Psi_{A, \varepsilon}(\lambda, 0)\right|^{2}=2$.
II.2) Assume that $\Psi_{A, \varepsilon}(\lambda, \cdot)$ is not strictly positive. Since $\Psi_{A, \varepsilon}(\lambda, 0)=1>0$, it follows that $\Psi_{A, \varepsilon}(\lambda, \cdot)$ vanishes. Let x_{0} be a zero of $\Psi_{A, \varepsilon}(\lambda, \cdot)$ so that $\left|x_{0}\right|=\inf \left\{|x|: \Psi_{A, \varepsilon}(\lambda, x)=0\right\}$. We prove that $\Psi_{A, \varepsilon}\left(\lambda, \pm x_{0}\right)=0$ and $\Psi_{A, \varepsilon}^{\prime}\left(\lambda, \pm x_{0}\right)=0$. Differentiating (1.8), we see that the second derivative of $\Psi_{A, \varepsilon}(\lambda, \cdot)$ vanishes at $\pm x_{0}$. Repeating the same argument over and over again to get $\Psi_{A, \varepsilon}^{(k)}\left(\lambda, \pm x_{0}\right)=0$ for all $k \in \mathbb{N}$. Since $\Psi_{A, \varepsilon}(\lambda, \cdot)$ is a real analytic function, we deduce that $\Psi_{A, \varepsilon}(\lambda, x)=0$ for all $x \in \mathbb{R}$. This contradicts $\Psi_{A, \varepsilon}(\lambda, 0)=1$.
II.3) If $N=0$ we show that for $\lambda \in \mathbb{C}$ we have

$$
\begin{equation*}
\left|\Psi_{A, \varepsilon}(\lambda, x)\right| \leq \Psi_{A, \varepsilon}(0, x) \mathrm{e}^{|\operatorname{Im} \lambda||x|} \tag{1.9}
\end{equation*}
$$

where $\Psi_{A, \varepsilon}(0, x)=1$ for $\varepsilon=0$, and $\Psi_{A, \varepsilon}(0, x) \leq c_{\varepsilon}(|x|+1) \mathrm{e}^{-\varrho\left(1-\sqrt{1-\varepsilon^{2}}\right)|x|}$ for $\varepsilon \neq 0$. So assume $N \geq 1$. The identity (1.8) allows us to express the derivatives of $\Psi_{A, \varepsilon}(\lambda, \cdot)$ in terms of lower-order derivatives. On the other hand, since $A^{\prime} /(2 A)$ satisfies the condition (C3), it follows that

$$
\left|\left(\frac{A^{\prime}(x)}{2 A(x)}\right)^{(N)}\right| \leq C, \quad \forall|x| \geq x_{0} \text { with } x_{0}>0
$$

II.4) If $M=0$ this is just (1.9). So assume $M \geq 1$. If $x=0$, the statement follows from Liouville's theorem. If $x \neq 0$, apply Cauchy's integral formula for $\Psi_{A, \varepsilon}(\lambda, x)$ over a circle with radius proportional to $\frac{1}{|x|}$, centered at λ in the complex plane.

2. The existence and the positivity of an intertwining operator

Recall from the (sketch of) proof of Theorem 1.1.I the function φ_{μ} which is the unique solution to the Cauchy problem (1.5). By [6] we have the following Laplace type representation

$$
\begin{equation*}
\varphi_{\mu}(x)=\int_{0}^{|x|} K(|x|, y) \cos (\mu y) \mathrm{d} y \quad x \in \mathbb{R}^{*} \tag{2.1}
\end{equation*}
$$

where $K(|x|, \cdot)$ is a non-negative even continuous function supported in $[-|x|,|x|]$. Using a Delsarte type operator introduced in [15, Proposition 2.1] (see also Theorem 5.1 in [13]), we prove that the integral representation (2.1) can be rewritten as

$$
\begin{equation*}
\varphi_{\mu_{\varepsilon}}(x)=\int_{0}^{|x|} K_{\varepsilon}(|x|, y) \cos (\lambda y) \mathrm{d} y \quad x \in \mathbb{R}^{*} \tag{2.2}
\end{equation*}
$$

where the relationship between μ_{ε} and λ is given by $\mu_{\varepsilon}^{2}=\lambda^{2}+\left(\varepsilon^{2}-1\right) \varrho^{2}$. Here $K_{\varepsilon}(|x|, \cdot)$ is even, continuous and supported in $[-|x|,|x|]$. Now, in view of the expression (1.7) of the eigenfunction $\Psi_{A, \varepsilon}(\lambda, x)$, we deduce that

$$
\begin{equation*}
\Psi_{A, \varepsilon}(\lambda, x)=\int_{|y|<|x|} \mathbb{K}_{\varepsilon}(x, y) \mathrm{e}^{\mathrm{i} \lambda y} \mathrm{~d} y \quad x \in \mathbb{R}^{*} \tag{2.3}
\end{equation*}
$$

where $\mathbb{K}_{\varepsilon}(x, \cdot)$ is a continuous function supported in $[-|x|,|x|]$. This integral representation of $\Psi_{A, \varepsilon}(\lambda, x)$ is the starting point for obtaining an intertwining operator between the operator $\Lambda_{A, \varepsilon}$ and the ordinary derivative $\mathrm{d} / \mathrm{d} x$. More precisely, for $f \in C^{\infty}(\mathbb{R})$, we define $V_{A, \varepsilon} f$ by

$$
V_{A, \varepsilon} f(x)= \begin{cases}\int_{|y|<|x|} \mathbb{K}_{\varepsilon}(x, y) f(y) \mathrm{d} y & x \neq 0 \tag{2.4}\\ f(0) & x=0\end{cases}
$$

where the kernel $\mathbb{K}_{\varepsilon}(x, y)$ is as in (2.3).

Theorem 2.1.

1) The operator $V_{A, \varepsilon}$ is the unique automorphism of $C^{\infty}(\mathbb{R})$ such that

$$
\begin{equation*}
\Lambda_{A, \varepsilon} \circ V_{A, \varepsilon}=V_{A, \varepsilon} \circ \frac{\mathrm{~d}}{\mathrm{~d} x} \tag{2.5}
\end{equation*}
$$

2) For all $(x, y) \in \mathbb{R}^{*} \times \mathbb{R}$, the kernel $\mathbb{K}_{\varepsilon}(x, y)$ is positive.

The positivity of $V_{A, \varepsilon}$ played a fundamental role in [2] in establishing an analogue of Beurling's theorem, and its relatives such as theorems of type Gelfand-Shilov, Morgan's, Hardy's, and Cowling-Price in the setting of this paper.

For $\varepsilon=0$ and 1 , the positivity of $\mathbb{K}_{\varepsilon}(x, y)$ can be found in [17] and [18].
Sketch of Proof of Theorem 2.1. 1) Write f as the superposition $f=f_{\mathrm{e}}+f_{\mathrm{o}}$ of an even function f_{e} and an odd function f_{o}. We prove that $V_{A, \varepsilon}$ can be expressed as

$$
\begin{equation*}
V_{A, \varepsilon} f(x)=(\operatorname{id}+\varepsilon \varrho \mathbb{M}) \circ \mathbb{A}_{\varepsilon} f_{\mathrm{e}}(x)+\mathbb{M} \circ \mathbb{A}_{\varepsilon} f_{0}^{\prime}(x) \tag{2.6}
\end{equation*}
$$

where

$$
\mathbb{M} h(x):=\frac{\operatorname{sg}(x)}{A(x)} \int_{0}^{|x|} h(t) A(t) \mathrm{d} t
$$

and

$$
\mathbb{A}_{\varepsilon} f(x):=\frac{1}{2} \int_{|y|<|x|} K_{\varepsilon}(|x|, y) f(y) \mathrm{d} y
$$

with $K_{\varepsilon}(|x|, y)$ is as in (2.2). The transform \mathbb{M} is an isomorphism from $C_{\mathrm{e}}^{\infty}(\mathbb{R})$ to $C_{0}^{\infty}(\mathbb{R})$ and its inverse is given by $\mathbb{M}^{-1}=\frac{\mathrm{d}}{\mathrm{d} x}+\frac{A^{\prime}(x)}{A(x)}$ id, while \mathbb{A}_{ε} is an automorphism of $C_{\mathrm{e}}^{\infty}(\mathbb{R})$. Further, $\left(\mathrm{d}^{2} / \mathrm{d} x^{2}+\left(A^{\prime} / A\right)(x) \mathrm{d} / \mathrm{d} x\right) \circ \mathbb{A}_{\varepsilon}=\mathbb{A}_{\varepsilon} \circ\left(\mathrm{d}^{2} / \mathrm{d} x^{2}-\varepsilon^{2} \varrho^{2}\right)$ and $\Lambda_{A, \varepsilon} \circ \mathbb{M}=\mathrm{id}+\varepsilon \varrho \mathbb{M}$. Now, the first statement follows from (2.6). The uniqueness of $V_{A, \varepsilon}$ is due to the fact that the unique solution $\Psi_{A, \varepsilon}$ to the problem (1.4) can be written as $\Psi_{A, \varepsilon}(\lambda, x)=V_{A, \varepsilon}\left(\mathrm{e}^{\mathrm{i} \lambda \cdot}\right)(x)$ (see (2.3)).
2) For a linear operator L on $\mathscr{D}(\mathbb{R})$ we denote by ${ }^{t} L$ its dual operator in the sense that $\int_{\mathbb{R}} L f(x) g(x) A(x) \mathrm{d} x=$ $\int_{\mathbb{R}} f(y)^{\mathrm{t}} \operatorname{Lg}(y) \mathrm{d} y$.

It is more convenient to deal with the dual operator ${ }^{\mathrm{t}} V_{A, \varepsilon}$ than with $V_{A, \varepsilon}$. For $g \in \mathscr{D}(\mathbb{R})$, we have ${ }^{\mathrm{t}} V_{A, \varepsilon} g(y)=$ $\int_{|x|>|y|} \mathbb{K}_{\varepsilon}(x, y) g(x) A(x) \mathrm{d} x$. We shall prove that if $g \geq 0$ then ${ }^{\mathrm{t}} V_{A, \varepsilon} g \geq 0$. For $s>0$ and $u, v \in \mathbb{R}$, let $p_{s}(u, v):=\frac{\mathrm{e}^{-\frac{(u-v)^{2}}{4 s}}}{2 \sqrt{\pi s}}$ be the Euclidean heat kernel. The key observation is that

$$
\int_{\mathbb{R}} g(x) V_{A, \varepsilon}\left(p_{s}(u, .)\right)(x) A(x) \mathrm{d} x=\int_{\mathbb{R}}{ }^{\mathrm{t}} V_{A, \varepsilon} g(x) p_{s}(x, u) \mathrm{d} x=\left({ }^{\mathrm{t}} V_{A, \varepsilon} g * q_{s}\right)(u) \rightarrow{ }^{\mathrm{t}} V_{A, \varepsilon} g(u)
$$

as $s \rightarrow 0$, where $q_{s}(r):=p_{s}(r, 0)$ and $*$ is the Euclidean convolution product. Thus, the positivity of ${ }^{t} V_{A, \varepsilon} g$ reduces to the positivity of $V_{A, \varepsilon}\left(p_{s}(u, \cdot)\right)$. Now, by (2.4) and (2.3) we prove that for every $s>0$ and $u, x \in \mathbb{R}$, we have

$$
V_{A, \varepsilon}\left(p_{s}(u, \cdot)\right)(x)=\frac{1}{2 \pi} \int_{\mathbb{R}} \Psi_{A, \varepsilon}(-\lambda, x) e^{-s \lambda^{2}} \mathrm{e}^{\mathrm{i} \lambda u} \mathrm{~d} \lambda,
$$

which allowed us to show that $V_{A, \varepsilon}\left(p_{s}(u, \cdot)\right)(x) \geq 0$.

3. L^{p}-Fourier analysis

For $f \in L^{1}(\mathbb{R}, A(x) \mathrm{d} x)$ put

$$
\begin{equation*}
\mathscr{F}_{A, \varepsilon} f(\lambda)=\int_{\mathbb{R}} f(x) \Psi_{\varepsilon}(\lambda,-x) A(x) \mathrm{d} x \tag{3.1}
\end{equation*}
$$

which is well defined by Theorem 1.1.II.1
For $-1 \leq \varepsilon \leq 1$ and $0<p \leq \frac{2}{1+\sqrt{1-\varepsilon^{2}}}$, set $\vartheta_{p, \varepsilon}:=\frac{2}{p}-1-\sqrt{1-\varepsilon^{2}}$. Observe that $1 \leq \frac{2}{1+\sqrt{1-\varepsilon^{2}}} \leq 2$. We introduce the tube domain

$$
\mathbb{C}_{p, \varepsilon}:=\left\{\lambda \in \mathbb{C}| | \operatorname{Im} \lambda \mid \leq \varrho \vartheta_{p, \varepsilon}\right\} .
$$

Theorem 3.1. Let $f \in L^{p}(\mathbb{R}, A(x) \mathrm{d} x)$ with $1 \leq p \leq \frac{2}{1+\sqrt{1-\varepsilon^{2}}}$. Then the following properties hold.

1) For $p>1$, the Fourier transform $\mathscr{F}_{A, \varepsilon}(f)(\lambda)$ is well defined for all λ in $\dot{\mathbb{C}}_{p, \varepsilon}$, the interior of $\mathbb{C}_{p, \varepsilon}$. Moreover, for all $\lambda \in \dot{\mathbb{C}}_{p, \varepsilon}$, we have $\left|\mathscr{F}_{A, \varepsilon}(f)(\lambda)\right| \leq c\|f\|_{p}$. For $p=1$, we may replace above the open domain $\mathbb{C}_{p, \varepsilon}$ by $\mathbb{C}_{p, \varepsilon}$.
2) The function $\mathscr{F}_{A, \varepsilon}(f)$ is holomorphic on $\mathbb{C}_{p, \varepsilon}$.
3) (Riemann-Lebesgue lemma) We have $\lim _{\lambda \in \dot{C}_{p, \varepsilon},|\lambda| \rightarrow \infty}\left|\mathscr{F}_{A, \varepsilon}(f)(\lambda)\right|=0$.
4) The Fourier transform $\mathscr{F}_{A, \varepsilon}$ is injective on $L^{p}(\mathbb{R}, A(x) \mathrm{d} x)$ for $1 \leq p \leq \frac{2}{1+\sqrt{1-\varepsilon^{2}}}$.

Sketch of Proof. The first two statements follow from the estimate of $\Psi_{A, \varepsilon}(\lambda, x)$ given in Theorem 1.1.II. 4 (with $N=0$), the fact that $A(x) \leq c|x|^{\beta} \mathrm{e}^{2 \varrho|x|}$ (a consequence of the hypothesis (C3) on the function A), the fact that $\Psi_{A, \varepsilon}(\lambda, \cdot)$ is holomorphic in λ, and Morera's theorem. To extend the first statement from $\mathbb{C}_{p, \varepsilon}$ to $\mathbb{C}_{p, \varepsilon}$ when $p=1$, in addition, we show that $\left|\Psi_{A, \varepsilon}(\lambda, x)\right| \leq 2$ for all $\lambda \in \mathbb{C}_{1, \varepsilon}$ and for all $x \in \mathbb{R}$. The proof uses the maximum modulus principle and the fact that $\left|\Psi_{A, \varepsilon}(\lambda, x)\right| \leq \Psi_{A, \varepsilon}(i \operatorname{Im} \lambda, x)$. For the Riemann-Lebesgue lemma, a classical proof for the Euclidean Fourier transform carries over. The forth statement is based on the following steps:

Step 1) For $f \in L^{p}(\mathbb{R}, A(x) \mathrm{d} x)$ et $g \in \mathscr{D}(\mathbb{R})$, we show, by means of Hölder's inequality and the first statement, that the mappings $f \mapsto(f, g)_{A}:=\int_{\mathbb{R}} f(x) g(-x) A(x) \mathrm{d} x$ and $f \mapsto\left(\mathscr{F}_{A, \varepsilon}(f), \mathscr{F}_{A, \varepsilon}(g)\right)_{\pi_{\varepsilon}}:=\int_{\mathbb{R}} \mathscr{F}_{A, \varepsilon}(f)(\lambda) \mathscr{F}_{A, \varepsilon}(g)(\lambda)(1-$ $\left.\frac{\varepsilon \varrho}{\mathrm{i} \lambda}\right) \pi_{\varepsilon}(\mathrm{d} \lambda)$ are continuous functionals on $L^{p}(\mathbb{R}, A(x) \mathrm{d} x)$. Here π_{ε} is a positive measure with support $\mathbb{R} \backslash$ $]-\sqrt{1-\varepsilon^{2}} \varrho, \sqrt{1-\varepsilon^{2}} \varrho[$.
Step 2) We show that $(f, g)_{A}=\left(\mathscr{F}_{A, \varepsilon}(f), \mathscr{F}_{A, \varepsilon}(g)\right)_{\pi_{\varepsilon}}$ for all $f, g \in \mathscr{D}(\mathbb{R})$. Thus, by Step 1$),(f, g)_{A}=\left(\mathscr{F}_{A, \varepsilon}(f), \mathscr{F}_{A, \varepsilon}(g)\right)_{\pi_{\varepsilon}}$ for all $f \in L^{p}(\mathbb{R}, A(x) \mathrm{d} x)$.

Hence, if we assume that $f \in L^{p}(\mathbb{R}, A(x) \mathrm{d} x)$ and that $\mathscr{F}_{A, \varepsilon}(f)=0$, then for all $g \in \mathscr{D}(\mathbb{R})$, we have $(f, g)_{A}=0$ and therefore $f=0$.

For $-1 \leq \varepsilon \leq 1$ and $0<p \leq \frac{2}{1+\sqrt{1-\varepsilon^{2}}}$, denote by $\mathscr{S}_{p}(\mathbb{R})$ the space consisting of all functions $f \in C^{\infty}(\mathbb{R})$ such that

$$
\begin{equation*}
\sigma_{s, k}^{(p)}(f):=\sup _{x \in \mathbb{R}}(|x|+1)^{s} \mathrm{e}^{\frac{2}{p} \varrho|x|}\left|f^{(k)}(x)\right|<\infty \tag{3.2}
\end{equation*}
$$

for any $s, k \in \mathbb{N}$. The topology of $\mathscr{S}_{p}(\mathbb{R})$ is defined by the seminorms $\sigma_{s, k}^{(p)}$. The space $\mathscr{D}(\mathbb{R})$ of smooth functions with compact support on \mathbb{R} is a dense subspace of $\mathscr{S}_{p}(\mathbb{R})$; see for instance [9, Appendix A].

Let $\mathscr{S}\left(\mathbb{C}_{p, \varepsilon}\right)$ be the Schwartz space consisting of all complex valued functions h that are analytic in the interior of $\mathbb{C}_{p, \varepsilon}$, and such that h together with all its derivatives extend continuously to $\mathbb{C}_{p, \varepsilon}$ and satisfy

$$
\begin{equation*}
\tau_{t, \ell}^{\left(\vartheta_{p, \varepsilon}\right)}(h):=\sup _{\lambda \in \mathbb{C}_{p, \varepsilon}}(|\lambda|+1)^{t}\left|h^{(\ell)}(\lambda)\right|<\infty \tag{3.3}
\end{equation*}
$$

for any $t, \ell \in \mathbb{N}$. The topology of $\mathscr{S}\left(\mathbb{C}_{p, \varepsilon}\right)$ is defined by the seminorms $\tau_{t, \ell}^{\left(\vartheta_{p, \varepsilon}\right)}$.
Using Anker's approach [1], we prove the following result:
Theorem 3.2. Let $-1 \leq \varepsilon \leq 1$ and $0<p \leq \frac{2}{1+\sqrt{1-\varepsilon^{2}}}$. Then the Fourier transform $\mathscr{F}_{A, \varepsilon}$ is a topological isomorphism between $\mathscr{S}_{p}(\mathbb{R})$ and $\mathscr{S}\left(\mathbb{C}_{p, \varepsilon}\right)$.

Sketch of Proof. The proof is based on the following steps:
Step 1) The transform $\mathscr{F}_{A, \varepsilon}$ maps $\mathscr{S}_{p}(\mathbb{R})$ continuously into $\mathscr{S}\left(\mathbb{C}_{p, \varepsilon}\right)$ and is injective.
Step 2) The inverse Fourier transform $\mathscr{F}_{A, \varepsilon}^{-1}: P W(\mathbb{C}) \longrightarrow \mathscr{D}(\mathbb{R})$ given by

$$
\mathscr{F}_{A, \varepsilon}^{-1} h(x)=c \int_{\mathbb{R}} h(\lambda) \Psi_{A, \varepsilon}(\lambda, x)\left(1-\frac{\varepsilon \varrho}{i \lambda}\right) \pi_{\varepsilon}(\mathrm{d} \lambda)
$$

is continuous for the topologies induced by $\mathscr{S}\left(\mathbb{C}_{p, \varepsilon}\right)$ and $\mathscr{S}_{p}(\mathbb{R})$. Here $P W(\mathbb{C})$ is the space of entire functions on \mathbb{C} which are of exponential type and rapidly decreasing, and π_{ε} is a positive measure with support $\mathbb{R} \backslash]-\sqrt{1-\varepsilon^{2}} \varrho, \sqrt{1-\varepsilon^{2}} \varrho\left[\right.$. We pin down that $P W(\mathbb{C})$ is dense in $\mathscr{S}\left(\mathbb{C}_{p, \varepsilon}\right)$.

For Step 1), we prove that $\mathscr{F}_{A, \varepsilon}(f)$ is well defined for all $f \in \mathscr{S}_{p}(\mathbb{R})$. This is due to the growth estimates for $\Psi_{A, \varepsilon}(\lambda, x)$ stated in Theorem 1.1.II.4. Moreover, since the map $\lambda \mapsto \Psi_{A, \varepsilon}(\lambda, x)$ is holomorphic on \mathbb{C}, it follows that for all $f \in \mathscr{S}_{p}(\mathbb{R})$, the function $\mathscr{F}_{A, \varepsilon}(f)$ is analytic in the interior of $\mathbb{C}_{p, \varepsilon}$, and continuous on $\mathbb{C}_{p, \varepsilon}$. Finally, we prove that given a continuous seminorm τ on $\mathscr{S}\left(\mathbb{C}_{p, \varepsilon}\right)$, there exists a continuous seminorm σ on $\mathscr{S}_{p}(\mathbb{R})$ such that $\tau\left(\mathscr{F}_{A, \varepsilon}(f)\right) \leq c \sigma(f)$ for all $f \in \mathscr{S}_{p}(\mathbb{R})$. Indeed, by means of the growth estimates for $\partial_{\lambda}^{\ell} \Psi_{A, \varepsilon}(\lambda, x)$ stated in Theorem 1.1.II.4, we show first that

$$
\left|\left\{(\mathrm{i} \lambda)^{r} \mathscr{F}_{A, \varepsilon}(f)(\lambda)\right\}^{(\ell)}\right| \leq c \int_{\mathbb{R}}\left|\Lambda_{A, \varepsilon}^{r} f(x)\right|(|x|+1)^{\ell+1} \mathrm{e}^{\left(|\operatorname{Im} \lambda|-\varrho\left(1-\sqrt{1-\varepsilon^{2}}\right)\right)|x|} A(x) \mathrm{d} x
$$

and then we prove that $\left|\Lambda_{A, \varepsilon}^{r} f(x)\right|$ is bounded by finite sums of the derivatives of f. Thus $\tau\left(\mathscr{F}_{A, \varepsilon}(f)\right) \leq c \sum_{\text {finite }} \sigma(f)$ for all $f \in \mathscr{S}_{p}(\mathbb{R})$. The injectivity of $\mathscr{F}_{A, \varepsilon}$ on $\mathscr{S}_{p}(\mathbb{R})$ follows from Theorem 3.1.4 and the fact that $\mathscr{S}_{p}(\mathbb{R}) \subset L^{q}(\mathbb{R}, A(x) \mathrm{d} x)$ for all $q<\infty$ so that $p \leq q$.

For Step 2), we start by proving a Paley-Wiener theorem for $\mathscr{F}_{A, \varepsilon}$, i.e. we prove that $\mathscr{F}_{A, \varepsilon}$ is a linear isomorphism between the space $\mathscr{D}_{R}(\mathbb{R})$ of smooth compactly supported functions with support inside $[-R, R]$ and the space $P W_{R}(\mathbb{C})$ of entire functions that are of R-exponential type and rapidly decreasing. We note that $P W(\mathbb{C})=\cup_{R>0} P W_{R}(\mathbb{C})$.

Next, we take $f \in \mathscr{D}(\mathbb{R})$ and $h \in P W(\mathbb{C})$ so that $f=\mathscr{F}_{A, \varepsilon}^{-1}(h)$. Denote by g the image of h by the inverse Euclidean Fourier transform $\mathscr{F}_{\text {euc }}^{-1}$. Making use of the Paley-Wiener theorem for $\mathscr{F}_{A, \varepsilon}$ and the classical Paley-Wiener theorem for \mathscr{F} euc , we have the following support conservation property: $\operatorname{supp}(f) \subset I_{R}:=[-R, R] \Leftrightarrow \operatorname{supp}(g) \subset I_{R}$.

For $j \in \mathbb{N}_{\geq 1}$, let $\omega_{j} \in C^{\infty}(\mathbb{R})$ with $\omega_{j}=0$ on I_{j-1} and $\omega_{j}=1$ outside of I_{j}. Assume that ω_{j} and all its derivatives are bounded, uniformly in j. We write $g_{j}=\omega_{j} g$, and define $h_{j}:=\mathscr{F}_{\text {euc }}\left(g_{j}\right)$ and $f_{j}:=\mathscr{F}_{A, \varepsilon}^{-1}\left(h_{j}\right)$. Note that $g_{j}=g$ outside I_{j}. Hence, by the above support property, $f_{j}=f$ outside I_{j}.

In view of the growth estimate for $\partial_{x}^{k} \Psi_{A, \varepsilon}(\lambda, x)$ stated in Theorem 1.1.II.3, we prove that for all $j \in \mathbb{N}_{\geq 1}$,

$$
\sup _{x \in I_{j+1} \backslash I_{j}}(|x|+1)^{s} \mathrm{e}^{\frac{2}{p} \varrho|x|}\left|f_{j}^{(k)}(x)\right| \leq c \sum_{r=0}^{s+3} \tau_{t, r}^{\left(\vartheta_{p, \varepsilon}\right)}(h),
$$

for some integer $t>0$. For I_{1}, we show first that there exists an integer $m_{k} \geq 1$ such that

$$
\begin{equation*}
\left|\partial_{x}^{k} \Psi_{A, \varepsilon}(\lambda, x)\right| \leq c(|\lambda|+1)^{m_{k}}(|x|+1) \mathrm{e}^{-\varrho|x|} \tag{3.4}
\end{equation*}
$$

for $\lambda \in \mathbb{R}$ such that $|\lambda| \geq \sqrt{1-\varepsilon^{2}} \varrho$. Then, using the compactness of I_{1}, we prove that

$$
\sup _{x \in I_{1}}(|x|+1)^{s} \mathrm{e}^{\frac{2}{p} \varrho|x|}\left|f^{(k)}(x)\right| \leq c \tau_{t, 0}^{(0)}(h),
$$

for some integer $t>0$.
Details of this paper will be given in other articles [3] and [4].

References

[1] J.-Ph Anker, The spherical Fourier transform of rapidly decreasing functions. A simple proof of a characterization due to Harish-Chandra, Helgason, Trombi, and Varadarajan, J. Funct. Anal. 96 (2) (1991) 331-349.
[2] S. Ben Said, A. Boussen, M. Sifi, Uncertainty principles and characterization of the heat kernel for certain differential-reflection operators, Adv. Pure Appl. Math. 6 (4) (2015) 215-239.
[3] S. Ben Said, A. Boussen, M. Sifi, Intertwining operators associated to a family of differential-reflection operators, preprint.
[4] S. Ben Said, A. Boussen, M. Sifi, L^{p}-Fourier analysis associated to a family of differential-reflection operators, preprint.
[5] W.R. Bloom, H. Heyer, Harmonic Analysis of Probability Measures on Hypergroups, de Gruyter Studies in Mathematics, vol. 20, Walter de Gruyter, Berlin, 1995, vi+601 pp.
[6] H. Chébli, Sur un théorème de Paley-Wiener associé à la décomposition spectrale d'un opérateur de Sturm-Liouville sur ($0, \infty$), J. Funct. Anal. 17 (1974) 447-461.
[7] H. Chébli, Opérateurs de translation généralisée et semi-groupes de convolution, in: Théorie du Potentiel et Analyse Harmonique, Journées Soc. Math. France, Inst. Recherche Math. Avancée, Strasbourg, 1973, in: Lecture Notes in Math., vol. 404, Springer, Berlin, 1974, pp. 35-59.
[8] I. Cherednik, A unification of Knizhnik-Zamolodchnikov equations and Dunkl operators via affine Hecke algebras, Invent. Math. 106 (1991) $411-432$.
[9] P. Delorme, Espace de Schwartz pour la transformation de Fourier hypergómf́rique, Appendix A by Mustapha Tinfou, J. Funct. Anal. 168 (1) (1999) 239-312.
[10] C. Dunkl, Differential-difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1989) 167-183.
[11] G.J. Heckman, An elementary approach to the hypergeometric shift operators of Opdam, Invent. Math. 103 (2) (1991) 341-350.
[12] T.H. Koornwinder, Jacobi functions and analysis on noncompact semisimple Lie groups, in: Special Functions: Group Theoretical Aspects and Applications, in: Math. Appl., Reidel, Dordrecht, The Netherlands, 1984, pp. 1-85.
[13] J.L. Lions, Opérateurs de Delsarte et problèmes mixtes, Bull. Soc. Math. Fr. 84 (1956) 9-95.
[14] E.M. Opdam, Harmonic analysis for certain representations of graded Hecke algebras, Acta Math. 175 (1995) 75-121.
[15] M. Thyssen, Sur certains opérateurs de transmutation particuliers, Mem. Soc. R. Sci. Liege (5) 6 (3) (1961) 32 pp.
[16] K. Trimèche, Generalized Wavelets and Hypergroups, Gordon and Breach Science Publishers, Amsterdam, 1997, xii+354 pp.
[17] K. Trimèche, Positivity of the transmutation operators associated with a Cherednik type operator on the real line, Adv. Pure Appl. Math. 3 (4) (2012) 361-376.
[18] K. Trimèche, The transmutation operators relating to a Dunkl type operator on \mathbb{R} and their positivity, Mediterr. J. Math. 12 (2) (2015) $349-369$.

[^0]: E-mail addresses: salem.bensaid@univ-lorraine.fr (S. Ben Saïd), asma.boussen@live.fr (A. Boussen), mohamed.sifi@fst.rnu.tn (M. Sifi).

