

Complex analysis

On estimates for the coefficients of a polynomial

CrossMark

Sur les bornes pour les coefficients d'un polynôme

Suhail Gulzar
Islamic University of Science and Technology, Kashmir, Awantipora 192122, India

A R T I C L E I N F O

Article history:
Received 19 October 2015
Accepted after revision 26 January 2016
Available online 2 March 2016
Presented by the Editorial Board

A B S TR ACT

If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree n, then it was proved by Rahman and Schmeisser [4] that for every $p \in[0,+\infty]$,

$$
\left|a_{n}\right|+\left|a_{0}\right| \leq 2 \frac{\|P\|_{p}}{\|1+z\|_{p}}
$$

In this paper, various estimates for the coefficients of a polynomial P are obtained which among other things include the above inequality as a special case.
© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Si $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ est un polynôme de degré n, Rahman et Schmeisser [4] ont montré que, pour tout $p \in[0,+\infty]$, on a

$$
\left|a_{n}\right|+\left|a_{0}\right| \leq 2 \frac{\|P\|_{p}}{\|1+z\|_{p}}
$$

Nous obtenons ici diverses majorations pour les coefficients d'un polynôme qui, entre autres, incluent l'inégalité ci-dessus comme cas particulier.
© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and statement of results

Let \mathcal{P}_{n} be the set of all polynomials of degree n. For $P \in \mathcal{P}_{n}$ define

$$
\begin{aligned}
\|P\|_{p} & :=\left(\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta\right)^{1 / p} \quad(0<p<\infty), \\
\|P\|_{\infty} & :=\max _{|z|=1}|P(z)|
\end{aligned}
$$

[^0]http://dx.doi.org/10.1016/j.crma.2016.01.018
1631-073X/© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
and
$$
\|P\|_{0}:=\exp \left(\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|P\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right| \mathrm{d} \theta\right)
$$

If $P \in \mathcal{P}_{n}$ and $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$, then by Rouché's theorem, the polynomial

$$
P(z)+\lambda\|P\|_{\infty}=a_{n} z^{n}+a_{n-1} z^{n-1}+\ldots+\left(a_{0}+\lambda\|P\|_{\infty}\right)
$$

does not vanish in the unit disk $|z|<1$ for any choice of $\lambda \in \mathbb{C}$ with $|\lambda|=1$. It follows that $\left|a_{0}+\lambda\|P\|_{\infty}\right| \geq\left|a_{n}\right|$ for each $\lambda \in \mathbb{C}$ with $|\lambda|=1$. By choosing the argument of λ suitably, we get

$$
\begin{equation*}
\left|a_{n}\right|+\left|a_{0}\right| \leq\|P\|_{\infty} \tag{1.1}
\end{equation*}
$$

This is called Visser's inequality [5]. It is well known that equality holds in (1.1) only when $a_{j}=0$ for $j=1,2, \ldots, n-1$. Different variants of this inequality can be found in [3]. Rahman and Schmeisser [4] obtained an L_{p} version of inequality (1.1) and proved that if $P \in \mathcal{P}_{n}$ and $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$, then for every $p \in[0,+\infty]$,

$$
\begin{equation*}
\left|a_{n}\right|+\left|a_{0}\right| \leq 2 \frac{\|P\|_{p}}{\|1+z\|_{p}} \tag{1.2}
\end{equation*}
$$

In this paper, we first prove the following result, which among other things includes inequalities (1.1) and (1.2) as special cases. More precisely, we prove the following theorem.

Theorem 1.1. If $P \in \mathcal{P}_{n}$ and $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$, then for each $0 \leq p<\infty$,

$$
\begin{equation*}
\left|a_{n}\right|+\frac{\left|a_{k}\right|}{\binom{n}{k}} \leq 2 \frac{\|P\|_{p}}{\|1+z\|_{p}} \tag{1.3}
\end{equation*}
$$

where $k=0,1, \ldots, n-1$.
For $k=0$, inequality (1.3) reduces to (1.2).
If we let $p \rightarrow \infty$ in (1.3), we obtain the following result, from which the Visser's inequality follows when $k=0$.
Corollary 1.2. If $P \in \mathcal{P}_{n}$ and $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$, then

$$
\left|a_{n}\right|+\frac{\left|a_{k}\right|}{\binom{n}{k}} \leq\|P\|_{\infty}
$$

where $k=0,1, \ldots, n-1$.
Theorem 1.1 can be improved if we restrict ourselves to the class of polynomials having no zero in $|z|<1$. In this direction, we prove:

Theorem 1.3. If $P \in \mathcal{P}_{n}$ and $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ does not vanish in $|z|<1$, then for each $0 \leq p<\infty$,

$$
\left|a_{n}\right|+\frac{\left|a_{k}\right|}{\binom{n}{k}} \leq 2 c_{p} \frac{\|P\|_{p}}{\|1+z\|_{p}}
$$

where $k=0,1, \ldots, n-1$ and $c_{p}=\left\{\begin{array}{cl}1 & \text { if } k=0 \\ \frac{1}{\|1+z\|_{p}} & \text { if } k>0 .\end{array}\right.$
Note that $0<c_{p}<1$ for $k>0$ and $p>0$.

2. Lemmas

We first describe a result of Arestov [1].
For $\gamma=\left(\gamma_{0}, \gamma_{1}, \ldots, \gamma_{n}\right) \in \mathbb{C}^{n+1}$ and $P(z)=\sum_{j=0}^{n} a_{j} z^{j} \in \mathcal{P}_{n}$, we define

$$
C_{\gamma} P(z)=\sum_{j=0}^{n} \gamma_{j} a_{j} z^{j}
$$

The operator C_{γ} is said to be admissible if it preserves one of the following properties:
(i) $P(z)$ has all its zeros in $|z| \leq 1$,
(ii) $P(z)$ has all its zeros in $|z| \geq 1$.

The result of Arestov [1, Theorem 2] may now be stated as follows.
Lemma 2.1. Let $\varphi(x)=\psi(\log x)$, where ψ is a convex non-decreasing function on \mathbb{R}. Then for all $P \in \mathcal{P}_{n}$ and each admissible opera$\operatorname{tor} C_{\gamma}$,

$$
\int_{0}^{2 \pi} \varphi\left(\left|C_{\boldsymbol{\gamma}} P\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|\right) \mathrm{d} \theta \leq \int_{0}^{2 \pi} \varphi\left(c(\boldsymbol{\gamma})\left|P\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|\right) \mathrm{d} \theta
$$

where $c(\boldsymbol{\gamma})=\max \left(\left|\gamma_{0}\right|,\left|\gamma_{n}\right|\right)$.
In particular Lemma 2.1 applies with $\varphi: x \mapsto x^{p}$ for every $p \in(0, \infty)$ and with $\varphi: x \mapsto \log x$ as well. Therefore, we have for $0 \leq p<\infty$,

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left|C_{\boldsymbol{\gamma}} P\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta\right\}^{1 / p} \leq c(\boldsymbol{\gamma})\left\{\int_{0}^{2 \pi}\left|P\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta\right\}^{1 / p} . \tag{2.1}
\end{equation*}
$$

Lemma 2.2. If $P \in \mathcal{P}_{n}$ and $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ does not vanish for $|z|<1$, then for $k=0,1, \ldots, n-1, \phi$ real and each $p>0$,

$$
\left.\left.\begin{array}{rl}
\int_{0}^{2 \pi} \left\lvert\,\left(a_{n} \mathrm{e}^{\mathrm{i} n \theta}+\frac{a_{k}}{\binom{n}{k}} \mathrm{e}^{\mathrm{i} k \theta}\right)\right. & \mathrm{e}^{\mathrm{i} \phi}
\end{array}+\left(\frac{a_{n-k}}{\binom{n}{k}} \mathrm{e}^{\mathrm{i}(n-k) \theta}+a_{0}\right) \right\rvert\, \mathrm{d} \theta\right] \text { } \quad \begin{aligned}
& \leq \Lambda^{p} \int_{0}^{2 \pi}\left|P\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta
\end{aligned}
$$

where $k=0,1, \ldots, n-1$ and $\Lambda=\left\{\begin{array}{cl}\left|1+\mathrm{e}^{\mathrm{i} \phi}\right| & \text { if } k=0 \\ 1 & \text { if } 0<k<n .\end{array}\right.$
Proof. Since $P(z)$ has all its zeros in $|z| \geq 1$, then all the zeros of $P^{\star}(z)=z^{n} \overline{P(1 / \bar{z})}$ lie in $|z| \leq 1$ and $|P(z)|=\left|P^{\star}(z)\right|$ for $|z|=1$. Therefore $P^{\star}(z) / P(z)$ is analytic in $|z| \leq 1$. By the maximum modulus principle $\left|P^{\star}(z)\right| \leq|P(z)|$ for $|z| \leq 1$ or equivalently $|P(z)| \leq\left|P^{\star}(z)\right|$ for $|z| \geq 1$. By Rouché's theorem, all the zeros of the polynomial

$$
P(z)-\lambda P^{\star}(z)=\sum_{j=0}^{n}\left(a_{j}-\lambda \bar{a}_{n-j}\right) z^{j}
$$

lie in $|z| \leq 1$ for every $\lambda \in \mathbb{C}$ with $|\lambda|>1$. If $z_{1}, z_{2}, \ldots, z_{n}$ are roots of $P(z)-\lambda P^{\star}(z)$, then $\left|z_{j}\right| \leq 1, j=1,2, \ldots, n$ and we have by Viète's formula for $k=0,1, \ldots, n-1$,

$$
(-1)^{n-k}\left(\frac{a_{k}+\lambda \bar{a}_{n-k}}{a_{n}+\lambda \bar{a}_{0}}\right)=\sum_{1 \leq i_{1}<i_{2} \ldots<i_{n-k} \leq n} z_{i_{1}} z_{i_{2}} \ldots z_{i_{n-k}}
$$

which gives

$$
\begin{equation*}
\left|\frac{a_{k}+\lambda \bar{a}_{n-k}}{a_{n}+\lambda \bar{a}_{0}}\right| \leq \sum_{1 \leq i_{1}<i_{2} \ldots<i_{n-k} \leq n}\left|z_{i_{1}} z_{i_{2}} \ldots z_{i_{n-k}}\right| \leq\binom{ n}{n-k}=\binom{n}{k} \tag{2.2}
\end{equation*}
$$

Therefore, all the zeros of the polynomial

$$
M(z)=\left(a_{n}+\lambda \bar{a}_{0}\right) z^{n}+\frac{a_{k}+\lambda \bar{a}_{n-k}}{\binom{n}{k}} z^{k}=a_{n} z^{n}+\frac{a_{k}}{\binom{n}{k}} z^{k}+\lambda\left(\bar{a}_{0} z^{n}+\frac{\bar{a}_{n-k}}{\binom{n}{k}} z^{k}\right)
$$

lie in $|z| \leq 1$ for $\lambda \in \mathbb{C}$ with $|\lambda|>1$. So that if $r>1$, the polynomial

$$
M(r z)=a_{n}(r z)^{n}+\frac{a_{k}}{\binom{n}{k}}(r z)^{k}+\lambda\left(\bar{a}_{0}(r z)^{n}+\frac{\bar{a}_{n-k}}{\binom{n}{k}}(r z)^{k}\right)
$$

has all its zeros in $|z|<1$. This implies

$$
\begin{equation*}
\left|a_{n}(r z)^{n}+\frac{a_{k}}{\binom{n}{k}}(r z)^{k}\right| \leq\left|\bar{a}_{0}(r z)^{n}+\frac{\bar{a}_{n-k}}{\binom{n}{k}}(r z)^{k}\right| \tag{2.3}
\end{equation*}
$$

for $|z| \geq 1$. Indeed, if inequality (2.3) is not true, then there exists a point w with $|w| \geq 1$ such that

$$
\left|a_{n}(r w)^{n}+\frac{a_{k}}{\binom{n}{k}}(r w)^{k}\right|>\left|\bar{a}_{0}(r w)^{n}+\frac{\bar{a}_{n-k}}{\binom{n}{k}}(r w)^{k}\right| .
$$

Since all the zeros of $P^{\star}(z)$ lie in $|z| \leq 1$, then by the similar argument as in (2.2), we have $\left|\bar{a}_{0}\right| \geq\left|\bar{a}_{n-k}\right| /\binom{n}{k}$, which implies that $\overline{a_{0}}(r w)^{n}+\bar{a}_{n-k} /\binom{n}{k}(r w)^{k} \neq 0$. We take

$$
\lambda=-\frac{a_{n}(r w)^{n}+\frac{a_{k}}{\binom{k}{k}}(r w)^{k}}{\bar{a}_{0}(r w)^{n}+\frac{\bar{a}_{n-k}}{\binom{n}{k}}(r w)^{k}}
$$

then λ is a well defined complex number with $|\lambda|>1$ and with this choice of λ, we obtain $M(r w)=0$ where $|w| \geq 1$. This contradicts the fact that all the zeros of $M(r z)$ lie in $|z|<1$. Thus (2.3) holds. Letting $r \rightarrow 1$ in (2.3) and using continuity, in particular, we obtain

$$
\begin{equation*}
\left|a_{n} z^{n}+\frac{a_{k}}{\binom{n}{k}} z^{k}\right| \leq\left|\bar{a}_{0} z^{n}+\frac{\bar{a}_{n-k}}{\binom{n}{k}} z^{k}\right|=\left|\frac{a_{n-k}}{\binom{n}{k}} z^{n-k}+a_{0}\right| \tag{2.4}
\end{equation*}
$$

for $|z|=1$. Again, since $\left|\bar{a}_{0}\right| \geq\left|\bar{a}_{n-k}\right| /\binom{n}{k}$ then the polynomial $\frac{a_{n-k}}{\binom{k}{k}} z^{n-k}+a_{0}$ does not vanish in $|z|<1$. Hence by the maximum modulus principle,

$$
\left|a_{n} z^{n}+\frac{a_{k}}{\binom{n}{k}} z^{k}\right|<\left|\frac{a_{n-k}}{\binom{n}{k}} z^{n-k}+a_{0}\right| \text { for } \quad|z|<1
$$

A direct application of Rouché's theorem shows that with $P(z)=a_{n} z^{n}+\cdots+a_{0}$,

$$
C_{\gamma} P(z)=\left(a_{n} z^{n}+\frac{a_{k}}{\binom{n}{k}} z^{k}\right) \mathrm{e}^{\mathrm{i} \phi}+\left(\frac{a_{n-k}}{\binom{n}{k}} z^{n-k}+a_{0}\right)
$$

has all its zeros in $|z| \geq 1$. Therefore, $C_{\boldsymbol{\gamma}}$ is an admissible operator. Applying (2.1) of Lemma 2.1, the desired result follows immediately for each $p>0$.

The next two lemmas can be found in [2].
Lemma 2.3. Let α be a complex number independent of θ, where θ is real. Then for each $p>0$

$$
\int_{0}^{2 \pi}\left|\alpha+\mathrm{e}^{\mathrm{i} \theta}\right|^{p} \mathrm{~d} \theta=\int_{0}^{2 \pi}\left|1+|\alpha| \mathrm{e}^{\mathrm{i} \theta}\right|^{p} \mathrm{~d} \theta
$$

Lemma 2.4. Let n be a positive integer and $0 \leq p \leq \infty$,

$$
\left\|1+z^{n}\right\|_{p}=\|1+z\|_{p}
$$

Lemma 2.5. Let $\alpha, \beta \in \mathbb{C}$ and n, k are positive integers with $n>k$. Then for each $p>0$,

$$
\begin{equation*}
\left\|\alpha z^{n}+\beta z^{k}\right\|_{p} \geq \frac{|\alpha|+|\beta|}{2}\|1+z\|_{p} \tag{2.5}
\end{equation*}
$$

Proof. If $\alpha=0$ then (2.5) follows by the fact $\|1+z\|_{p}<2$. Henceforth, we assume that $\alpha \neq 0$, therefore by Lemma 2.3 and Lemma 2.4, we obtain

$$
\begin{align*}
\left\|\alpha z^{n}+\beta z^{k}\right\|_{p} & =|\alpha|\left\|z+\frac{\beta}{\alpha}\right\|_{p} \\
& =|\alpha|\left\|1+\left|\frac{\beta}{\alpha}\right| z\right\|_{p} \tag{2.6}
\end{align*}
$$

From the inequality

$$
\left|\frac{1+r \mathrm{e}^{\mathrm{i} \theta}}{1+\mathrm{e}^{\mathrm{i} \theta}}\right| \geq \frac{1+r}{2} \quad \text { with } \quad r=\left|\frac{\beta}{\alpha}\right| \text { and } 0 \leq \theta<2 \pi
$$

we deduce

$$
|\alpha|\left|1+\left|\frac{\beta}{\alpha}\right| \mathrm{e}^{\mathrm{i} \theta}\right| \geq \frac{|\alpha|+|\beta|}{2}\left|1+\mathrm{e}^{\mathrm{i} \theta}\right| .
$$

This implies

$$
|\alpha|\left\|1+\left|\frac{\beta}{\alpha}\right| z\right\|_{p} \geq \frac{|\alpha|+|\beta|}{2}\left\|1+\mathrm{e}^{\mathrm{i} \theta}\right\|_{p}
$$

Using this in conjunction with (2.6), the desired result follows.

3. Proof of theorems

Proof of Theorem 1.1. By hypothesis $P \in \mathcal{P}_{n}$, we can write

$$
P(z)=P_{1}(z) P_{2}(z)
$$

where all the zeros of $P_{1}(z)$ lie in $|z| \leq 1$ and all the zeros of $P_{2}(z)$ lie in $|z|>1$. First, we suppose that $P_{1}(z)$ has no zero on $|z|=1$. Let the degree of polynomial $P_{2}(z)$ be k then the polynomial $P_{2}^{\star}(z)=z^{k} \overline{P_{2}(1 / \bar{z})}$ has all its zeros in $|z|<1$ and $\left|P_{2}^{\star}(z)\right|=\left|P_{2}(z)\right|$ for $|z|=1$. Now consider the polynomial

$$
F(z)=P_{1}(z) P_{2}^{\star}(z)
$$

then all the zeros of $F(z)$ lie in $|z|<1$ and for $|z|=1$,

$$
|F(z)|=\left|P_{1}(z)\right|\left|P_{2}^{\star}(z)\right|=\left|P_{1}(z)\right|\left|P_{2}(z)\right|=|P(z)|
$$

By the maximum modulus principle, it follows that

$$
|P(z)| \leq|F(z)| \quad \text { for } \quad|z| \geq 1
$$

Since $F(z) \neq 0$ for $|z| \geq 1$, a direct application of Rouché's theorem shows that the polynomial $H(z)=P(z)+\lambda F(z)$ has all its zeros in $|z|<1$, for every $\lambda \in \mathbb{C}$ with $|\lambda|>1$. Let $F(z)=\sum_{j=0}^{n} b_{j} z^{j}$, then the polynomial

$$
H(z)=\sum_{j=0}^{n}\left(a_{j}+\lambda b_{j}\right) z^{j}
$$

has all its zeros in $|z|<1$. If $w_{1}, w_{2}, \ldots, w_{n}$ be roots of $H(z)$, then $\left|w_{j}\right|<1, j=1,2, \ldots, n$ and we have by Viète's formula for $k=0,1, \ldots, n-1$,

$$
(-1)^{n-k}\left(\frac{a_{k}+\lambda b_{k}}{a_{n}+\lambda b_{n}}\right)=\sum_{1 \leq i_{1}<i_{2} \ldots<i_{n-k} \leq n} w_{i_{1}} w_{i_{2}} \ldots w_{i_{n-k}} .
$$

Now, proceeding similarly as in Lemma 2.2, we obtain

$$
\left|a_{n} z^{n}+\frac{a_{k}}{\binom{n}{k}} z^{k}\right| \leq\left|b_{n} z^{n}+\frac{b_{k}}{\binom{n}{k}} z^{k}\right|
$$

for $|z| \geq 1$. This implies for each $p>0$ and $0 \leq \theta<2 \pi$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|a_{n} \mathrm{e}^{\mathrm{i} n \theta}+\frac{a_{k}}{\binom{n}{k}} \mathrm{e}^{\mathrm{i} k \theta}\right|^{p} \mathrm{~d} \theta \leq \int_{0}^{2 \pi}\left|b_{n} \mathrm{e}^{\mathrm{i} n \theta}+\frac{b_{k}}{\binom{n}{k}} \mathrm{e}^{\mathrm{i} k \theta}\right|^{p} \mathrm{~d} \theta \tag{3.1}
\end{equation*}
$$

Again, since all the zeros of $F(z)=\sum_{j=0}^{n} b_{j} z^{j}$ lie in $|z|<1$, similarly as shown before, the polynomial $b_{n} z^{n}+\frac{b_{k}}{\binom{k}{k}} z^{k}$ also has all its zeros in $|z|<1$. Therefore, the operator C_{γ} defined by

$$
C_{\gamma} F(z)=b_{n} z^{n}+\frac{b_{k}}{\binom{n}{k}} z^{k}
$$

is admissible. Hence by (2.1) of Lemma 2.1, for each $p>0$, we have

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|b_{n} \mathrm{e}^{\mathrm{i} n \theta}+\frac{b_{k}}{\binom{n}{k}} \mathrm{e}^{\mathrm{i} k \theta}\right|^{p} \mathrm{~d} \theta \leq(c(\boldsymbol{\gamma}))^{p} \int_{0}^{2 \pi}\left|F\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta \tag{3.2}
\end{equation*}
$$

where $c(\boldsymbol{\gamma})=\max \left(\left|\gamma_{0}\right|,\left|\gamma_{n}\right|\right)=1$. Combining inequalities (3.1), (3.2) and noting that $\left|M\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|=\left|P\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|$, we obtain for each $p>0$,

$$
\left\{\int_{0}^{2 \pi}\left|a_{n} \mathrm{e}^{\mathrm{i} n \theta}+\frac{a_{k}}{\binom{n}{k}} \mathrm{e}^{\mathrm{i} k \theta}\right|^{p} \mathrm{~d} \theta\right\}^{1 / p} \leq\left\{\int_{0}^{2 \pi}\left|P\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta\right\}^{1 / p}
$$

Using this in conjunction with Lemma 2.5, we obtain

$$
\begin{equation*}
\left|a_{n}\right|+\frac{\left|a_{k}\right|}{\binom{n}{k}} \leq 2 \frac{\|P(z)\|_{p}}{\|1+z\|_{p}} \tag{3.3}
\end{equation*}
$$

In case $P_{1}(z)$ has a zero on $|z|=1$, inequality (3.3) follows by continuity. This proves Theorem 1.1 for $p>0$. To obtain this result for $p=0$, we simply make $p \rightarrow 0+$.

Proof of Theorem 1.3. Since $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ does not vanish in $|z|<1$, therefore by (2.4) for $k=0,1,2, \ldots, n-1$,

$$
\begin{equation*}
\left|a_{n} \mathrm{e}^{\mathrm{i} n \theta}+\frac{a_{k}}{\binom{n}{k}} z^{i k \theta}\right| \leq\left|\frac{a_{n-k}}{\binom{n}{k}} \mathrm{e}^{\mathrm{i}(n-k) \theta}+a_{0}\right| . \tag{3.4}
\end{equation*}
$$

Also, by Lemma 2.2,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|G(\theta)+\mathrm{e}^{\mathrm{i} \phi} Q(\theta)\right|^{p} \mathrm{~d} \theta \leq \Lambda^{p} \int_{0}^{2 \pi}\left|P\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta \tag{3.5}
\end{equation*}
$$

Integrating both sides of (3.5) with respect to ϕ from 0 to 2π, we get for each $p>0$ and ϕ real

$$
\begin{equation*}
\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|G(\theta)+\mathrm{e}^{\mathrm{i} \phi} Q(\theta)\right|^{p} \mathrm{~d} \phi \mathrm{~d} \theta \leq \int_{0}^{2 \pi} \Lambda^{p} \mathrm{~d} \phi \int_{0}^{2 \pi}\left|P\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta \tag{3.6}
\end{equation*}
$$

Now for every real ϕ and $t \geq 1$ and $p>0$, we have

$$
\int_{0}^{2 \pi}\left|t+\mathrm{e}^{\mathrm{i} \phi}\right|^{p} \mathrm{~d} \phi \geq \int_{0}^{2 \pi}\left|1+\mathrm{e}^{\mathrm{i} \phi}\right|^{p} \mathrm{~d} \phi
$$

If $G(\theta) \neq 0$, we take $t=|Q(\theta)| /|G(\theta)|$, then by (3.4) $t \geq 1$ and by using Lemma 2.3 we get

$$
\begin{aligned}
\int_{0}^{2 \pi}\left|G(\theta)+\mathrm{e}^{\mathrm{i} \phi} Q(\theta)\right|^{p} \mathrm{~d} \phi & =|G(\theta)|^{p} \int_{0}^{2 \pi}\left|1+\mathrm{e}^{\mathrm{i} \phi} \frac{Q(\theta)}{G(\theta)}\right|^{p} \mathrm{~d} \phi \\
& =|G(\theta)|^{p} \int_{0}^{2 \pi}\left|\mathrm{e}^{\mathrm{i} \phi}+\left|\frac{Q(\theta)}{G(\theta)}\right|\right|^{p} \mathrm{~d} \phi \\
& \geq|G(\theta)|^{p} \int_{0}^{2 \pi}\left|1+\mathrm{e}^{\mathrm{i} \phi}\right|^{p} \mathrm{~d} \phi
\end{aligned}
$$

For $G(\theta)=0$, this inequality is trivially true. Using this in (3.6), we conclude that, for real ϕ,

$$
\int_{0}^{2 \pi}|G(\theta)|^{p} \mathrm{~d} \theta \int_{0}^{2 \pi}\left|1+\mathrm{e}^{\mathrm{i} \phi}\right|^{p} \mathrm{~d} \phi \leq \int_{0}^{2 \pi} \Lambda^{p} \mathrm{~d} \phi \int_{0}^{2 \pi}\left|P\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta .
$$

This implies

$$
\left\{\int_{0}^{2 \pi}\left|a_{n} \mathrm{e}^{\mathrm{i} \theta \theta}+\frac{a_{k}}{\binom{n}{k}} \mathrm{e}^{\mathrm{i} k \theta}\right|^{p} \mathrm{~d} \theta\right\}^{1 / p} \leq \frac{\left\{\int_{0}^{2 \pi} \Lambda^{p} \mathrm{~d} \phi\right\}^{1 / p}\left\{\int_{0}^{2 \pi}\left|P\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|^{p} \mathrm{~d} \theta\right\}^{1 / p}}{\left\{\int_{0}^{2 \pi}\left|1+\mathrm{e}^{\mathrm{i} \phi}\right| p \mathrm{~d} \phi\right\}^{1 / p}}
$$

which in conjunction with Lemma 2.5, gives

$$
\left|a_{n}\right|+\frac{\left|a_{k}\right|}{\binom{n}{k}} \leq 2 c_{p} \frac{\|P(z)\|_{p}}{\|1+z\|_{p}}
$$

where $c_{p}=\left\{\begin{array}{cl}1 & \text { if } k=0 \\ \frac{1}{\|1+z\|_{p}} & \text { if } k>0 .\end{array}\right.$

Acknowledgement

The author would like to thank the anonymous referee for comments and suggestions.

References

[1] V.V. Arestov, On integral inequalities for trigonometric polynomials and their derivatives, Izv. Akad. Nauk SSSR, Ser. Mat. 45 (1981) 3-22 (in Russian); English translation: Math. USSR, Izv. 18 (1982) 1-17.
[2] R.B. Gardner, N.K. Govil, An L_{p} inequality for a polynomial and its derivative, J. Math. Anal. Appl. 193 (1995) 490-496.
[3] Q.I. Rahman, G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, New York, 2002.
[4] Q.I. Rahman, G. Schmeisser, L_{p} inequalities for polynomial, J. Approx. Theory 53 (1988) 26-32.
[5] C. Visser, A simple proof of certain inequalities concerning polynomials, Proc. K. Ned. Akad. Wet. 47 (1945) 276-281.

[^0]: E-mail address: sgmattoo@gmail.com.

