

Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

A remark on the convergence of the inverse σ_k -flow

CrossMark

Une remarque sur la convergence du σ_k -flot inverse

Jian Xiao¹

Institute of Mathematics, Fudan University, 200433 Shanghai, China

Article history: Received 1 June 2015 Accepted after revision 21 January 2016 Presented by Jean-Pierre Demailly	We study the positivity of cohomology classes related to the convergence problem of the inverse σ_k -flow, according to a conjecture proposed by Lejmi and Székelyhidi. © 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license
	(http://creativecommons.org/licenses/by-nc-nd/4.0/).
	R É S U M É
	Nous étudions la positivité des classes de cohomologie liée au problème de la convergence du σ_k -flot inverse, suivant une conjecture proposée par Lejmi et Székelyhidi. © 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

From the point of view that relates the existence of canonical Kähler metrics with algebro-geometric stability conditions, Lejmi and Székelyhidi [12] proposed a numerical criterion characterizing when the inverse σ_k -flow converges. We aim to study the positivity of related cohomology classes in their conjecture. We generalize their conjecture by weakening the numerical condition on *X* a little bit.

Conjecture 1.1. (See [12, Conjecture 18].) Let X be a compact Kähler manifold of dimension n, and let ω , α be two Kähler metrics over X satisfying

$$\int_{X} \omega^{n} - \frac{n!}{k!(n-k)!} \omega^{n-k} \wedge \alpha^{k} \ge 0.$$
(1.1)

Then there exists a Kähler metric $\omega' \in \{\omega\}$ such that

$$\omega'^{n-1} - \frac{(n-1)!}{k!(n-k-1)!} \omega'^{n-k-1} \wedge \alpha^k > 0$$
(1.2)

http://dx.doi.org/10.1016/j.crma.2016.01.016

E-mail address: jian.xiao@ujf-grenoble.fr.

¹ Current address: Institut Fourier, Université Joseph-Fourier, 38402 Saint-Martin-d'Hères, France.

¹⁶³¹⁻⁰⁷³X/© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

as a smooth (n - 1, n - 1)-form if and only if

$$\int_{V} \omega^{p} - \frac{p!}{k!(p-k)!} \omega^{p-k} \wedge \alpha^{k} > 0$$
(1.3)

for every irreducible subvariety of dimension p with $k \le p \le n - 1$.

For previous works closely related to this conjecture, we refer the reader to [9,3,4,17,10]. And in this note we mainly concentrate on the case when k = 1 and k = n - 1.

For k = 1, [5, Theorem 3] confirmed this conjecture for toric manifolds. Over a general compact Kähler manifold, it is not hard to see that the implication $(1.2) \Rightarrow (1.3)$ holds. In the reverse direction, we prove that { $\omega - \alpha$ } must be a Kähler class under the numerical conditions in Conjecture 1.1 for k = 1; indeed, this is a necessary condition of (1.2) and [12, Proposition 14] proved this over Kähler surfaces.

Theorem 1.1. Let *X* be a compact Kähler manifold of dimension *n*, and let ω , α be two Kähler metrics over *X* satisfying the numerical conditions in *Conjecture 1.1* for k = 1. Then $\{\omega - \alpha\}$ is a Kähler class.

For k = n - 1, we have the following similar result.

Theorem 1.2. Let *X* be a compact Kähler manifold of dimension *n*, and let ω , α be two Kähler metrics over *X* satisfying the numerical conditions in *Conjecture 1.1* for k = n - 1. Then the class $\{\omega^{n-1} - \alpha^{n-1}\}$ lies in the closure of the Gauduchon cone, i.e. it has nonnegative intersection number with every pseudoeffective (1, 1)-class.

2. Proof of the main results

In this section, we give the proofs of Theorem 1.1 and Theorem 1.2.

2.1. Theorem 1.1

Proof. The first observation is that, when k = 1, the inequalities in the numerical conditions are just the right-hand side in weak transcendental holomorphic Morse inequalities. Recall that Demailly's conjecture on weak transcendental holomorphic Morse inequalities (see, e.g., [1, Conjecture 10.1]) is stated as follows:

Let X be a compact complex manifold of dimension n, and let γ , β be two nef classes over X. Then we have

$$\operatorname{vol}(\gamma - \beta) \geq \gamma^n - n\gamma^{n-1} \cdot \beta.$$

In particular, $\gamma^n - n\gamma^{n-1} \cdot \beta > 0$ implies the class $\gamma - \beta$ is big, that is, $\gamma - \beta$ contains a Kähler current.

Note that the last statement has been proved for Kähler manifolds by [15] (see also [18]), that is, if X is a compact Kähler manifold then $\gamma^n - n\gamma^{n-1} \cdot \beta > 0$ implies that there exists a Kähler current in the class $\gamma - \beta$.

We apply this bigness criterion to the classes $\{\omega\}$ and $\{\alpha\}$, then the numerical condition (1.3) implies that $\{\omega - \alpha\}_{|_{V}}$ is a big class on every proper irreducible subvariety *V*. More precisely, if *V* is singular, then by some resolution of the singularities, we have a proper modification $\pi : \hat{V} \to V$ with \hat{V} smooth, and by (1.3) we know

$$\pi^*\{\omega\}_{|_{V}}^{p} - p\pi^*\{\omega\}_{|_{V}}^{p-1} \cdot \pi^*\{\alpha\}_{|_{V}} > 0,$$

thus the class $\pi^* \{\omega - \alpha\}_{|_V}$ contains a Kähler current over \widehat{V} . Hence, by applying the pushforward map π_* we obtain that the class $\{\omega - \alpha\}_{|_V}$ is big over *V*.

In particular, by (1.1) and (1.3) the restriction of the class { $\omega - (1 - \epsilon)\alpha$ } is big on every irreducible subvariety (including X itself) for any sufficiently small $\epsilon > 0$.

We claim that this yields $\{\omega - (1 - \epsilon)\alpha\}$ is a Kähler class over X for any $\epsilon > 0$ small. Indeed, our proof implies the following fact.

• Assume β is a big class over a compact complex manifold (or compact complex space) and its restriction to every irreducible subvariety is also big, then β is a Kähler class over *X*.

To this end, we will argue by induction on the dimension of X. If X is a compact complex curve, then this is obvious. For the general case, we need a result of Mihai Păun (see [14,13]):

Let X be a compact complex manifold (or compact complex space), and let $\beta = \{T\}$ be the cohomology class of a Kähler current T over X. Then β is a Kähler class over X if and only if the restriction $\beta_{|_Z}$ is a Kähler class on every irreducible component Z of the Lelong sublevel set $E_c(T)$.

As $\{\omega - (1 - \epsilon)\alpha\}$ is a big class on *X*, by Demailly's regularization theorem [7], we can choose a Kähler current $T \in \{\omega - (1 - \epsilon)\alpha\}$ such that *T* has analytic singularities on *X*. Then the singularities of *T* are just the Lelong sublevel set $E_c(T)$ for some positive constant *c*. For every irreducible component *Z* of $E_c(T)$, by (1.3) the restriction $\{\omega - (1 - \epsilon)\alpha\}_{|Z}$ is a big class. After resolution of the singularities of *Z* if necessary, we obtain a Kähler current $T_Z \in \{\omega - (1 - \epsilon)\alpha\}_{|Z}$ over *Z* with its analytic singularities contained in a proper subvariety of *Z*, and for every irreducible subvariety $V \subseteq Z$ the restriction $\{\omega - (1 - \epsilon)\alpha\}_{|V}$ is also a big class. By induction on the dimension, we get that $\{\omega - (1 - \epsilon)\alpha\}_{|Z}$ is a Kähler class over *Z*. So the above result of [14,13] implies $\{\omega - (1 - \epsilon)\alpha\}$ is a Kähler class over *X*, finishing the proof of our claim.

As $\epsilon > 0$ is arbitrary, we infer that $\{\omega - \alpha\}$ is a nef class on *X*. Next we prove that $\{\omega - \alpha\}$ is a big class. By [8, Theorem 2.12], we only need to show that

$$\operatorname{vol}(\{\omega - \alpha\}) = \int_{X} (\omega - \alpha)^n > 0.$$

Since $\{\omega - \alpha\}$ is nef, we can compute the derivative of the function $vol(\omega - t\alpha)$ for any $t \in [0, 1)$. Thus we have

$$\operatorname{vol}(\{\omega\} - \{\alpha\}) - \operatorname{vol}(\{\omega\}) = \int_{0}^{1} \frac{d}{dt} \operatorname{vol}(\{\omega\} - t\{\alpha\}) dt$$
$$= -\int_{0}^{1} n\{\omega - t\alpha\}^{n-1} \cdot \{\alpha\} dt,$$

which implies that

$$\operatorname{vol}(\{\omega\} - \{\alpha\}) = \operatorname{vol}(\{\omega\}) - \int_{0}^{1} n\{\omega - t\alpha\}^{n-1} \cdot \{\alpha\} dt$$
$$\geq \int_{0}^{1} n(\{\omega\}^{n-1} - \{\omega - t\alpha\}^{n-1}) \cdot \{\alpha\} dt.$$

Here the last line follows from the equality (1.1). Since ω , α are Kähler metrics, this shows vol($\{\omega - \alpha\}$) > 0. Thus $\{\omega - \alpha\}$ is a big and nef class on X with its restriction to every irreducible subvariety being big and nef. By the above arguments, we know that $\{\omega - \alpha\}$ must be a Kähler class.

Finally, we give an alternative proof of the fact that the class $\{\omega - \alpha\}$ is nef using the main result of [6] instead of using [14,13]. (I would like to thank Tristan C. Collins who pointed out this to me.) Since $\{\omega\}$ is a Kähler class, the class $\{\omega - t\alpha\}$ is Kähler for t > 0 small. Let *s* be the largest number such that $\{\omega - s\alpha\}$ is nef. We prove that $s \ge 1$. Otherwise, suppose that s < 1. Then by the numerical conditions (1.1) and (1.3), the bigness criterion given by transcendental holomorphic Morse inequalities implies that the class $\{\omega - s\alpha\}$ is big if s < 1, and furthermore, this holds for all irreducible subvarieties in *X*. Thus $\{\omega - s\alpha\}$ is big and nef on every irreducible subvariety *V* in *X*. This means the null locus of the big and nef class $\{\omega - s\alpha\}$ is empty, and then the main result of [6] implies that $\{\omega - s\alpha\}$ is a Kähler class. This contradicts the definition of *s*, so we get $s \ge 1$, or equivalently, $\{\omega - \alpha\}$ must be a nef class. Then by the estimate of the volume vol($\{\omega - \alpha\}$) as above, we know that $\{\omega - \alpha\}$ is also big and nef over every irreducible subvariety of *X*. By applying [6] again, this proves that $\{\omega - \alpha\}$ must be a Kähler class. \Box

Remark 2.1. If *X* is a smooth projective variety of dimension *n* and { ω } and { α } are the first Chern classes of holomorphic line bundles, then the nefness of the class { $\omega - \alpha$ } just follows from Kleiman's ampleness criterion, since the numerical condition (1.3) for *p* = 1 implies that the divisor class { $\omega - \alpha$ } has non-negative intersection against every irreducible curve.

2.2. Theorem 1.2

Next we give the proof of Theorem 1.2.

Proof. The proof mainly depends on Boucksom's divisorial Zariski decomposition for pseudoeffective (1, 1)-classes [2] and the bigness criterion for the difference of two movable (n - 1, n - 1)-classes [19].

Through a sufficiently small perturbation of the Kähler metric α , e.g., by replacing α with

$$\alpha_{\epsilon} = (1 - \epsilon)\alpha, \ \epsilon \in (0, 1),$$

we can obtain that the inequality in (1.1) is strict for the classes $\{\omega\}$ and $\{\alpha_{\epsilon}\}$. We claim that in this case the (n - 1, n - 1)-class $\{\omega^{n-1} - \alpha_{\epsilon}^{n-1}\}$ has nonnegative intersections with all pseudoeffective (1, 1)-classes. Then, by letting ϵ tend to

zero, we conclude that the desired result for the class $\{\omega^{n-1} - \alpha^{n-1}\}$. Thus we can assume from the beginning that the inequality in (1.1) is strict for the classes $\{\omega\}$ and $\{\alpha\}$.

Let β be a pseudoeffective (1, 1)-class over X. By [2, Section 3], β admits a divisorial Zariski decomposition

$$\beta = Z(\beta) + N(\beta).$$

Note that $N(\beta)$ is the class of some effective divisor (may be zero) and $Z(\beta)$ is a modified nef class. In particular, we have

$$\{\omega^{n-1} - \alpha^{n-1}\} \cdot N(\beta) \ge 0.$$
(2.1)

For any $\delta > 0$, we have

$$Z(\beta) + \delta\{\omega\} = \pi_*\{\widehat{\omega}\}$$

for some modification $\pi : \widehat{X} \to X$ and some Kähler metric $\widehat{\omega}$ on \widehat{X} (see [2, Proposition 2.3]). By our assumption on (1.1), we have

$$\int_{\widehat{X}} \pi^* \omega^n - n\pi^* \omega \wedge \pi^* \alpha^{n-1} > 0.$$
(2.2)

By [19, Theorem 3.3] (or [18, Remark 3.1]), the inequality (2.2) implies that the class $\{\pi^*\omega^{n-1} - \pi^*\alpha^{n-1}\}$ contains a strictly positive (n - 1, n - 1)-current. This implies that

$$\begin{aligned} \{\omega^{n-1} - \alpha^{n-1}\} \cdot (Z(\beta) + \delta\{\omega\}) \\ &= \{\omega^{n-1} - \alpha^{n-1}\} \cdot \pi_*\{\widehat{\omega}\} \\ &= \pi^*\{\omega^{n-1} - \alpha^{n-1}\} \cdot \{\widehat{\omega}\} \\ &> 0. \end{aligned}$$

As δ is arbitrary, we get that $\{\omega^{n-1} - \alpha^{n-1}\} \cdot Z(\beta) \ge 0$. With (2.1), we show that

$$\{\omega^{n-1}-\alpha^{n-1}\}\cdot\beta\geq 0.$$

Since β can be any pseudoeffective (1, 1)-class, this implies { $\omega^{n-1} - \alpha^{n-1}$ } lies in the closure of the Gauduchon cone by [20, Proposition 2.1] (which is [11, Lemma 3.3]). \Box

Remark 2.2. We expect that $\{\omega^{n-1} - \alpha^{n-1}\}$ should have strictly positive intersection numbers with nonzero pseudoeffective (1, 1)-classes. To show this, one only needs to verify this for modified nef classes.

Remark 2.3. Let *X* be a smooth projective variety, and assume that $\{\omega^{n-1} - \alpha^{n-1}\}$ is a curve class. Then the numerical condition (1.3) in Theorem 1.2 implies that $\{\omega^{n-1} - \alpha^{n-1}\}$ is a movable class by [1, Theorem 2.2].

3. Further discussions

In analogy with Theorem 1.1 and Theorem 1.2, one would like to prove a similar positivity of the class { $\omega^k - \alpha^k$ }. To generalize our results in this direction, one can apply [18, Remark 3.1] (see also [16] for further results). By [18, Remark 3.1], we know that the condition

$$\int_{V} \omega^{p} - \frac{p!}{k!(p-k)!} \omega^{p-k} \wedge \alpha^{k} > 0$$

implies that the class $\{\omega^k - \alpha^k\}_{|V}$ contains a strictly positive (k, k)-current over every irreducible subvariety V of dimension p with k . However, the difficulties appear as we know little about the singularities of positive <math>(k, k)-currents for k > 1. We have no analogues of Demailly's regularization theorem for such currents.

Inspired by the prediction of Conjecture 1.1, we propose the following question on the positivity of positive (k, k)-currents.

Question 3.1. Let *X* be a compact Kähler manifold (or general compact complex manifold) of dimension *n*. Let $\Omega \in H^{k,k}(X, \mathbb{R})$ be a big (k, k)-class, i.e. a class that can be represented by a strictly positive (k, k)-current over *X*. Assume that the restriction class $\Omega_{|V}$ is also big over every irreducible subvariety *V* with $k \leq \dim V \leq n - 1$, then does Ω contain a smooth strictly positive (k, k)-form in its Bott–Chern class? Or does Ω contain a strictly positive (k, k)-current with analytic singularities of codimension at least n - k + 1 in its Bott–Chern class?

Acknowledgements

I would like to thank Philippe Eyssidieux and Mehdi Lejmi for useful discussions and introducing this problem to me, and thank Tristan C. Collins for useful comments. I would also like to thank the referee for the careful reading, which makes this note more readable. This work is supported by the China Scholarship Council.

References

- [1] S. Boucksom, J.-P. Demailly, M. Păun, T. Peternell, The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebraic Geom. 22 (2) (2013) 201–248, MR 3019449.
- [2] S. Boucksom, Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Éc. Norm. Super. (4) 37 (1) (2004) 45–76, MR 2050205 (2005i:32018).
- [3] X. Chen, On the lower bound of the Mabuchi energy and its application, Int. Math. Res. Not. (12) (2000) 607–623, MR 1772078 (2001f:32042).
- [4] X. Chen, A new parabolic flow in Kähler manifolds, Commun. Anal. Geom. 12 (4) (2004) 837-852, MR 2104078 (2005h:53116).
- [5] T.C. Collins, G. Székelyhidi, Convergence of the *j*-flow on toric manifolds, preprint arXiv:1412.4809, 2014.
- [6] T.C. Collins, V. Tosatti, Kähler currents and null loci, preprint arXiv:1304.5216, 2013.
- [7] J.-P. Demailly, Regularization of closed positive currents and intersection theory, J. Algebraic Geom. 1 (3) (1992) 361–409, MR 1158622 (93e:32015).
- [8] J.-P. Demailly, M. Păun, Numerical characterization of the K\u00e4hler cone of a compact K\u00e4hler manifold, Ann. of Math. (2) 159 (3) (2004) 1247–1274, MR 2113021 (2005i:32020).
- [9] S.K. Donaldson, Moment maps and diffeomorphisms, Asian J. Math. 3 (1) (1999) 1–15, Sir Michael Atiyah: a great mathematician of the twentieth century, MR 1701920 (2001a:53122).
- [10] H. Fang, M. Lai, X. Ma, On a class of fully nonlinear flows in Kähler geometry, J. Reine Angew. Math. 653 (2011) 189-220, MR 2794631 (2012g:53134).
- [11] A. Lamari, Courants kählériens et surfaces compactes, Ann. Inst. Fourier (Grenoble) 49 (1) (1999), vii, x, 263–285, MR 1688140 (2000d:32034).
- [12] M. Lejmi, G. Székelyhidi, The J-flow and stability, Adv. Math. 274 (2015) 404-431, MR 3318155.
- [13] M. Păun, Fibré en droites numériquement effectifs et variétés kählériennes compactes à courbure de Ricci nef, Ph.D. thesis, Université Joseph-Fourier-Grenoble-1, 1998.
- [14] M. Păun, Sur l'effectivité numérique des images inverses de fibrés en droites, Math. Ann. 310 (3) (1998) 411-421.
- [15] Dan Popovici, Sufficient bigness criterion for differences of two nef classes, Math. Ann. 364 (1) (2016) 649-655.
- [16] Dan Popovici, Volume and self-intersection of differences of two nef classes, preprint arXiv:1505.03457, 2015.
- [17] J. Song, B. Weinkove, On the convergence and singularities of the *J*-flow with applications to the Mabuchi energy, Commun. Pure Appl. Math. 61 (2) (2008) 210–229, MR 2368374 (2009a:32038).
- [18] J. Xiao, Weak transcendental holomorphic Morse inequalities on compact Kähler manifolds, Ann. Inst. Fourier (Grenoble) (2013), preprint arXiv:1308.2878, in press.
- [19] J. Xiao, Movable intersection and bigness criterion, preprint arXiv:1405.1582, 2014.
- [20] J. Xiao, Characterizing volume via cone duality, preprint arXiv:1502.06450, 2015.