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The pioneering work by Brézis–Merle [3] applied to mean-field equations of Liouville 
type (1) (see below) implies that any unbounded sequence of solutions (i.e. a sequence of 
blow-up solutions) must exhibit only finitely many points (blow-up points) around which 
their “mass” concentrate. In this note, we describe some examples of blow-up solutions 
that violate such conclusion, in the sense that their mass may spread, as soon as we 
consider situations which mildly depart from Brézis–Merle’s assumptions. The presence 
of a “residual” mass in blow-up phenomena was pointed out by Ohtsuka–Suzuki in [12], 
although such possibility was not substantiated by any explicit examples. We mention that 
for systems of Toda-type, this new phenomenon occurs rather naturally and it makes the 
calculation of the Leray Schauder degree much harder than the resolution of the single 
mean-field equation.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Le travail pionnier de Brézis–Merle [3] appliqué aux équations de champ moyen de type 
Liouville (1) (voir ci-dessous) implique que toute suite non bornée (blow-up suite) montre 
un nombre fini de points (points de blow-up) autour desquels leur masse se concentre. 
Dans cette note, nous donnons quelques exemples de blow-up suites qui ne satisfont pas 
cette conclusion, dans le sens où leur masse s’étale au moment où on considère des 
situations qui s’écartent légèrement des hypothèses du travail de Brézis–Merle. La presence 
de masse « residuelle » dans les phénomènes de blow-up avait été remarquée auparavant 
par Ohtsuka–Suzuki [12] ; en revanche, aucun example explicite n’avait été proposé. Par 
rapport au system de Toda, ce nouveau phénomène apparaît plutôt naturellement et rend 

E-mail addresses: cslin@math.ntu.edu.tw (C.-S. Lin), tarantel@mat.uniroma2.it (G. Tarantello).
http://dx.doi.org/10.1016/j.crma.2016.01.014
1631-073X/© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

http://dx.doi.org/10.1016/j.crma.2016.01.014
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:cslin@math.ntu.edu.tw
mailto:tarantel@mat.uniroma2.it
http://dx.doi.org/10.1016/j.crma.2016.01.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crma.2016.01.014&domain=pdf


494 C.-S. Lin, G. Tarantello / C. R. Acad. Sci. Paris, Ser. I 354 (2016) 493–498
le calcul du degré de Leray–Schauder plus difficile que la résolution de la simple équation 
de champ moyen.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Mean field equation

The paper [3] by Brézis and Merle provided a pioneering study of the bubbling phenomenon for solutions to semilin-
ear elliptic equations with exponential nonlinearity in two dimensions. As it turns out, their results apply rather nicely to 
mean-field equations of Liouville type over compact Riemann surfaces, as they arise naturally in several areas of mathemat-
ics and physics. More precisely, for (M, g) a given compact Riemann surface with area 1 and �g = �, the corresponding 
Beltrami–Laplace operator, we consider the mean-field equation:

�u + ρ(
h(x)eu(x)∫
M h(x)eu(x)

− 1) = 4π
N∑

j=1

α j(δp j − 1) in M, (1)

where h(x) is a positive continuous function, δp j is the Dirac measure supported at p j and α j > −1, for every j = 1, . . . , N .
Brézis–Merle’s result applies to solutions to (1) when the Dirac measures are neglected (i.e. α j = 0, ∀ j = 1, . . . N) and 

implies the following:

Theorem A (Brézis–Merle). Suppose α j = 0, ∀i = 1, . . . N; and let uk be a sequence of solutions for (1), then (along a subsequence) 
either

(i) uk → u uniformly locally in C2(M\{p1, · · · , pN}) or
(ii) uk blows up in “sup-norm” and for a non-empty finite set S (blow-up set), the following holds:

ρ
h euk∫
M h euk

→
∑
q j∈S

γ j · δq j , and 4π ≤ γ j.

Subsequently, the result above was completed by Li–Shafrir [11] who proved that actually all γ j = 8π (mass quantisa-
tion). The “concentration” property of blow-up solutions to (1) around finitely many points, as expressed by (ii), is the most 
important aspect of Brézis–Merle’s analysis. Subsequently, both the “concentration” phenomenon as well as the “quantiza-
tion” property were confirmed by Bartolucci–Tarantello [2] also when we take into account in (1) the Dirac measures.More 
precisely, if the Dirac measures are supported at the pole pi , with weight αi > −1, i = 1, . . . , N; and blow-up occurs exactly 
at one of those points, say pi ∈ S for some i = 1, . . . , N then the corresponding “local mass” γ is no longer equal to 8π, but 
instead γ = 8(αi + 1)π, see [2] and [1,4,6] for further details. In this short note, we wish to point out that such a “concen-
tration phenomenon” may no longer hold when blow-up is caused by the collapse of two of the poles in (1) or when we 
consider solutions corresponding to a smooth approximations of the Dirac measures in (1).

More precisely, let p1 = p1(t) depend on a parameter t and suppose that

p1(t) /∈ {p2, · · · , pN} and p1(t) → p2 as t → 0. (2)

For simplicity, we assume α j ∈N and h(x) ∈ C1(M) to prove:

Theorem 1.1. Assume that α j ∈ N, h(x) ∈ C1(M) and ρ ∈ (8π, 16π). Let tk → 0, then (1) with p1 = p1(tk) admits a solution uk which 
blows up in sup-norm. Furthermore, along a subsequence, uk → w uniformly locally in C2(M\p2) with w satisfying:

�w + (ρ − 8π)(
h(x)ew(x)∫
M h(x)ew(x)

− 1) = 4π
N∑

j=3

α j(δp j − 1) + 4π(α1 + α2 − 2)(δp2 − 1).

Demonstration. We provide only a sketch of the proof. To this purpose, let us consider (1) with p1 = p1(t), t > 0, and 
compare it with the equation after collapse as given by:

�u + ρ(
h(x)eu(x)∫
M h(x)eu(x)

− 1) = 4π(α1 + α2)(δp2 − 1) +
N∑

j=3

α j(δp j − 1). (3)

These two equations (1) and (3) have different topological degrees, see [5,7]. Thus for any fixed ρ ∈ (8π, 16π), there exists 
a blow-up sequence of solution uk of (1) with tk → 0 as k → +∞. If uk does not blow up at p2, then by the Brézis–Merle 
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result or the Bartolucci–Tarantello one we see that uk must concentrate and ρ ∈ 8πN, a contradiction with the assumption 
that ρ ∈ (8π, 16π). Hence uk must blow up at p2.

Let us define the “local mass” of uk at the blowup point p2 by

σ(p2) = lim
r→0

lim
k→+∞

ρ

∫

B(p2,r)

h(x)euk(x)∫
M h(x)euk(x)

.

Claim:

σ(p2) ∈ 8πN. (4)

Claim (4) is highly non-trivial, as it involves a Pohozaev identity and the Riemann–Hurwitz formulae, see [10]. As a con-
sequence of (4) and the assumption ρ ∈ (8π, 16π), we find that: σ(p2) = 8π, and p2 must be the only blow-up point. 
Furthermore the mass of uk cannot concentrate around p2.

In other words, uk → u in C2(M\p1, . . . , pN) with u satisfying:

�u + (ρ − 8π)(
h eu∫
h eu

− 1) = 4π
N∑

j=3

α j(δp j − 1) + 4π(α1 + α2 − 2)(δp2 − 1),

as claimed. �
Remark. The phenomenon described by Theorem 1.1 holds also for ρ ∈ (8πk, 8π(k + 1)) for any k ≥ 2. But in this case the 
local mass σ(p2) = 8πm with m a positive integer such that: 2m ≤ α1 + α2.

A similar phenomenon occurs when we consider problem (1) over the Riemann sphere M = (S, g0), with a single point 
singularity located at p and multiplicity α > −1. Actually, after rotation, we can always suppose that p coincides with the 
south pole, so that by using the stereographic projection from the north pole: π : S2 → R

2, problem (1) can be equivalently 
formulated in terms of the function:

v(x) = u(y) − ln
∫

M

eu + ln
1

(1 + |x|2)(α+2)

with x = π(y), y ∈ S2, as the following problem over the plane:⎧⎨
⎩

�v + (1 + |x|2)aev = 4παδ0 in R
2,∫

R2

(1 + |x|2)aev = ρ, (5)

where

a = ρ

4π
− (α + 2). (6)

As shown in [14], when −1 < α �= 0 then a necessary condition for the solvability of (5) requires that,

ρ ∈ (0,8π(1 + α−)) ∪ (8π(1 + α+),∞), (7)

here as usual α− = min{0, α} and α+ = max{0, α}. We consider a situation where (7) fails, more precisely we assume that

α > 1 and ρ ∈ (8π,16π) ∩ (4π(1 + α),+∞). (8)

Therefore, when (8) holds then problem (5) admits no solutions. On the other hand, if we replace the Dirac measure in (5)
with the standard smooth mollifier:

gk(x) = λk

π(1 + λk|x|2)2
, λk → +∞ as k → +∞, (9)

(an approximation of δ0 in the sense of distributions), then existence is restored in view of the available degree formula on 
S2 of Chen–Lin [5,7]. So, we can claim the existence of a sequence vk satisfying the following:⎧⎨

⎩
�vk + (1 + |x|2)aevk = 4α λk

(1+λk|x|2)2 in R
2,∫

R2

(1 + |x|2)aevk = ρ. (10)

Obviously, vk must blow-up in sup-norm and to describe its asymptotic behavior as k → +∞, we consider the new se-
quence:
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ξk(x) = vk(x) − α ln(
1

λk
+ |x|2)

satisfying:
⎧⎨
⎩

�ξk = ( 1
λk

+ |x|2)α(1 + |x|2)aeξk in R
2,∫

R2

( 1
λk

+ |x|2)α(1 + |x|2)aeξk = ρ. (11)

Notice that problem (11) fails to satisfy the assumptions required by Brézis–Merle in [3], and in fact we find:

Theorem 1.2. Assume (6) and (8) and let ξk satisfy (11) then (along a subsequence) the following holds:

∀ε > 0 sup
|x|<ε

ξk → +∞ and ξk → ξ in C2
loc(R

2\{0}) (12a)

with ξ satisfying:
⎧⎨
⎩

−�ξ = |x|2α(1 + |x|2)aeξ + 8πδ0 in R
2,∫

R2

|x|2α(1 + |x|2)aeξ = ρ − 8π. (12b)

In terms of problem (1) over the sphere, we have obtained a sequence uk satisfying:

�uk + ρ(
euk∫

S2

euk
− 1

4π
) = 4πα(hk − 1

4π
) (13)

with hk → δp in the sense of distribution, such that (along a subsequence) the following holds:

Corollary 1.3.

max
S2

uk → +∞, uk → u in C2
loc(S2\{p})

with u satisfying:

�u + (ρ − 8π)(
eu∫

S2

eu
− 1

4π
) = 4π(α − 2)δp on S2.

Again the most delicate part in the proof of Theorem 1.2 concerns the fact that ξk blows-up exactly at the origin with 
“local mass” equal to 8π. To establish such a property, one needs to obtain uniform Harnack type estimates to be combined 
with a suitable Pohozaev-type inequality. Details will be provided in a forthcoming paper.

2. Toda system

The presence of a “residual mass” in blow-up phenomena (as discussed in §1), appears more significantly in the context 
of systems. For simplicity, we restrict to 2×2 systems. In the planar case, we mention for example the degenerate system 
yielding the Cosmic String Equation studied in [15] or the Toda-type systems analyzed in [13]. For those problems typically, 
one finds that, although both components blow-up at the same point (usually the origin), only the component with the 
fastest rate of blow-up concentrates, while the other component admits a residual part that passes to the limit to satisfy a 
“limiting” singular Liouville-type equation. It is interesting to note that the “limiting” equations obtained in this way have a 
geometrical meaning. Namely, their solutions provide the conformal factor for a metric in the Riemann sphere with constant 
Gauss curvature and conical singularities. Therefore geometrical obstructions may prevent such type of blow-up behavior. 
On the other hand, it has been observed in [13] for Toda-type systems that a residual mass does occur even in the blow-up 
behavior of radial solutions. More importantly, such a “residual mass” phenomenon represents a serious difficulty in the 
calculation of the Leray–Schauder degree for the conformal Toda system over a surface M . More precisely, we consider the 
following problem:

⎧⎪⎨
⎪⎩

�u1 + 2ρ1(
h1 eu1∫
h1 eu1

− 1) − ρ2(
h2 eu2∫
h2 eu2

− 1) = 4π
∑

p∈S1

α j(δp − 1),

�u2 + 2ρ2(
h2 eu2∫
h2 eu2

− 1) − ρ1(
h1 eu1∫
h1 eu1

− 1) = 4π
∑

β j(δq − 1)
in M (14)
p∈S2
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where hi are positive C1 function on M . It was proved in [8] that if ρi /∈ 4πN, i = 1, 2, then all solutions to (14) are uniformly 
bounded. So that, the Leray–Schauder degree for the system (14) is well defined for such a range of parameters. On the 
basis of the above observations, there is no hope to reduce the calculation of such a topological degree to that of a single 
equation (successfully carried out in [5]), even when we fix ρ2 ∈ (4πk, 4π(k + 1)) and deform ρ1 across the value 4π�. Then 
blow-up would occur and the degree jump does correspond to the contribution to the degree by these bubbling solutions. 
However, while one can calculate the degree of a bubbling solution-sequence when only the first component blows up and 
concentrate, unfortunately such calculation becomes rather involved when (as discussed above) both components blow up, 
but only the first component concentrates. We discuss next an even further situation, namely we see that the concentration 
of mass may fail by both components. To this purpose, we let d jk = the degree of (14) when 4π j < ρ1 < 4π( j + 1) and 
4πk < ρ2 < 4π(k + 1). Define

g(2)
j (x) =

∞∑
k=0

d jkxk.

By a Theorem of Chen–Lin [7], we know that if β j = 1 ∀ j then g(2)
0 (x) = (1 − x)χ(M)−1(1 + x)|S2| , where χ(M) denotes the 

Euler characteristic of M and |S| is the cardinality of the set S . Furthermore, in [9,10] it has been proved the following 
theorem.

Theorem C. Suppose αi = β j = 1. Then

g(2)
1 (x) = (1 − x)χ(M)−1

{
(1 + x)|S2| − [χ(M) − |S1 ∪ S2|] (1 + x)|S2|+1 − |S2\S1|(1 + x)|S2|−1(1 + x + x2)

}
.

Now, let q ∈ S1\S2 and q(t) ∈ M be such that q(t) /∈ S1 ∪ S2 and q(t) → q as t → 0. Set S1(t) = S1 and S2(t) = S2 ∪ {q(t)}
and consider:⎧⎪⎨

⎪⎩
�u1 + 2ρ1(

h1 eu1∫
h1 eu1

− 1) − ρ2(
h2 eu2∫
h2 eu2

− 1) = 4π
∑

p∈S1

(δp − 1),

�u2 + 2ρ2(
h2 eu2∫
h2 eu2

− 1) − ρ1(
h1 eu1∫
h1 eu1

− 1) = 4π
∑

p∈S2(t)
(δq − 1).

(15)

Since S2(t) = S2 ∪ {q(t)}, then the system (15) admits a degree jump as t → 0. Therefore, for any ρ1 ∈ (4π, 8π) and ρ2 ∈
(4πk, 4π(k + 1)), there is a blowup sequence of solutions (uk,1, uk,2) of (15) with t = tk → 0. Note that there is no collapsing 
of singularities like in the case of equation (1), instead one vortex q(tk) ∈ S2(tk)\S1 from the second equation converges to 
a vortex q ∈ S1 of the first equation. We have:

Theorem 2.1. There exists tk → 0 and a sequence of solutions uk = (u1,k, u2,k) of (15) such that the following holds:

(i) u1,k and u2,k both blow up only at q, with “local mass”:

σ1(q) = lim
r→0

lim
k→+∞

ρ1

∫

B(q,r)

h1 euk,1∫
M h1 euk,1

= 4π, and

σ2(q) = lim
r→0

lim
k→+∞

ρ2

∫

B(q,r)

h2 euk,2∫
M h2 euk,2

= 4π.

(ii) (u1,k, u2,k) converges to (û1, ̂u2) in C2(M\S1 ∪ S2) and (û1, ̂u2) satisfies

⎧⎪⎨
⎪⎩

�û1 + 2(ρ1 − 4π)(
h1 eu1∫
h1 eu1

− 1) − (ρ2 − 4π)(
h2 eu2∫
h2 eu2

− 1) = 4π
∑

p∈S1\{q}
(δp − 1),

�û2 + 2(ρ2 − 4π)(
h2 eu2∫
h2 eu2

− 1) − (ρ1 − 4π)(
h1 eu1∫
h1 eu1

− 1) = 4π
∑

p∈S2

(δp − 1).

Again, the difficult part is to establish that σi(q) ∈ 4πN and to see how such quantities relate to each other. The proof of 
this fact even in more general situations will appear later.
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