Analytic geometry/Differential geometry

A Riemann-Roch-Grothendieck theorem for flat fibrations with complex fibers

Un théorème de Riemann-Roch-Grothendieck pour une fibration plate de fibre complexe

Yeping Zhang
Département de mathématiques, bâtiment 425, faculté des sciences d'Orsay, Université Paris-Sud, 91405 Orsay cedex, France

ARTICLE INFO

Article history:

Received 18 November 2015
Accepted after revision 21 January 2016
Presented by Jean-Michel Bismut

Abstract

We consider a proper flat fibration with real base and complex fibers. First we construct odd characteristic classes for such fibrations by a method that generalizes constructions of Bismut-Lott [5]. Then we consider the direct image of a fiberwise holomorphic vector bundle, which is a flat vector bundle on the base. We give a Riemann-Roch-Grothendieck theorem calculating the odd real characteristic classes of this flat vector bundle.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

R É S U M É

On considère une fibration propre plate de base réelle et de fibre complexe. On construit d'abord des classes caractéristiques impaires [5] associées qui généralisent des constructions de Bismut-Lott [5]. Puis on considère l'image directe d'un fibré vectoriel holomorphe dans la fibre, qui est un fibré vectoriel plat sur la base. On donne un théorème de Riemann-Roch-Grothendieck calculant les classes caractéristiques impaires de ce fibré plat.
© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

For a family of Dirac operators, the Chern class of its index bundle can be calculated by the family index theorem [1]. For complex manifolds, the corresponding theorem is the proper Riemann-Roch-Grothendieck theorem.

For a fibration of real manifolds equipped with a flat vector bundle, its direct image gives a flat vector bundle on the base. In this case, the family index theorem gives a trivial result. Bismut and Lott [5] constructed odd real characteristic classes associated with flat vector bundles and they gave a Riemann-Roch-Grothendieck formula, which calculates the odd characteristic classes of the direct image.

[^0]In this note, we consider a similar setting. Let M be a real compact manifold, let N be a Kähler manifold equipped with a holomorphic vector bundle E_{0}. Given an action of $\pi_{1}(M)$ on N that lifts to E_{0}, this action induces in a natural way a flat fibration over M with fiber N. The direct image $H^{\cdot}\left(N, E_{0}\right)$ is a flat vector bundle over M. We will calculate its odd characteristic classes in term of characteristic classes associated with the fibration. We use techniques inspired from [3-5].

In the first section of this note, we construct certain characteristic classes associated with our flat fibration. These classes will appear on the right hand side of our Riemann-Roch-Grothendieck formula. In the second section, we state our main results.

2. Characteristic classes of a flat fibration

2.1. A flat fibration with complex fibers

Let G be a Lie group. Let N be a compact complex manifold of complex dimension n. We assume that G acts holomorphically on N. Let M be a real manifold. Let $p: P \rightarrow M$ be a principal G-bundle, that is equipped with a flat connection. Set

$$
\begin{equation*}
\mathcal{N}=P \times_{G} N \tag{1}
\end{equation*}
$$

We denote by q the projection $\mathcal{N} \rightarrow M$. The map q defines a fibration with fiber N. Let $T^{H} \mathcal{N} \subseteq T \mathcal{N}$ be the subbundle induced by the flat connection on P. Then

$$
\begin{equation*}
T^{H} \mathcal{N} \simeq q^{*} T M \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
T \mathcal{N}=T^{H} \mathcal{N} \oplus T_{\mathbb{R}} N \tag{3}
\end{equation*}
$$

Let $d^{\mathcal{N}}$ be the de Rham operator on \mathcal{N}. The above splitting induces the decomposition

$$
\begin{equation*}
d^{\mathcal{N}}=d^{M}+d^{N} \tag{4}
\end{equation*}
$$

where d^{N} is the fiberwise de Rham operator.
Let $\partial^{N}, \bar{\partial}^{N}$ be the fiberwise Dolbeault operators along N, so that

$$
\begin{equation*}
d^{N}=\partial^{N}+\bar{\partial}^{N} \tag{5}
\end{equation*}
$$

Let E_{0} be a holomorphic vector bundle on N of rank r. We assume that the action of G on N lifts holomorphically to E_{0}. Then E_{0} defines a vector bundle

$$
\begin{equation*}
E=P \times{ }_{G} E_{0} \tag{6}
\end{equation*}
$$

on \mathcal{N}. This vector bundle is holomorphic along the fiber N, and its holomorphic structure is flat.
Let $\Omega \cdot(\mathcal{N}, E)$ be the vector space of differential forms on \mathcal{N} with values in E. Let $\Omega \cdot(N, E)$ be the vector space of fiberwise differential forms with values in E, which may be seen as an inifinite dimensional vector bundle on M. We have the identification

$$
\begin{equation*}
\Omega \cdot(\mathcal{N}, E)=\Omega^{\cdot}(M, \Omega \cdot(N, E)) \tag{7}
\end{equation*}
$$

Then d^{M} can be viewed as a flat connection on $\Omega(\mathcal{N}, E)$.
Let g^{E} be a Hermitian metric on E. Let $\nabla^{E, N}$ be the fiberwise Chern connection with respect to g^{E}.
Let $d^{M, *}$ be the horizontal adjoint connection on E in the following sense: for any $\alpha, \beta \in \mathscr{C}{ }^{\infty}(\mathcal{N}, E)$, we have

$$
\begin{equation*}
d^{M} g^{E}(\alpha, \beta)=g^{E}\left(d^{M} \alpha, \beta\right)+g^{E}\left(\alpha, d^{M, *} \beta\right) \tag{8}
\end{equation*}
$$

Set

$$
\begin{equation*}
d^{M, u}=\frac{1}{2}\left(d^{M}+d^{M, *}\right), \quad \omega^{E}=d^{M, *}-d^{M} \tag{9}
\end{equation*}
$$

Let

$$
\begin{equation*}
A^{E}=\nabla^{E, N}+d^{M, u} \tag{10}
\end{equation*}
$$

Then A^{E} is a Hermitian connection on E, and its curvature is $A^{E, 2}$.

2.2. The odd forms

If N is reduced to a point, our constructions are the same as in Bismut-Lott [5, Definition 1.7].
Let $N^{\Lambda^{\prime}\left(T^{*} \mathcal{N}\right)}$ be the number operator on $\Lambda^{\cdot}\left(T^{*} \mathcal{N}\right)$. Set $\varphi=(2 \pi i)^{-\frac{1}{2} N^{\Lambda^{\prime}\left(T^{*} \mathcal{N}\right)}}$.
Let Q be an invariant polynomial on $\mathfrak{g l}(r, \mathbb{C})$.
Definition 2.1. Set

$$
\begin{align*}
& Q\left(E, g^{E}\right)=\varphi Q\left(\left(A^{E}\right)^{2}\right) \\
& \widetilde{Q}\left(E, g^{E}\right)=\sqrt{2 \pi i} \varphi\left\langle Q^{\prime}\left(\left(A^{E}\right)^{2}\right),-\frac{\omega^{E}}{2}\right\rangle \tag{11}
\end{align*}
$$

Proposition 2.2. The even differential form $q_{*}\left[Q\left(E, g^{E}\right)\right]$ is concentrated in degree zero. The odd differential form $q_{*}\left[\widetilde{Q}\left(E, g^{E}\right)\right]$ on M is closed, and its cohomology class does not depend on g^{E}.

Proof. Let $N^{\Lambda^{\prime}\left(T_{\mathbb{R}}^{*} N\right)}$ be the number operator on $\Lambda^{\prime}\left(T_{\mathbb{R}}^{*} N\right)$. Set $U=(-1)^{N^{\Lambda^{\wedge}\left(T_{\mathbb{R}}^{*} N\right)}}$. Using the flatness of the fibration in the same way as [5], we can show that

$$
\begin{equation*}
\left(A^{E}\right)^{2}=-U^{-1}\left(\nabla^{E, N}+\frac{\omega^{E}}{2}\right)^{2} U \tag{12}
\end{equation*}
$$

Trivially, $q_{*}\left[Q\left(\left(\nabla^{E, N}\right)^{2}\right)\right]$ is concentrated in degree zero. By using Chern-Weil theory along the fiber N for de Rham cohomology of $\Omega^{\cdot}\left(N, q^{*} \Lambda^{\prime}\left(T^{*} M\right)\right.$), we can show that

$$
\begin{equation*}
\int_{N} Q\left(\left(A^{E}\right)^{2}\right)=\int_{N} Q\left(\left(\nabla^{E, N}+\frac{\omega^{E}}{2}\right)^{2}\right)=\int_{N} Q\left(\left(\nabla^{E, N}\right)^{2}\right) \tag{13}
\end{equation*}
$$

which proves the first part of our proposition.
To establish the second part of our proposition, we construct a one parameter deformation of A^{E},

$$
\begin{equation*}
A_{t}^{E}=\nabla^{E, N}+t d^{M}+(1-t) d^{M, *} \tag{14}
\end{equation*}
$$

By using the same procedure as before, we can show that $q_{*}\left[Q\left(\left(A_{t}^{E}\right)^{2}\right)\right]$ is concentrated in degree zero. As a consequence, $q_{*}\left[Q\left(\left(A_{t}^{E}\right)^{2}\right)\right]$ is a constant which does not depend on t. Furthermore, we can show that

$$
\begin{equation*}
d^{\mathcal{N}} \widetilde{Q}\left(E, g^{E}\right)=\left.\sqrt{2 \pi i} \frac{\partial}{\partial t} Q\left(\left(A_{t}^{E}\right)^{2}\right)\right|_{t=1 / 2} \tag{15}
\end{equation*}
$$

from which deduce that the form $q_{*}\left[\widetilde{Q}\left(E, g^{E}\right)\right]$ is closed. By the functoriality of our construction, the cohomology class of $q_{*}\left[\widetilde{Q}\left(E, g^{E}\right)\right]$ does not depend on g^{E}.

3. A Riemann-Roch-Grothendieck formula

From now on, we assume that the fiber N is a compact complex Kähler manifold.

3.1. Hermitian metrics on $T N, E$

By partition of unity, there exists a smooth fiberwise Kähler metric $g^{T N}$ on $T N$. Let ω be the associated fiberwise Kähler form. Let $g^{\Lambda\left(T_{\mathbb{C}}^{*} N\right)}$ be the induced Hermitian metric on $\Lambda^{\prime}\left(T_{\mathbb{C}}^{*} N\right)$. The fiberwise volume form induced by $g^{T N}$ is denoted $\mathrm{d} v_{N}$.

Let $\mathscr{E}=\Omega^{0, \cdot}(N, E)$ be the vector space of antiholomorphic differential forms on N with values in E, which is equipped with a Hermitian metric $g^{\mathscr{E}}$, such that for $\alpha, \beta \in \mathscr{E}$,

$$
\begin{equation*}
g^{\mathscr{E}}(\alpha, \beta)=\frac{1}{(2 \pi)^{n}} \int_{N}\left(g^{\Lambda^{\cdot}\left(T_{\mathbb{C}}^{*} N\right)} \otimes g^{E}\right)(\alpha, \beta) \mathrm{d} v_{N} \tag{16}
\end{equation*}
$$

We set

$$
\begin{equation*}
\omega^{\mathscr{E}}=\left(g^{\mathscr{E}}\right)^{-1} d^{M} g^{\mathscr{E}} \in \mathscr{C}^{\infty}\left(M, T^{*} M \otimes_{\mathbb{R}} \operatorname{End}(\mathscr{E})\right) \tag{17}
\end{equation*}
$$

3.2. The Levi-Civita superconnection

Let $\bar{\partial}^{E, *}$ be the adjoint of $\bar{\partial}^{E}$ with respect to $g^{\mathscr{E}}$. Set

$$
\begin{align*}
& C^{\mathscr{E}}=\bar{\partial}^{E}+\bar{\partial}^{E, *}+d^{M}+\frac{1}{2} \omega^{\mathscr{E}}, \\
& D^{\mathscr{E}}=-\bar{\partial}^{E}+\bar{\partial}^{E, *}+\frac{1}{2} \omega^{\mathscr{E}} \tag{18}
\end{align*}
$$

Then $C^{\mathscr{E}}, D^{\mathscr{E}}$ act on $\Omega \cdot(M, \mathscr{E})$. And the following identity holds

$$
\begin{equation*}
C^{\mathscr{E}, 2}=-D^{\mathscr{E}, 2} \tag{19}
\end{equation*}
$$

We may view \mathscr{E} as an infinite dimensional vector bundle on M equipped with a flat connection d^{M}. Then $C^{\mathscr{E}}$ is a superconnection on \mathscr{E}. Its degree zero part $\bar{\partial}^{E}+\bar{\partial}^{E, *}$ is the fiberwise Dirac operator. Its degree one part is $d^{M}+\frac{1}{2} \omega^{\mathscr{E}}=$ $\frac{1}{2}\left(d^{M}+d^{M, *}\right)$, where $d^{M, *}$ is the adjoint connection with respect to $g^{\mathscr{E}}$. Thus $C^{\mathscr{E}}$ is the Levi-Civita superconnection by definition [2]. (In general, Levi-Civita superconnection has a degree-two part, which vanishes if the fibration in question is flat.)

For $t>0$, when replacing $g^{T N}$ by $\frac{1}{t} g^{T N}$, the above operators are denoted $C_{t}^{\mathscr{E}}, D_{t}^{\mathscr{E}}$.

3.3. The index bundle and its characteristic classes

Let $H^{\cdot}\left(N, E_{0}\right)$ be the Dolbeault cohomology of $E_{0} \rightarrow N$. Let $\chi\left(N, E_{0}\right)$ be its Euler characteristic. The action of G on $E_{0} \rightarrow N$ induces an action of G on $H^{\cdot}\left(N, E_{0}\right)$. Set

$$
\begin{equation*}
H^{\cdot}(N, E)=P_{G} \times{ }_{G} H^{\cdot}\left(N, E_{0}\right) . \tag{20}
\end{equation*}
$$

Let $\nabla^{H^{\cdot}(N, E)}$ be the connection on $H^{\cdot}(N, E)$ induced by the flat connection on P_{G}. Let $s \in \mathscr{C}^{\infty}(M, \mathscr{E})$ such that $\nabla^{E, N^{\prime \prime}} s=0$. We have

$$
\begin{equation*}
\nabla^{H^{\cdot}(N, E)}[s]=\left[d^{M} s\right] . \tag{21}
\end{equation*}
$$

By Hodge theory, there is an identification $H^{\cdot}(N, E) \simeq \operatorname{ker} D^{E} \subseteq \mathscr{E}$. Thus $H^{\cdot}(N, E)$ inherits a metric from $h^{\mathscr{E}}$, denoted $g^{H \cdot(N, E)}$.

Let $\nabla^{H^{\cdot}(N, E), *}$ be the adjoint connection of $\nabla^{H^{\cdot}(N, E)}$ with respect to $g^{H^{\cdot}(N, E)}$. Set

$$
\begin{equation*}
\nabla^{H \cdot(N, E), u}=\frac{1}{2}\left(\nabla^{H \cdot(N, E)}+\nabla^{H^{\cdot}(N, E), *}\right) . \tag{22}
\end{equation*}
$$

Proposition 3.1. For any $t>0$, we have

$$
\begin{equation*}
\varphi \operatorname{Tr}_{\mathrm{s}}\left[\exp \left(D_{t}^{\mathscr{E}, 2}\right)\right]=\chi\left(N, E_{0}\right) \tag{23}
\end{equation*}
$$

Proof. By the local families index theorem [2], as $t \rightarrow 0$,

$$
\begin{equation*}
\varphi \operatorname{Tr}_{\mathrm{s}}\left[\exp \left(D_{t}^{\mathscr{E}, 2}\right)\right]=q_{*}\left[\operatorname{Td}\left(T N, \nabla^{T N}\right) \operatorname{ch}\left(E, \nabla^{E}\right)\right]+\mathscr{O}(\sqrt{t}) . \tag{24}
\end{equation*}
$$

Furthermore,

$$
\begin{equation*}
\frac{\partial}{\partial t} \operatorname{Tr}_{\mathrm{s}}\left[\exp \left(D_{t}^{\mathscr{E}, 2}\right)\right]=\operatorname{Tr}_{\mathrm{s}}\left[\left[D_{t}^{\mathscr{E}}, \frac{\partial}{\partial t} D_{t}^{\mathscr{E}}\right] \exp \left(D_{t}^{\mathscr{E}, 2}\right)\right]=\operatorname{Tr}_{\mathrm{s}}\left[\left[D_{t}^{\mathscr{E}},\left(\frac{\partial}{\partial t} D_{t}^{\mathscr{E}}\right) \exp \left(D_{t}^{\mathscr{E}, 2}\right)\right]\right]=0 \tag{25}
\end{equation*}
$$

By Proposition 2.2 and by the Riemann-Roch-Hirzebruch formula, we have

$$
\begin{equation*}
q_{*}\left[\operatorname{Td}\left(T N, \nabla^{T N}\right) \operatorname{ch}\left(E, \nabla^{E}\right)\right]=\chi\left(N, E_{0}\right) . \tag{26}
\end{equation*}
$$

Then (23) follows from (24), (25) and (26).

3.4. The Riemann-Roch-Grothendieck formula

The following constructions generalize [5, equation (2.22) and (2.23)]. Let $N^{\Lambda^{\cdot}\left(\overline{T^{*} N}\right)}$ be the number operator on $\Lambda^{\cdot}\left(\overline{T^{*} N}\right)$. For any $t>0$, set

$$
\begin{align*}
& \alpha_{t}=\sqrt{2 \pi \mathrm{i} \varphi \operatorname{Tr}_{\mathrm{s}}\left[D_{t}^{\mathscr{E}} \exp \left(D_{t}^{\mathscr{E}, 2}\right)\right]} \\
& \beta_{t}=\varphi \operatorname{Tr}_{\mathrm{S}}\left[\frac{N^{\Lambda \cdot\left(\overline{T^{*} N}\right)}}{2}\left(1+2 D_{t}^{\mathscr{E}, 2}\right) \exp \left(D_{t}^{\mathscr{E}, 2}\right)\right] \tag{27}
\end{align*}
$$

Proposition 3.2. For any $t>0, \alpha_{t}$ is a closed odd form on M, whose cohomology class does not depend on the metric. In particular, this class does not depend on t. Also β_{t} is an even form on M. For any $t>0$, the following identity holds,

$$
\begin{equation*}
\frac{\partial}{\partial t} \alpha_{t}=\frac{1}{t} d^{M} \beta_{t} \tag{28}
\end{equation*}
$$

Let $f(x)=x e^{x^{2}}$. As in Bismut-Lott [5, equation (2.41)], set

$$
\begin{equation*}
f\left(H^{\cdot}(N, E), \nabla^{H^{\cdot(}(N, E)}, g^{H^{\cdot(N, E)}}\right)=\sqrt{2 \pi \mathrm{i}} \varphi \operatorname{Tr}_{\mathrm{S}}\left[f\left(\frac{\omega^{H \cdot(N, E)}}{2}\right)\right] \tag{29}
\end{equation*}
$$

which is an odd closed form on M.
Put

$$
\begin{equation*}
\chi^{\prime}(N, E)=\sum_{p=0}^{n}(-1)^{p} \operatorname{dim} H^{p}(N, E) \tag{30}
\end{equation*}
$$

Theorem 3.3. As $t \rightarrow+\infty$,

$$
\begin{align*}
& \alpha_{t}=f\left(H^{\cdot}(N \cdot E), \nabla^{H \cdot(N, E)}, g^{H \cdot(N, E)}\right)+\mathscr{O}\left(\frac{1}{\sqrt{t}}\right), \\
& \beta_{t}=\frac{1}{2} \chi^{\prime}(N, E)+\mathscr{O}\left(\frac{1}{\sqrt{t}}\right) . \tag{31}\\
& \text { Ast } \rightarrow 0, \\
& \alpha_{t}=q_{*}\left[\operatorname{Td}\left(T N, \nabla^{T N}\right) \tilde{c h}\left(E, g^{E}\right)+\widetilde{\operatorname{Td}}\left(T N, g^{T N}\right) \operatorname{ch}\left(E, \nabla^{E}\right)\right]+\frac{1}{2 t} d^{M} q_{*}\left[\frac{\omega}{2 \pi} \operatorname{Td}\left(T N, \nabla^{T N}\right) \operatorname{ch}\left(E, \nabla^{E}\right)\right]+\mathscr{O}(\sqrt{t}), \\
& \beta_{t}=\frac{1}{2} q_{*}\left[\operatorname{Td}^{\prime}\left(T N, \nabla^{T N}\right) \operatorname{ch}\left(E, \nabla^{E}\right)\right]-\frac{1}{2 t} q_{*}\left[\frac{\omega}{2 \pi} \operatorname{Td}\left(T N, \nabla^{T N}\right) \operatorname{ch}\left(E, \nabla^{E}\right)\right]+\mathscr{O}(\sqrt{t}) . \tag{32}
\end{align*}
$$

Proof. First, we consider α_{t}.
The $t \rightarrow \infty$ part is done in exactly the same way as [5, Theorem 3.16].
We turn to prove the $t \rightarrow 0$ part. By [6], the asymptotic expansion of α_{t} is given by a Laurent series on \sqrt{t}. Furthermore, the local index theorem technique [2] implies that

$$
\begin{equation*}
\lim _{t \rightarrow 0} t \alpha_{t}=\frac{1}{2} d^{M} q_{*}\left[\frac{\omega}{2 \pi} \operatorname{Td}\left(T N, \nabla^{T N}\right) \operatorname{ch}\left(E, \nabla^{E}\right)\right] . \tag{33}
\end{equation*}
$$

Then

$$
\begin{equation*}
\alpha_{t}=b_{0} t^{-1}+b_{1} t^{-1 / 2}+b_{2}+\mathscr{O}(\sqrt{t}) \tag{34}
\end{equation*}
$$

with b_{0} given by the right hand side of (33). Same as [3, Theorem 1.20], we apply the following trick

$$
\begin{equation*}
\left(1+t \frac{\partial}{\partial t}\right) \alpha_{t}=\frac{1}{2} b_{1} t^{-1 / 2}+b_{2}+\mathscr{O}(\sqrt{t}) . \tag{35}
\end{equation*}
$$

Following [3, Theorem 1.21], we construct a Laplacian involving additional Grassman variables $d a, d \bar{a}$ (then its heat kernel is a polynomial on $d a, d \bar{a})$, such that the dad \bar{a} part of the supertrace of its heat kernel is exactly $\left(1+t \frac{\partial}{\partial t}\right) \alpha_{t}$. By applying local index theorem technique [2] to this Laplacian, we get

$$
\begin{equation*}
\lim _{t \rightarrow 0}\left(1+t \frac{\partial}{\partial t}\right) \alpha_{t}=q_{*}\left[\operatorname{Td}\left(T N, \nabla^{T N}\right) \tilde{\operatorname{ch}}\left(E, g^{E}\right)+\widetilde{\operatorname{Td}}\left(T N, g^{T N}\right) \operatorname{ch}\left(E, \nabla^{E}\right)\right] \tag{36}
\end{equation*}
$$

which implies that $b_{1}=0$ and b_{2} equals the right hand side of (36).
The results for β follows by a transgression argument similar to Proposition 3.2.
As a consequence of Theorem 3.3, we have the following result, which is an analogue of the Riemann-Roch-Grothendieck theorem.

Corollary 3.4. We have

$$
\begin{equation*}
\left[f\left(H^{\cdot}(N, E), \nabla^{H^{\cdot}(N, E)}, g^{H^{\cdot}(N, E)}\right)\right]=\left[q_{*}\left[\operatorname{Td}\left(T N, \nabla^{T N}\right) \widetilde{\operatorname{ch}}\left(E, g^{E}\right)+\widetilde{\operatorname{Td}}\left(T N, g^{T N}\right) \operatorname{ch}\left(E, \nabla^{E}\right)\right]\right] \tag{37}
\end{equation*}
$$

in $H^{-}(M)$.

Acknowledgements

The present results form the first part of author's thesis. The author thanks his advisor J.-M. Bismut for all his help and direction. The author thanks Université Paris-Sud. The research leading to the results contained in this paper has received funding from the European Research Council (E.R.C.) under European Union's Seventh Framework Program (FP7/2007-2013)/ ERC grant agreement No. 291060.

References

[1] M.F. Atiyah, I.M. Singer, The index of elliptic operators, IV, Ann. of Math. (2) 93 (1971) 119-138.
[2] J.-M. Bismut, The Atiyah-Singer index theorem for families of Dirac operators: two heat equation proofs, Invent. Math. 83 (1) (1986) $91-151$.
[3] J.-M. Bismut, H. Gillet, C. Soulé, Analytic torsion and holomorphic determinant bundles, III: quillen metrics on holomorphic determinants, Commun. Math. Phys. 115 (2) (1988) 301-351.
[4] J.-M. Bismut, K. Köhler, Higher analytic torsion forms for direct images and anomaly formulas, J. Algebraic Geom. 1 (4) (1992) 647-684.
[5] J.-M. Bismut, J. Lott, Flat vector bundles, direct images and higher real analytic torsion, J. Amer. Math. Soc. 8 (2) (1995) 291-363.
[6] R.T. Seeley, Complex powers of an elliptic operator, in: Singular Integrals, Proc. Sympos. Pure Math., Chicago, IL, 1966, Amer. Math. Soc., Providence, R.I., 1967, pp. 288-307.

[^0]: E-mail address: yeping.zhang@math.u-psud.fr.
 http://dx.doi.org/10.1016/j.crma.2016.01.011
 1631-073X/© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

