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We consider a proper flat fibration with real base and complex fibers. First we construct 
odd characteristic classes for such fibrations by a method that generalizes constructions 
of Bismut–Lott [5]. Then we consider the direct image of a fiberwise holomorphic vector 
bundle, which is a flat vector bundle on the base. We give a Riemann–Roch–Grothendieck 
theorem calculating the odd real characteristic classes of this flat vector bundle.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

On considère une fibration propre plate de base réelle et de fibre complexe. On 
construit d’abord des classes caractéristiques impaires [5] associées qui généralisent des 
constructions de Bismut–Lott [5]. Puis on considère l’image directe d’un fibré vectoriel 
holomorphe dans la fibre, qui est un fibré vectoriel plat sur la base. On donne un théorème 
de Riemann–Roch–Grothendieck calculant les classes caractéristiques impaires de ce fibré 
plat.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

For a family of Dirac operators, the Chern class of its index bundle can be calculated by the family index theorem [1]. 
For complex manifolds, the corresponding theorem is the proper Riemann–Roch–Grothendieck theorem.

For a fibration of real manifolds equipped with a flat vector bundle, its direct image gives a flat vector bundle on the 
base. In this case, the family index theorem gives a trivial result. Bismut and Lott [5] constructed odd real characteristic 
classes associated with flat vector bundles and they gave a Riemann–Roch–Grothendieck formula, which calculates the odd 
characteristic classes of the direct image.
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In this note, we consider a similar setting. Let M be a real compact manifold, let N be a Kähler manifold equipped with 
a holomorphic vector bundle E0. Given an action of π1(M) on N that lifts to E0, this action induces in a natural way a 
flat fibration over M with fiber N . The direct image H ·(N, E0) is a flat vector bundle over M . We will calculate its odd 
characteristic classes in term of characteristic classes associated with the fibration. We use techniques inspired from [3–5].

In the first section of this note, we construct certain characteristic classes associated with our flat fibration. These classes 
will appear on the right hand side of our Riemann–Roch–Grothendieck formula. In the second section, we state our main 
results.

2. Characteristic classes of a flat fibration

2.1. A flat fibration with complex fibers

Let G be a Lie group. Let N be a compact complex manifold of complex dimension n. We assume that G acts holomor-
phically on N . Let M be a real manifold. Let p : P → M be a principal G-bundle, that is equipped with a flat connection. 
Set

N = P ×G N . (1)

We denote by q the projection N → M . The map q defines a fibration with fiber N . Let T HN ⊆ TN be the subbundle 
induced by the flat connection on P . Then

T HN � q∗TM , (2)

and

TN = T HN ⊕ TRN . (3)

Let dN be the de Rham operator on N . The above splitting induces the decomposition

dN = dM + dN , (4)

where dN is the fiberwise de Rham operator.

Let ∂N , ∂N
be the fiberwise Dolbeault operators along N , so that

dN = ∂N + ∂
N

. (5)

Let E0 be a holomorphic vector bundle on N of rank r. We assume that the action of G on N lifts holomorphically to E0. 
Then E0 defines a vector bundle

E = P ×G E0 (6)

on N . This vector bundle is holomorphic along the fiber N , and its holomorphic structure is flat.
Let �·(N , E) be the vector space of differential forms on N with values in E . Let �·(N, E) be the vector space of 

fiberwise differential forms with values in E , which may be seen as an inifinite dimensional vector bundle on M . We have 
the identification

�·(N , E) = �·(M,�·(N, E)) . (7)

Then dM can be viewed as a flat connection on �·(N , E).
Let g E be a Hermitian metric on E . Let ∇ E,N be the fiberwise Chern connection with respect to g E .
Let dM,∗ be the horizontal adjoint connection on E in the following sense: for any α, β ∈ C ∞(N , E), we have

dM g E(α,β) = g E(dMα,β) + g E(α,dM,∗β) . (8)

Set

dM,u = 1

2

(
dM + dM,∗) , ωE = dM,∗ − dM . (9)

Let

AE = ∇ E,N + dM,u . (10)

Then AE is a Hermitian connection on E , and its curvature is AE,2.
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2.2. The odd forms

If N is reduced to a point, our constructions are the same as in Bismut–Lott [5, Definition 1.7].

Let N�·(T ∗N ) be the number operator on �·(T ∗N ). Set ϕ = (2π i)− 1
2 N�·(T ∗N )

.
Let Q be an invariant polynomial on gl(r, C).

Definition 2.1. Set

Q (E, g E) = ϕ Q
(
(AE)2) ,

Q̃ (E, g E) = √
2π iϕ

〈
Q ′((AE)2),−ωE

2

〉
. (11)

Proposition 2.2. The even differential form q∗[Q (E, g E)] is concentrated in degree zero. The odd differential form q∗[Q̃ (E, g E)] on 
M is closed, and its cohomology class does not depend on g E .

Proof. Let N�·(T ∗
R

N) be the number operator on �·(T ∗
R

N). Set U = (−1)N�·(T ∗
R

N)

. Using the flatness of the fibration in the 
same way as [5], we can show that

(AE)2 = −U−1
(

∇ E,N + ωE

2

)2

U . (12)

Trivially, q∗[Q ((∇ E,N )2)] is concentrated in degree zero. By using Chern–Weil theory along the fiber N for de Rham coho-
mology of �·(N, q∗�·(T ∗M)

)
, we can show that∫

N

Q
(
(AE)2) =

∫
N

Q

((
∇ E,N + ωE

2

)2
)

=
∫
N

Q
(
(∇ E,N )2) , (13)

which proves the first part of our proposition.
To establish the second part of our proposition, we construct a one parameter deformation of AE ,

AE
t = ∇ E,N + tdM + (1 − t)dM,∗ . (14)

By using the same procedure as before, we can show that q∗[Q ((AE
t )2)] is concentrated in degree zero. As a consequence, 

q∗[Q ((AE
t )2)] is a constant which does not depend on t . Furthermore, we can show that

dN Q̃ (E, g E) = √
2π i

∂

∂t
Q

(
(AE

t )2)∣∣∣
t=1/2

, (15)

from which deduce that the form q∗[Q̃ (E, g E)] is closed. By the functoriality of our construction, the cohomology class of 
q∗[Q̃ (E, g E)] does not depend on g E . �
3. A Riemann–Roch–Grothendieck formula

From now on, we assume that the fiber N is a compact complex Kähler manifold.

3.1. Hermitian metrics on TN, E

By partition of unity, there exists a smooth fiberwise Kähler metric gTN on TN. Let ω be the associated fiberwise Kähler 
form. Let g�·(T ∗

C
N) be the induced Hermitian metric on �·(T ∗

C
N). The fiberwise volume form induced by gTN is denoted 

dv N .
Let E = �0,·(N, E) be the vector space of antiholomorphic differential forms on N with values in E , which is equipped 

with a Hermitian metric gE , such that for α, β ∈ E ,

gE (α,β) = 1

(2π)n

∫
N

(
g�·(T ∗

C
N) ⊗ g E)

(α,β)dv N . (16)

We set

ωE = (gE )−1dM gE ∈ C ∞(M, T ∗M ⊗R End(E )) . (17)
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3.2. The Levi-Civita superconnection

Let ∂ E,∗
be the adjoint of ∂ E

with respect to gE . Set

CE = ∂
E + ∂

E,∗ + dM + 1

2
ωE ,

DE = −∂
E + ∂

E,∗ + 1

2
ωE . (18)

Then CE , DE act on �·(M, E ). And the following identity holds

CE ,2 = −DE ,2 . (19)

We may view E as an infinite dimensional vector bundle on M equipped with a flat connection dM . Then CE is a 
superconnection on E . Its degree zero part ∂ E + ∂

E,∗
is the fiberwise Dirac operator. Its degree one part is dM + 1

2 ωE =
1
2

(
dM + dM,∗), where dM,∗ is the adjoint connection with respect to gE . Thus CE is the Levi-Civita superconnection by 

definition [2]. (In general, Levi-Civita superconnection has a degree-two part, which vanishes if the fibration in question is 
flat.)

For t > 0, when replacing gTN by 1
t gTN , the above operators are denoted CE

t , DE
t .

3.3. The index bundle and its characteristic classes

Let H ·(N, E0) be the Dolbeault cohomology of E0 → N . Let χ(N, E0) be its Euler characteristic. The action of G on 
E0 → N induces an action of G on H ·(N, E0). Set

H ·(N, E) = P G ×G H ·(N, E0) . (20)

Let ∇H ·(N,E) be the connection on H ·(N, E) induced by the flat connection on P G . Let s ∈ C ∞(M, E ) such that 
∇ E,N ′′

s = 0. We have

∇H ·(N,E)[s] = [dM s] . (21)

By Hodge theory, there is an identification H ·(N, E) � kerD E ⊆ E . Thus H ·(N, E) inherits a metric from hE , denoted 
g H ·(N,E) .

Let ∇H ·(N,E),∗ be the adjoint connection of ∇H ·(N,E) with respect to g H ·(N,E) . Set

∇H ·(N,E),u = 1

2

(∇H ·(N,E) + ∇H ·(N,E),∗) . (22)

Proposition 3.1. For any t > 0, we have

ϕTrs
[

exp(DE ,2
t )

] = χ(N, E0) . (23)

Proof. By the local families index theorem [2], as t → 0,

ϕTrs
[

exp(DE ,2
t )

] = q∗
[
Td(TN,∇TN)ch(E,∇ E)

] + O(
√

t) . (24)

Furthermore,

∂

∂t
Trs

[
exp(DE ,2

t )
] = Trs

[[DE
t ,

∂

∂t
DE

t ]exp(DE ,2
t )

] = Trs
[[DE

t , (
∂

∂t
DE

t )exp(DE ,2
t )]] = 0 . (25)

By Proposition 2.2 and by the Riemann–Roch–Hirzebruch formula, we have

q∗
[
Td(TN,∇TN)ch(E,∇ E)

] = χ(N, E0) . (26)

Then (23) follows from (24), (25) and (26). �
3.4. The Riemann–Roch–Grothendieck formula

The following constructions generalize [5, equation (2.22) and (2.23)]. Let N�·(T ∗N
)

be the number operator on �· (T ∗N
)
. 

For any t > 0, set

αt = √
2π iϕTrs

[
DE

t exp
(

DE ,2
t

)]
,

βt = ϕTrs

[
N�·(T ∗N)

2

(
1 + 2DE ,2

t

)
exp

(
DE ,2

t

)]
. (27)
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Proposition 3.2. For any t > 0, αt is a closed odd form on M, whose cohomology class does not depend on the metric. In particular, 
this class does not depend on t. Also βt is an even form on M. For any t > 0, the following identity holds,

∂

∂t
αt = 1

t
dMβt . (28)

Let f (x) = xex2
. As in Bismut–Lott [5, equation (2.41)], set

f (H ·(N, E),∇H ·(N,E), g H ·(N,E)) = √
2π iϕTrs

[
f

(
ωH ·(N,E)

2

)]
, (29)

which is an odd closed form on M .
Put

χ ′(N, E) =
n∑

p=0

(−1)p dim H p(N, E) . (30)

Theorem 3.3. As t → +∞,

αt = f (H ·(N.E),∇H ·(N,E), g H ·(N,E)) + O
( 1√

t

)
,

βt = 1

2
χ ′(N, E) + O

( 1√
t

)
. (31)

As t → 0,

αt = q∗
[

Td(TN,∇TN)c̃h(E, g E) + T̃d(TN, gTN)ch(E,∇ E)
]
+ 1

2t
dMq∗

[ ω

2π
Td(TN,∇TN)ch(E,∇ E)

]
+ O

(√
t
)
,

βt = 1

2
q∗

[
Td′(TN,∇TN)ch(E,∇ E)

]
− 1

2t
q∗

[ ω

2π
Td(TN,∇TN)ch(E,∇ E)

]
+ O

(√
t
)
. (32)

Proof. First, we consider αt .
The t → ∞ part is done in exactly the same way as [5, Theorem 3.16].
We turn to prove the t → 0 part. By [6], the asymptotic expansion of αt is given by a Laurent series on 

√
t . Furthermore, 

the local index theorem technique [2] implies that

lim
t→0

tαt = 1

2
dMq∗

[ ω

2π
Td(TN,∇TN)ch(E,∇ E)

]
. (33)

Then

αt = b0t−1 + b1t−1/2 + b2 + O
(√

t
)
, (34)

with b0 given by the right hand side of (33). Same as [3, Theorem 1.20], we apply the following trick(
1 + t

∂

∂t

)
αt = 1

2
b1t−1/2 + b2 + O

(√
t
)
. (35)

Following [3, Theorem 1.21], we construct a Laplacian involving additional Grassman variables da, dā (then its heat kernel is 
a polynomial on da, dā), such that the dadā part of the supertrace of its heat kernel is exactly 

(
1 + t ∂

∂t

)
αt . By applying local 

index theorem technique [2] to this Laplacian, we get

lim
t→0

(
1 + t

∂

∂t

)
αt = q∗

[
Td(TN,∇TN)c̃h(E, g E) + T̃d(TN, gTN)ch(E,∇ E)

]
, (36)

which implies that b1 = 0 and b2 equals the right hand side of (36).
The results for β follows by a transgression argument similar to Proposition 3.2. �
As a consequence of Theorem 3.3, we have the following result, which is an analogue of the Riemann–Roch–Grothendieck 

theorem.

Corollary 3.4. We have[
f (H ·(N, E),∇H ·(N,E), g H ·(N,E))

]
=

[
q∗

[
Td(TN,∇TN)c̃h(E, g E) + T̃d(TN, gTN)ch(E,∇ E)

]]
(37)

in H ·(M).
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