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Considering stochastic partial differential equations of parabolic type with random 
coefficients in vector-valued Hölder spaces, we establish a sharp Schauder theory. The 
existence and uniqueness of solutions to the Cauchy problem is obtained.
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r é s u m é

Nous considérons des équations aux dérivées partielles stochastiques, du type parabolique 
et à coefficients aléatoires dans des espaces de Hölder à valeurs vectorielles. Nous 
obtenons une estimée de Schauder optimale, puis nous utilisons cette estimée pour prouver 
l’existence et l’unicité de la solution du problème de Cauchy.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We consider the second-order stochastic partial differential equations (SPDEs) of the Itô type

du = (aijuxi x j + biuxi + cu + f )dt + (σ ikuxi + νku + gk)dwk
t , (1.1)

in Rn × (0, ∞), where wk are countable independent standard Wiener processes defined on a filtered complete probability 
space (�, F , (Ft)t∈R, P) for k = 1, 2, · · · . The matrix a = (aij) is symmetric, and the uniform parabolic condition is assumed 
throughout the paper, namely there is a constant λ > 0 such that

2aij − σ ikσ jk ≥ λδi j on Rn × (0,∞) × �, (1.2)

where δi j is the Kronecker delta. The random fields u, aij, bi, f are all real-valued, while σ i, ν and g take values in �2. One 
of the most important examples of (1.1) is the Zakai equation arising in the nonlinear filtering problem [15].
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The regularity of solutions to (1.1) in Sobolev spaces has already been investigated by many researchers. Various aspects 
of L2-theory were studied since 1970s, see [11,9,13,1] and references therein. Later on, a complete Lp -theory was established 
by Krylov in 1990s, see [7,8]. By using Sobolev’s embedding, one then has the regularity in Hölder spaces, which is however 
not sharp. As an open problem mentioned in [8], one desires a sharp C2+α-theory in the sense that not only that for f , g
belonging to a proper space F , the solution belongs to some kind of stochastic C2+α-spaces, but also that every element of 
this stochastic space can be obtained as a solution for certain f , g belonging to the same F .

The purpose of this paper is to establish a Schauder theory of Equation (1.1), which is sharp in the above sense. In order 
to state our main results, we first introduce a notion of quasi-classical solutions.

Definition 1.1. A random field u is called a quasi-classical solution to (1.1) if

(1) for each t ∈ (0, ∞), u(·, t) is a twice strongly differentiable function from Rn to Lγ
ω := Lγ (�; R) for some γ ≥ 2; and

(2) for each x ∈ Rn , the process u(x, ·) satisfies (1.1) in the Itô integral form with respect to the time variable.

If furthermore, u(·, t, ω) ∈ C2(Rn) for any (t, ω) ∈ (0, ∞) × �, then u is a classical solution to (1.1).

Analogously to classical Hölder spaces, we can define the Lγ
ω-valued Hölder spaces Cm+α

x (QT ; Lγ
ω) and Cm+α,α/2

x,t (QT ; Lγ
ω), 

where T > 0, QT = Rn × (0, T ), and Lγ
ω := Lγ (�; R) is a Banach space equipped with the norm ‖ξ‖L

γ
ω

:= (E|ξ |γ )1/γ . More 
specifically, we define Cm+α

x (QT ; Lγ
ω) to be the set of all Lγ

ω-valued strongly continuous functions u such that

|u|m+α;QT := sup
(x,t)∈QT|β|≤m

‖Dβu(x, t)‖L
γ
ω

+ sup
t, x�=y
|β|=m

‖Dβu(x, t) − Dβu(y, t)‖L
γ
ω

|x − y|α < ∞. (1.3)

Using the parabolic module |X |p := |x| + √|t| for X = (x, t) ∈ Rn × R, we define Cm+α,α/2
x,t (QT ; Lγ

ω) to be the set of all 
u ∈ Cm+α

x (QT ; Lγ
ω) such that

|u|(m+α,α/2);QT := |u|m;Q T + sup
|β|=m, X �=Y

‖Dβu(X) − Dβu(Y )‖L
γ
ω

|X − Y |αp < ∞. (1.4)

Similarly, we can define the norms (1.3) and (1.4) over a domain Q =O × I , for any domains O ⊂ Rn and I ⊂ R.
Our main result is the following.

Theorem 1.1. Assume that the classical Cα
x -norms of aij, bi, c, σ i, σ i

x, ν, νx are all dominated by a constant K uniformly in (t, ω) ∈
(0, T ) × �, and the condition (1.2) is satisfied. If f ∈ Cα

x (QT ; Lγ
ω), g ∈ C1+α

x (QT ; Lγ
ω) for some γ ≥ 2, then Equation (1.1) with a zero 

initial condition admits a unique quasi-classical solution u in C2+α,α/2
x,t (QT ; Lγ

ω).

We remark that the problem with nonzero initial value can be easily reduced to our case by a simple transform. We also 
remark that by an anisotropic Kolmogorov continuity theorem (see [2]), if αγ > n + 2, the above obtained quasi-classical 
solution u has a C2+δ,δ/2 modification for 0 < δ < α − (n + 2)/γ as a classical solution to (1.1).

In order to prove the solvability in Theorem 1.1, by means of the standard method of continuity, it suffices to establish 
the following a priori estimate.

Theorem 1.2. Under the hypotheses of Theorem 1.1, letting u ∈ C2,0
loc (QT ; Lγ

ω) be a quasi-classical solution to (1.1) and u(·, 0) = 0, 
there is a positive constant C depending only on n, λ, γ , α, and K such that

|u|(2+α,α/2);QT ≤ CeC T (| f |α;QT + |g|1+α;QT ). (1.5)

The Hölder regularity in spaces Cm+α
x (QT ; Lγ

ω) for Equation (1.1) was previously investigated by Rozovsky [12], and later 
was improved by Mikulevicius [10]. However, both works addressed only the equations with nonrandom coefficients and 
with no derivatives of the unknown function in the stochastic term, namely aij is deterministic and σ ik ≡ 0. Moreover, both 
previous works did not obtain the time-continuity of second-order derivatives of u, comparing to our estimate (1.5) and 
Theorem 1.1.

The Schauder estimate we obtained in Theorem 1.2 is sharp in the sense that mentioned in [8], and is for the general 
form (1.1) with natural assumptions, where all coefficients are random. The approach to C2+α -theory in [10] was based on 
several delicate estimates for the heat kernel. Our method is completely different and more straightforward by combining 
certain integral estimates and a perturbation argument of Wang [14]. A sketch of proof of Theorem 1.2 is given in Section 2. 
Full details in addition to applications and further remarks are contained in our separate paper [3].
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2. Schauder estimates

In this section, we give an outline of the proof of our main estimate (1.5). For simplicity we will first deal with a 
simplified model equation, and then extend to the general ones.

Consider the model equation

du = (aijui j + f )dt + (σ ikui + gk)dwk
t , (2.1)

where aij, σ ik are predictable processes, independent of x, satisfying the condition (1.2). We shall consider the model equa-
tion in the entire space Rn × R. Suppose that f (t, ·) and gx(t, ·) are Dini continuous with respect to x uniformly in t , 
namely

1ˆ

0

(r)

r
dr < ∞,

where

(r) = sup
t∈R, |x−y|≤r

(‖ f (t, x) − f (t, y)‖L
γ
ω

+ ‖gx(t, x) − gx(t, y)‖L
γ
ω
).

For any r > 0, we denote

Br(x) = {y ∈ Rn : |y − x| < r}, Q r(x, t) = Br(x) × (t − r2, t), (2.2)

and further define Br = Br(0) and Q r = Q r(0, 0).

Lemma 2.1. Let u ∈ C2,0
x,t (Q 1; Lγ

ω) be a quasi-classical solution to (2.1). Then there is a positive constant C , depending only on n, λ and 
γ such that for any X, Y ∈ Q 1/4 ,

‖uxx(X) − uxx(Y )‖L
γ
ω

≤ C

⎡
⎣δM1 +

δˆ

0

(r)

r
dr + δ

1ˆ

δ

(r)

r2
dr

⎤
⎦ , (2.3)

where δ = |X − Y |p and M1 = |u|0;Q 1 + | f |0;Q 1 + |g|1;Q 1 .

An important consequence of Lemma 2.1 is the fundamental Schauder estimate that the solution u ∈ C2+α,α/2
x,t (Q 1/4; Lγ

ω)

when f ∈ Cα
x (Q 1; Lγ

ω) and g ∈ C1+α
x (Q 1; Lγ

ω) for some α ∈ (0, 1).

Outline of proof. Without loss of generality, we may assume X = 0. Let ρ = 1/2, and denote

Q κ = Q ρκ = Q ρκ (0,0), κ = 0,1,2, · · · .

Construct a sequence of Cauchy problems

duκ = [aijuκ
i j + f (0, t)]dt + [σ ikuκ

i + gk(0, t) + gk
x(0, t) · x]dwk

t in Q κ,

uκ = u on ∂ Q κ.

Claim 1. For each κ, there is a unique generalised solution uκ such that uκ(·, t) ∈ Lγ (�; Cm(Bε)) for any m ≥ 0 and ε ∈ (0, ρκ). 
Moreover, for any r < ρκ there is a constant C = C(n, γ ) such that

‖u‖Lγ (�;L2(Q r))
≤ C

(
r2‖ f ‖Lγ (�;L2(Q r))

+ r‖g‖Lγ (�;L2(Q r))

)
. (2.4)

Proof. In fact, for γ = 2, the unique solvability and interior smoothness of uκ follows from [5, Theorem 2.1]. For γ ≥ 2, 
higher order Lγ

ω-integrability (2.4) can be achieved by a truncation technique. �
Claim 2. There is a constant C = C(n, λ, γ ) such that

|Dm(uκ − uκ+1)|0;Q κ+2 ≤ Cρ(2−m)κ(ρκ), m = 1,2, . . . . (2.5)
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Proof. Note that (uκ − uκ+1) satisfies a homogeneous equation. By a delicate computation, we have

|Dm(uκ − uκ+1)|0;Q κ+2 ≤ Cρ−mκ
∥∥∥∥
 

Q κ+1

(uκ − uκ+1)2 dX

∥∥∥∥
1/2

L
γ /2
ω

=: Iκ,m.

On the other hand, (uκ − u) satisfies a zero initial condition. By Claim 1,

Jκ :=
∥∥∥∥
 

Q κ

(uκ − u)2 dX

∥∥∥∥
1/2

L
γ /2
ω

≤ Cρ2κ(ρκ).

Thus, Claim 2 is proved, since

Iκ,m ≤ Cρ−mκ( Jκ + Jκ+1) ≤ Cρ(2−m)κ(ρκ).

It is worth remarking that instead of using the maximum principle to estimate the term |Dm(uκ − uκ+1)|0;Q κ+2 as in [14], 
we obtain the inequality (2.5) by subtle integral estimates. �
Claim 3. {uκ

xx(0)} converges in Lγ
ω (here 0 ∈ Rn+1), and the limit is uxx(0).

Proof. By Claim 2 and the assumption of Dini continuity,

∑
κ≥1

|(uκ − uκ+1)xx|0;Q κ+2 ≤ C
∑
κ≥1

(ρκ) ≤ C

1ˆ

0

(r)

r
dr < ∞,

which implies that uκ
xx(0) converges in Lγ

ω . Since γ ≥ 2, it suffices to show that

lim
κ→∞‖uκ

xx(0) − uxx(0)‖L2
ω

= 0, (2.6)

which can also be achieved straightforward by our integral estimates. �
Now for any Y = (y, s) ∈ Q 1/4 we can select an κ such that |Y |p ∈ [ρκ+2, ρκ+1). By decomposition, one has

‖uxx(Y ) − uxx(0)‖L
γ
ω

≤ ‖uκ
xx(Y ) − uκ

xx(0)‖L
γ
ω

+ ‖uκ
xx(0) − uxx(0)‖L

γ
ω

+ ‖uκ
xx(Y ) − uxx(Y )‖L

γ
ω

=: I1 + I2 + I3. (2.7)

Claim 4. I1 ≤ CδM1 + Cδ
´ 1
δ

(r)
r2 dr, where δ := |Y |p and M1 was given in (2.3).

Proof. The proof is by induction. When κ = 0, note that u0
xx satisfies the following homogeneous equation:

du0
xx = aij Diju

0
xx dt + σ ik Diu

0
xx dwk

t in Q 3/4.

From interior estimates, we have

‖u0
xx(X) − u0

xx(Y )‖L
γ
ω

≤ C M1|X − Y |p, ∀ X, Y ∈ Q 1/4. (2.8)

When κ ≥ 1, denote hι = uι − uι−1, for ι = 1, 2, . . . , κ, then hι satisfies

dhι = aijhι
i j dt + σ ikhι

i dwk
t in Q ι.

From Claim 2, we have for −ρ2(κ+1) ≤ t ≤ 0 and |x| ≤ ρκ+1,

‖hι
xx(x, t) − hι

xx(0,0)‖L
γ
ω

≤ Cρκ−ι(ρι−1). (2.9)

Using (2.8) and (2.9), we can obtain the estimate

I1 ≤ ‖uκ−1
xx (Y ) − uκ−1

xx (0)‖L
γ
ω

+ ‖hκ
xx(Y ) − hκ

xx(0)‖L
γ
ω

≤ ‖u0
xx(Y ) − u0

xx(0)‖L
γ
ω

+
κ∑

ι=1

‖hι
xx(Y ) − hι

xx(0)‖L
γ
ω

≤ CδM1 + Cδ

1ˆ

δ

(r)

r2
dr.

Claim 4 is proved. �
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Claim 5. Ii ≤ C
´ δ

0
(r)

r dr, for i = 2, 3.

Proof. The estimate of I2 is a refinement of convergence in Claim 3. In fact, by Claim 2 we have the precise estimate

I2 = ‖uκ
xx(0) − uxx(0)‖L

γ
ω

≤
∑
j≥κ

|(u j − u j+1)xx|0;Q j+2 ≤ C

ρκˆ

0

(r)

r
dr, (2.10)

where C = C(n, λ, γ ). We can obtain a similar estimate for I3 by shifting the centre of domains. �
To sum up, Lemma 2.1 is proved. �
Having proved Lemma 2.1 we are in a position to derive the global estimate of solutions to (1.1) and complete the proof 

of Theorem 1.2.

Outline of proof of Theorem 1.2. The proof is by an argument of frozen coefficients. Denote Qr,τ = Br × (0, τ ), and let

Mτ
x,r(u) = sup

0≤t≤τ

(  

Br(x)

E |u(t, y)|γ dy

)1/γ

Mτ
r (u) = sup

x∈Rn
Mτ

x,r(u).

By multiplying cut-off functions and applying Lemma 2.1 we can get

|uxx|(α,α/2);Qρ/2,τ ≤ C
(

Mτ
0,ρ(u) + | f |α;Qρ,τ + |g|1+α;Qρ,τ

)
, (2.11)

for some sufficiently small ρ > 0. The derivation of (2.11) involves a rather delicate computation, which makes use of 
interpolation inequalities in Hölder spaces (see [4, Lemma 6.35] or [6, Theorem 3.2.1]). Since the centre of domains can 
shift to any point x ∈ Rn , we obtain

|u|(2+α,α/2);Qτ ≤ C
(

Mτ
ρ(u) + | f |α;Qτ + |g|1+α;Qτ

)
, (2.12)

where C = C(n, λ, γ , α).
To estimate Mτ

ρ(u), applying Itô’s formula, and using Hölder and Sobolev–Gagliargo–Nirenberg inequalities, we can get

Mτ
ρ(u) ≤ C1τ (Mτ

ρ(u) + |uxx|0;Qρ,τ + | f |0;Qτ + |g|0;Qτ ),

where C1 = C1(n, λ, γ ). Letting τ = (2CC1 + C1)
−1, by virtue of (2.12) we obtain

|u|(2+α,α/2);Qτ ≤ C0
(| f |α;Qτ + |g|1+α;Qτ

)
, (2.13)

where C0 = C0(n, λ, γ , α).
Finally, the proof of (1.5) and Theorem 1.2 is completed by induction. �
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