Number theory

On two problems of Ljujić and Nathanson

Sur deux problèmes de Ljujić et Nathanson

Li-Xia Dai, Yong-Gao Chen

School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, PR China

A R T I C L E IN F O

Article history:

Received 6 May 2015
Accepted after revision 7 January 2016
Available online 9 February 2016
Presented by the Editorial Board

Abstract

Let \mathbf{N} be the set of all nonnegative integers. For $A, M \subseteq \mathbf{N} \backslash\{0\}$ and $n \in \mathbf{N}$, let $p(n, A, M)$ denote the number of representations of n in the form $n=\sum_{a \in A} m_{a} a$, where $m_{a} \in M \cup\{0\}$ for all $a \in A$. Recently, by using the probabilistic method, Alon answered two questions of Ljujic and Nathanson affirmatively by proving that, for $A=\{n!\}_{n \geq 1}$ or for $A=\left\{n^{n}\right\}_{n \geq 1}$, there exists n_{0} and an infinite set M of positive integers so that $0<p(n, A, M)<n^{8+o(1)}$ for all $n>n_{0}$. In this note, by an explicit construction, as a corollary of our main result, it is proved that, for $A=\{n!\}_{n \geq 1}$ or for $A=\left\{n^{n}\right\}_{n \geq 1}$, there exists an explicit infinite set M of positive integers so that $0<p(n, A, M) \leq n^{2+o(\overline{1})}$ for all $n \geq 1$. Several open questions are posed for further research.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Ré S U M É

Soit \mathbf{N} l'ensemble des entiers positifs ou nul. Pour $A, M \subset \mathbf{N} \backslash\{0\}$ et $n \in \mathbf{N}$, notons $p(n, A, M)$ le nombre de représentations de n sous la forme $n=\sum_{a \in A} m_{a} a$, avec $m_{a} \in M \cup\{0\}$ pour tout $a \in A$. Récemment, utilisant une méthode probabiliste, Alon a répondu positivement à deux questions de Ljujić et Nathanson. Il a montré que, pour $A=\{n!\}_{n \geq 1}$ ou $A=\left\{n^{n}\right\}_{n \geq 1}$, il existe n_{0} et un ensemble infini M d'entiers positifs tel que $0<p(n, A, M)<n^{8+o(1)}$ pour tout $n>n_{0}$. Dans cette Note, par une construction explicite et comme corollaire de notre résultat principal, nous montrons que, pour $A=\{n!\}_{n \geq 1}$ ou $A=\left\{n^{n}\right\}_{n \geq 1}$, il existe un ensemble infini explicite M d'entiers positifs tel que $0<\bar{p}(n, A, M)<n^{2+o(1)}$ pour tout $n \geq 1$. Plusieurs questions ouvertes sont proposées pour de futures recherches.
© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let \mathbf{N} be the set of all nonnegative integers. In 2012, the following variation of the classical partition problem is studied by Canfield and Wilf [2]: for $A, M \subseteq \mathbf{N} \backslash\{0\}$ and $n \in \mathbf{N}$, let $p(n, A, M)$ denote the number of representations of n in the

[^0]form $n=\sum_{a \in A} m_{a} a$, where $m_{a} \in M \cup\{0\}$ for all $a \in A$, and $m_{a} \in M$ for only finitely many a. An arithmetic function f has polynomial growth if there is a positive integer k and an integer $N_{0}(k)$ such that $1 \leq f(n) \leq n^{k}$ for all $n \geq N_{0}(k)$.

Ljujic and Nathanson [3] proved the following nice result: If $A(x) \geq c \log x$ for some constant $c>0$ and all $x \geq x(A)$, then there is no any infinite set M of positive integers such that $p(n, A, M)$ has polynomial growth. Ljujić and Nathanson [3] also posed the following two questions:

Question 1.1. (See Ljujić and Nathanson [3].) Let $A=\{n!\}_{n=1}^{\infty}$. Does there exist an infinite set M of positive integers so that $p(n, A, M)>0$ for all sufficiently large n and p has polynomial growth?

Question 1.2. (See Ljujic and Nathanson [3].) Let $A=\left\{n^{n}\right\}_{n=1}^{\infty}$. Does there exist an infinite set M of positive integers so that $p(n, A, M)>0$ for all sufficiently large n and p has polynomial growth?

Recently, by an explicit construction, Alon [1] answered a question of Canfield and Wilf [2] by proving the following nice result: there are two explicit infinite sets of positive A and M so that $p(n, A, M)=1$ for all $n \geq 1$. By using the probabilistic method, Alon [1] answered the above two questions affirmatively by proving that, for $A=\{n!\}_{n \geq 1}$ or for $A=\left\{n^{n}\right\}_{n \geq 1}$, there exists n_{0} and an infinite set M of positive integers so that $0<p(n, A, M)<n^{8+o(1)}$ for all $n>n_{0}$

In this note, by an explicit construction, a stronger result is proved.
Theorem 1.3. Let $A=\left\{1=a_{1}<a_{2}<\cdots\right\}$ be an infinite set of positive integers such that

$$
c_{1}(n+1)^{\theta_{1}} a_{n} \leq a_{n+1} \leq c_{2}(n+1)^{\theta_{2}} a_{n}, \quad n=1,2, \ldots,
$$

where $c_{2}>c_{1}>0$ and $\theta_{2} \geq \theta_{1}>0$ are constants. Then

$$
0<p(n, A, M) \leq n^{\left(\theta_{2}+1\right) / \theta_{1}+o(1)}
$$

for all $n \geq 1$, where

$$
M=\left\{k 2^{n-1}: 1 \leq k \leq \max \left\{2 c_{2}, 1\right\}(n+1)^{\theta_{2}}, n=1,2, \ldots\right\} .
$$

We have the following corollary, which can be applied to both $A=\{n!\}_{n \geq 1}$ and $A=\left\{n^{n}\right\}_{n \geq 1}$.
Corollary 1.4. Let $A=\left\{1=a_{1}<a_{2}<\cdots\right\}$ be an infinite set of positive integers such that

$$
c_{1}(n+1) a_{n} \leq a_{n+1} \leq c_{2}(n+1) a_{n}, \quad n=1,2, \ldots
$$

for two constants $c_{2}>c_{1}>0$. Then $0<p(n, A, M) \leq n^{2+o(1)}$ for all $n \geq 1$, where

$$
M=\left\{k 2^{n-1}: 1 \leq k \leq \max \left\{2 c_{2}, 1\right\}(n+1), n=1,2, \ldots\right\} .
$$

Remark 1.5. For $A=\{n!\}_{n \geq 1}$, we have $a_{n+1}=(n+1) a_{n}$. Thus for

$$
M=\left\{k 2^{n-1}: 1 \leq k \leq 2(n+1), n=1,2, \ldots\right\}
$$

we have $0<p(n, A, M) \leq n^{2+o(1)}$ for all $n \geq 1$.
For $A=\left\{n^{n}\right\}_{n \geq 1}$, we have

$$
a_{n+1}=(n+1)^{n+1}=(n+1)(n+1)^{n}=(n+1)\left(1+\frac{1}{n}\right)^{n} n^{n} \leq e(n+1) a_{n}
$$

and $a_{n+1}>(n+1) a_{n}$. Thus for

$$
M=\left\{k 2^{n-1}: 1 \leq k \leq 2 e(n+1), n=1,2, \ldots\right\},
$$

we have $0<p(n, A, M) \leq n^{2+o(1)}$ for all $n \geq 1$.

2. Proof of Theorem 1.3

First we prove that $p(n, A, M) \geq 1$ for all $n \geq 1$.
It is enough to prove that any nonnegative integer n can be written in the form

$$
n=\sum_{i=1}^{\infty} k_{i} 2^{i-1} a_{i}, \quad 0 \leq k_{i} \leq \max \left\{2 c_{2}, 1\right\}(i+1)^{\theta_{2}}, i=1,2, \ldots .
$$

We prove this by induction on n. It is trivial for $n=0,1$. Now we assume that $n>1$ and the conclusion is true for all nonnegative integers less than n. Let m be the positive integer such that $2^{m-1} a_{m} \leq n<2^{m} a_{m+1}$. Let k_{m} be the integer with $k_{m} 2^{m-1} a_{m} \leq n<\left(k_{m}+1\right) 2^{m-1} a_{m}$. It is clear that $k_{m} \geq 1$ and $0 \leq n-k_{m} 2^{m-1} a_{m}<2^{m-1} a_{m}$. Since

$$
k_{m} 2^{m-1} a_{m} \leq n<2^{m} a_{m+1} \leq 2^{m} c_{2}(m+1)^{\theta_{2}} a_{m}
$$

it follows that $1 \leq k_{m}<2 c_{2}(m+1)^{\theta_{2}}$.
By the inductive hypothesis, $n-k_{m} 2^{m-1} a_{m}$ can be written in the form

$$
n-k_{m} 2^{m-1} a_{m}=\sum_{i=1}^{\infty} k_{i}^{\prime} 2^{i-1} a_{i}, \quad 0 \leq k_{i}^{\prime} \leq \max \left\{2 c_{2}, 1\right\}(i+1)^{\theta_{2}}, i=1,2, \ldots
$$

Since $n-k_{m} 2^{m-1} a_{m}<2^{m-1} a_{m}$, it follows that $k_{i}^{\prime}=0$ for all $i \geq m$. Let $k_{i}=k_{i}^{\prime}$ for all $1 \leq i<m$ and $k_{i}=0$ for all $i>m$. Then

$$
n=\sum_{i=1}^{\infty} k_{i} 2^{i-1} a_{i}, \quad 0 \leq k_{i} \leq \max \left\{2 c_{2}, 1\right\}(i+1)^{\theta_{2}}, i=1,2, \ldots
$$

Thus we have proved that $p(n, A, M) \geq 1$ for all $n \geq 1$.
Now we prove that $p(n, A, M) \leq n^{2+o(1)}$.
We may assume that $n>10$. Then there exist two positive integers m and l such that

$$
a_{m} \leq n<a_{m+1}, \quad 2^{l} \leq n<2^{l+1}
$$

Since

$$
n \geq a_{m} \geq c_{1} m^{\theta_{1}} a_{m-1} \geq c_{1}^{m-1}(m!)^{\theta_{1}} a_{1}=c_{1}^{m-1}(m!)^{\theta_{1}}
$$

it follows that $\log n \geq \theta_{1} \log m!+(m-1) \log c_{1}=\left(\theta_{1}+o(1)\right) m \log m$. Thus

$$
|A \cap[1, n]|=m \leq\left(\theta_{1}^{-1}+o(1)\right) \frac{\log n}{\log \log n}, \text { as } n \rightarrow \infty
$$

We also have

$$
|M \cap[1, n]| \leq \sum_{i=0}^{l} \max \left\{2 c_{2}, 1\right\}(i+2)^{\theta_{2}} \leq c_{3} l^{\theta_{2}+1} \leq c_{4}(\log n)^{\theta_{2}+1}-1
$$

for two positive constants c_{3} and c_{4}. Thus

$$
\begin{aligned}
\sum_{s=1}^{n} p(s, A, M) & \leq(|M \cap[1, n]|+1)^{|A \cap[1, n]|} \\
& \leq\left(c_{4}(\log n)^{\theta_{2}+1}\right)^{\left(\theta_{1}^{-1}+o(1)\right) \log n / \log \log n} \\
& =n^{\left(\theta_{2}+1\right) / \theta_{1}+o(1)}, \text { as } n \rightarrow \infty
\end{aligned}
$$

Therefore, $p(n, A, M) \leq n^{\left(\theta_{2}+1\right) / \theta_{1}+o(1)}$. This completes the proof of Theorem 1.3.

3. Final remarks

An arithmetic function f has logarithm polynomial growth if there is a positive integer k and an integer $N_{0}(k)$ such that $1 \leq f(n) \leq(\log n)^{k}$ for all $n \geq N_{0}(k)$. Now we pose several questions here.

Question 3.1. Let $A=\{n!\}_{n=1}^{\infty}$. Does there exist an infinite set M of positive integers so that $p(n, A, M)>0$ for all sufficiently large n and p has logarithm polynomial growth?

Question 3.2. Let $A=\left\{n^{n}\right\}_{n=1}^{\infty}$. Does there exist an infinite set M of positive integers so that $p(n, A, M)>0$ for all sufficiently large n and p has logarithm polynomial growth?

Furthermore, we pose the following questions:

Question 3.3. Let $A=\{n!\}_{n=1}^{\infty}$. Does there exist an infinite set M of positive integers and a constant c so that $0<p(n, A, M)<c$ for all sufficiently large n ?

Question 3.4. Let $A=\left\{n^{n}\right\}_{n=1}^{\infty}$. Does there exist an infinite set M of positive integers and a constant c so that $0<p(n, A, M)<c$ for all sufficiently large n ?

Motivated by Theorem 1.3, we pose the following question:
Question 3.5. Do there exist two infinite sets $A=\left\{a_{n}\right\}_{n=1}^{\infty}$ and M of positive integers such that

$$
\lim _{n \rightarrow \infty} \frac{\log a_{n+1}-\log a_{n}}{\log n}=+\infty
$$

and $p(n, A, M)>0$ for all sufficiently large n and p has polynomial growth?

References

[1] N. Alon, Restricted integer partition functions, Integers 13 (2013) A16.
[2] E.R. Canfield, H.S. Wilf, On the growth of restricted integer partition functions, Dev. Math. 23 (2012) 39-46.
[3] Z. Ljujić, M. Nathanson, On a partition problem of Canfield and Wilf, Integers 12A (2012) A11.

[^0]: th This work was supported by the National Natural Science Foundation of China, Grant Nos. 11371195, 11271185, 11571174 and PAPD.
 E-mail addresses: lilidainjnu@163.com (L.-X. Dai), ygchen@njnu.edu.cn (Y.-G. Chen).
 http://dx.doi.org/10.1016/j.crma.2016.01.007
 1631-073X/© 2016 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

