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r é s u m é

Nous étendons l’inégalité de Friedrich pour les valeurs propres de l’opérateur de Dirac sur 
les variétés Spinc à bord pour différentes conditions à bord. Le cas limite est étudié et des 
exemples sont donnés.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

En 1980, T. Friedrich [3] a minoré la première valeur propre λ1 de l’opérateur de Dirac défini sur une variété rieman-
nienne compacte Spin à courbure scalaire positive R. En effet, il a montré que

λ2
1 ≥ n

4(n − 1)
infM R. (1)

Le cas limite est caractérisé par l’existence d’un spineur de Killing. Plus tard, cette minoration a été établie [7,8] pour la 
première valeur propre de l’opérateur de Dirac défini sur une variété compacte Spin à bord et sous différents types de 
conditions à bord. Dans cette note, on établit l’inégalité de Friedrich dans le cas des variétés compactes Spinc à bord. En 
effet, on montre le théorème suivant.

E-mail addresses: rnakad@ndu.edu.lb (R. Nakad), julien.roth@u-pem.fr (J. Roth).
http://dx.doi.org/10.1016/j.crma.2015.12.017
1631-073X/© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

http://dx.doi.org/10.1016/j.crma.2015.12.017
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:rnakad@ndu.edu.lb
mailto:julien.roth@u-pem.fr
http://dx.doi.org/10.1016/j.crma.2015.12.017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crma.2015.12.017&domain=pdf


426 R. Nakad, J. Roth / C. R. Acad. Sci. Paris, Ser. I 354 (2016) 425–431
Théorème. On considère une variété riemannienne compacte Spinc à bord de dimension n et on note par i� la courbure du fibré en 
droites associé à la structure Spinc . On suppose, sous les conditions à bord gAPS données par P�b pour b � 0, qu’il existe deux fonctions 
a et u telles que b +a du(ν) � n−1

2 H, sur ∂M, où ν designe le vecteur normal unitaire et H la courbure moyenne du bord ∂M. Sous les 
conditions mgAPS Pm

�b pour b � 0 ou CHI, on suppose qu’il existe deux fonctions a et u tel que a du(ν) � n−1
2 H, sur ∂M. Alors, toute 

valeur propre de l’opérateur de Dirac D M de M satisfait

λ2 � n

4(n − 1)
sup
a,u

inf
M

(
Ra,u − cn|�|) .

Ici, cn = 2[ n
2 ] 1

2 , Ra,u = R − 4a�u + 4 < ∇a, ∇u > −4(1 − 1
n )a2|∇u|2 . Sous les conditions mgAPS et CHI, le cas limite est caractérisé 

par l’existence d’un spineur de Killing sur M et le bord ∂M est minimal. Pour la condition gAPS, le cas limite ne peut être atteint.

Enfin, pour la condition MIT, nous démontrons la minoration optimale suivante :

|λ|2 � n

4(n − 1)
inf
M

(R − cn|�|) + nH0�m(λ),

où H0 est l’infimum de la courbure moyenne sur ∂M et �m(λ) la partie imaginaire de λ. De plus, l’égalité a lieu si et 
seulement si M admet un spineur de Killing imaginaire et ∂M est totalement ombilique.

1. Introduction

The spectrum of the Dirac operator on compact Spin manifolds with or without boundary has been extensively studied 
over the past three decades. First, the intrinsic aspect has been systematically studied, then the extrinsic aspect has been 
intensively exploited by many authors in order to study the geometry and the topology of submanifolds in general, and 
hypersurfaces in particular (including boundaries of domains). In [3], Friedrich proved that the first eigenvalue of the Dirac 
operator on a closed manifold (Mn, g) of positive scalar curvature R satisfies

λ2
1 ≥ n

4(n − 1)
infM R. (2)

The equality case is characterized by the existence of a real Killing spinor. The existence of such a spinor leads to geometric 
restrictions on the manifold. For example, the manifold is Einstein and in dimension 4, it has constant sectional curvature. 
The classification of simply connected Riemannian Spin manifolds carrying real Killing spinors gives, in some dimensions, 
other examples than the sphere. These examples are relevant to physicists in general relativity where the Dirac operator 
plays a central role. In [7,8], and under different boundary conditions, the lower bound (2) was established for the first 
eigenvalue of the Dirac operator defined on compact Riemannian Spin manifolds with boundary.

In this note, we extend the lower bound (2) for the first eigenvalue of the Spinc Dirac operator defined on manifolds 
with boundary under different boundary conditions. In fact, we prove the following theorem.

Theorem 1.1. Let (Mn, g) be a compact Riemannian Spinc manifold with non-empty boundary ∂M and line bundle curvature i�. Let 
λ be an eigenvalue of the Dirac operator D M on M. Under the gAPS boundary condition P�b for some b � 0, we assume that there 
exists some real functions a and u on M such that

b + a du(ν) � n − 1

2
H,

on ∂M, where (n − 1)H is the trace of the second fundamental form of the boundary. Under the mgAPS boundary condition Pm
�b for 

some b � 0 or under the CHI boundary condition PCHI, we assume that there exists some real functions a and u such that

a du(ν) � n − 1

2
H,

on ∂M. Then

λ2 ≥ n

4(n − 1)
sup
a,u

inf
M

(
Ra,u − cn|�|) . (3)

Under the gAPS boundary condition, the equality case cannot occur. Under the mgAPS or the CHI boundary conditions, equality occurs 
if and only if M carries a non-trivial real Killing spinor with Killing constant − λ

n and the boundary ∂M is minimal.

Under the MIT bag condition PMIT, we prove the following theorem.
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Theorem 1.2. Let (Mn, g) be a compact Riemannian Spinc manifold with non-empty boundary. Let i� be the curvature of the auxiliary 
line bundle associated with the Spinc structure. Let λ be an eigenvalue of the Dirac operator D M under the MIT bag condition PMIT . 
Assume that the mean curvature H (with respect to the inner unit normal) of ∂M is strictly positive, then

|λ|2 � n

4(n − 1)
inf
M

(R − cn|�|) + nH0�m(λ), (4)

where H0 is the infimum of H on ∂M. When equality holds, the eigenspinor ψ is an imaginary Spinc �-Killing spinor and the boundary 

∂M is totally umbilical with constant mean curvature equal to H0 = 2�m(λ)

n
.

At the end, we focus on examples satisfying the limiting case in (4) and (3), which are Spinc but not Spin.

2. Manifolds with boundary

Let (Mn, g) be a compact Riemannian Spinc manifold with non-empty compact boundary ∂M . We denote by ∇ the Levi 
Civita Spinc connection of M , < ., . > denotes the Hermitian scalar product on the Spinc bundle �M and “γ ” the Clifford 
multiplication on M . We denote by L the auxiliary line bundle associated with the Spinc structure and i� its curvature 
imaginary 2-form of some Hermitian connection (see [4]). We will consider boundary conditions in order to generalize the 
Friedrich eigenvalue estimate for the spectrum of the Spinc Dirac operator on M .

APS and gAPS boundary conditions: The well-known APS boundary condition [1] was introduced by Atiyah, Patodi and 
Singer. Since the boundary is a closed manifold, its Dirac operator has a real discrete spectrum and we defined the projection 
π+ : �(�M|∂M) −→ �(�M|∂M) onto the subspace of �(�M|∂M) spanned by the eigenspinors associated with nonnegative 
eigenvalues. It is a classical fact ([8]) that this gives a self-adjoint elliptic boundary condition for the Dirac operator and so it 
has a real discrete spectrum. The generalized Atiyah–Patodi–Singer condition, denoted by gAPS, is a generalization of the APS 
condition: for any real number b, we consider the projection P�b onto the subspace of �(�M) spanned by the eigenspinors 
ϕk associated with eigenvalues λk � b. As mentioned in [2], this is also a self-adjoint elliptic boundary condition for any 
nonpositive b. We remark that the gAPS boundary condition for b = 0 is just the standard APS condition. Moreover, for 
more convenience, we will use the following useful notations; P>b is defined in the same way, but the projection is onto 
the subspace spanned by the eigenspinors ϕk associated with eigenvalues λk > b. We also define P<b = Id − P�b .

mAPS and mgAPS boundary conditions: the mAPS and mgAPS boundary conditions are modifications of the APS and gAPS, 
respectively, in the following way. For ϕ ∈ �(�M), we have Pm

�bϕ = P�b(Id + γ (ν))ϕ . For b = 0, this condition is just the 
modified APS condition (mAPS) introduced by Hijazi, Montiel, and Roldan [8].

Boundary condition associated with a chirality operator: in contrast with the above boundary conditions, we consider the 
following local boundary condition associated with a chirality operator which is subject to the existence of such an operator. 
So we consider a linear map G : �(�M) −→ �(�M) such that

G2 = Id, 〈Gϕ, Gψ〉 = 〈ϕ,ψ〉 , ∇X (Gϕ) = G∇Xϕ, γ (X)Gϕ = −Gγ (X)ϕ (5)

for any vector X tangent to M . Such an operator is called a chirality operator because in the even dimensional case, an 
example is G = γ (ωn), the Clifford multiplication by the complex volume element, which gives the chirality decomposition 
of the spinor bundle. The boundary condition associated with this operator is defined by: PCHI = 1

2 (Id − γ (ν)G). As proved 
in [8], this condition is self-adjoint and elliptic and so, under this boundary condition, the Dirac operator has a real discrete 
spectrum.

MIT boundary conditions: the MIT boundary condition is also a local boundary condition. It is defined as follows: for any 
spinor field ϕ on ∂M , PMITϕ = 1

2 (ϕ − iγ (ν)ϕ). It is an elliptic condition and the spectrum of the Dirac operator is discrete. 
However, the Dirac operator is not self-adjoint anymore and its spectrum consists of complex eigenvalues whose imaginary 
part is strictly positive.

Lemma 2.1. Let b � 0. We denote by D the Dirac operator on the boundary ∂M of M. Then,∫
∂M

〈Dϕ,ϕ〉
{
� b

∫
∂M |ϕ|2 under the gAPS condition, P≥bϕ = 0,

= 0 under the mgAPS condition, Pm
≥bϕ = 0.

Under the CHI and MIT conditions, then, pointwise on ∂M we have 〈Dϕ,ϕ〉 = 0.

Proof. Let (ϕk, λk)k∈Z be a spectral resolution of D on the boundary ∂M . Any spinor ϕ of �(�∂M) expresses as follows 

ϕ =
∑

k

akϕk with ak =
∫

< ϕ, ϕk > ds. Under the gAPS condition, we have P�bϕ = 0, that is, ϕ =
∑
λ <b

akϕk . Then, we have
∂M k
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∫
∂M

< Dϕ,ϕ > ds =
∑
λk<b

λk|ak|2 � b
∑
λk<b

|ak|2 = b

∫
∂M

|ϕ|2ds.

Let ϕ such that Pm
�bϕ = 0, for b � 0, that is, P�b(ϕ + γ (ν)ϕ) = 0. From this, we can see easily that P>−b(ϕ + γ (ν)ϕ) = 0. 

Moreover, from the relation D(γ (ν)) = −γ (ν)D , we see that for any b and any spinor ψ , P<bγ (ν)ψ = γ (ν)P>−bψ . Hence, 
we have

P>−b(γ (ν)ϕ − ϕ) = γ (ν)P<bϕ − P>−b(ϕ) = γ (ν)
(

P<bϕ + γ (ν)P>−b(ϕ)
)

= γ (ν)P<b(ϕ + γ (ν)ϕ) = γ (ν)
[
ϕ + γ (ν)ϕ − P�b(ϕ + γ (ν)ϕ︸ ︷︷ ︸

=0

]

= γ (ν)ϕ − ϕ.

Now, using that < Dϕ, ϕ >= 1
2 < D(ϕ + γ (ν)ϕ), ϕ − γ (ν)ϕ >, the fact that γ (ν)ϕ − ϕ = P>−b(γ (ν)ϕ − ϕ) and P>−b(ϕ +

γ (ν)ϕ) = 0, we deduce that∫
∂M

< Dϕ,ϕ >=
∫

∂M

1

2
< D(ϕ + γ (ν)ϕ),ϕ − γ (ν)ϕ >= 0.

Now, we observe that from (5), we have the following pointwise equality < Dϕ, ϕ >=< γ (ν)GDϕ, γ (ν)Gϕ >. Moreover, we 
have DG = GD and since PCHIϕ = 0, then γ (ν)Gϕ = ϕ . So, we get

< Dϕ,ϕ >=< γ (ν)GDϕ,ϕ >=< γ (ν)DGϕ,ϕ >= − < Dγ (ν)Gϕ,ϕ >= − < Dϕ,ϕ > .

Finally, we have < Dϕ, ϕ >= 0. �
The proof for the MIT condition is similar.

3. Eigenvalue estimates for manifolds with boundary

From now on and for simplicity, we denote the Clifford multiplication γ by ·. First, as in [7] and for any real functions a
and u, we consider the following modified connection ∇a,u on M

∇a,u
X ϕ = ∇Xϕ + a∇X u · ϕ + a

n
X · ∇u · ϕ + λ

n
X · ϕ,

where X ∈ X(M) and ϕ ∈ �(�M). Assume that ϕ is an eigenspinor associated with an eigenvalue λ of the Dirac operator 
D M on M . A simple calculation, using the Spinc Reilly identity (see [7,11]), we get∫

M

|∇a,uϕ|2 =
∫
M

[(
1 − 1

n

)
λ2 − Ra,u

4

]
|ϕ|2dv g −

∫
M

<
i

2
� · ϕ,ϕ > dv g

+
∫

∂M

(
< Dϕ,ϕ > +

[
a du(ν) − n − 1

2
H

]
|ϕ|2

)
ds, (6)

where Ra,u is defined by

Ra,u = R − 4a�u + 4 < ∇a,∇u > −4

(
1 − 1

n

)
a2|∇u|2.

We have [6] that < i� · ϕ, ϕ >� − cn
2 |�|g |ϕ|2, where |�|g is the norm of � with respect to the metric g given by 

|�|2g =
∑
i< j

�2
i j in any orthonormal frame and cn = 2[ n

2 ]1/2. Moreover, equality occurs if and only if � · ϕ = i cn
2 |�|gϕ . Using 

this and the fact that |∇a,uϕ|2 � 0, Identity (6) becomes∫
M

[(
1 − 1

n

)
λ2 − Ra,u

4
+ cn

4
|�|g

]
|ϕ|2dv g

� −
∫

∂M

(
< Dϕ,ϕ > +

[
a du(ν) − n − 1

2
H

]
|ϕ|2

)
ds. (7)

Now, we can prove Theorem 1.1.
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Proof of Theorem 1.1. From Inequality (7), Lemma 2.1 and the assumption b + a du(ν) � n−1
2 H or a du(ν) � n−1

2 H respec-
tively, we get immediately that

λ2 � n

4(n − 1)
sup
a,u

inf
M

(
Ra,u − cn|�|) .

We just have to prove that equality cannot occur under the gAPS boundary condition. For this, we need the following 
lemma, generalizing Lemma 3 in [7] to the case of Spinc manifolds.

Lemma 3.1. Suppose that there exists a spinor field ϕ satisfying

∇a,uϕ = 0 and � · ϕ = i
cn

2
|�|ϕ, (8)

for some real number λ and real functions a and u. Then a = 0 or du = 0, that is, ϕ is a Killing spinor.

Assuming this lemma, then ϕ is a non-trivial real Killing spinor, and so |ϕ| is a positive constant. Let (ϕk)k∈Z be an 
Hilbertian basis of eigenspinors for the Dirac operator of the boundary, associated with the eigenvalues (λk)k∈Z . Under the 

gAPS condition, we have P�bϕ = 0, that is, ϕ =
∑
λk<b

akϕk , where ak =
∫

∂M

< ϕ, ϕk > ds. Of course, not all ak vanish, since 

otherwise ϕ would vanish on all M because it has constant length. Then, we have

0 =
∫

∂M

< Dϕ,ϕ > ds −
∫

∂M

n − 1

2
H|ϕ|2ds

=
∑
λk<b

λk|ak|2 − n − 1

2

∑
λ j ,λk<b

ā jak

∫
∂M

H < ϕ j,ϕk > ds

�
∑
λk<b

(λk − b)|ak|2 < 0,

since (n − 1)H � 2b. This is a contradiction and so equality cannot occur.

Proof of Lemma 3.1. First, we observe that (8) implies that Dϕ = λϕ . Now, we use the Ricci identity and we get

1

2
ek · Ric(ek) · ϕ = i

2
ek · (ek��) · ϕ + ek ·

n∑
j=1

e j ·R(e j, ek)ϕ.

Hence, by summing on k from 1 to n, we have:

∑
j,k

1

2
Rkjek · e j · ϕ

= i

2
� · ϕ − D2ϕ +

∑
k

ek · D(∇ekϕ)

=
(

− cn

4
|�| + 2(1 − n)

n
λ2 + 2a(1 − n)

n
�u − 2(2 − n)

n
< ∇u,∇a >

+ a2(1 − n)(n − 2)

n2
|∇u|2

)
ϕ − 2

n
∇u · ∇a · ϕ + 4aλ(1 − n)

n2
∇u · ϕ.

From this, we deduce that the term 4aλ(1−n)

n2 ∇u · ϕ necessarily vanishes and so a = 0 or ∇u = 0, which implies that ϕ is a 
Killing spinor with Killing constant − λ

n . �
For conditions mgAPS and CHI, if equality occurs in (3), then, ∇a,uϕ = 0 and n−1

2 H = a du(ν). From Lemma 3.1 again, ϕ
is a Killing spinor and a∇u = 0, hence H = 0. Conversely, we can check immediately that if ϕ is a Killing spinor and H = 0, 
then, equality occurs in (3). This concludes the proof of Theorem 1.1. �
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Examples. Let M = (S3, gκ,τ ) be the sphere endowed with the Berger metric. For κ > 0 and τ 	= 0, this metric is defined by 
g(κ,τ )(X, Y ) = κ

4

(
g(X, Y ) + ( 4τ 2

κ − 1)g(X, ξ)g(Y , ξ)
)

, where g is the round metric and ξ the Killing vector tangent to the 

fibers of the Hopf fibration of S3. For κ = 4τ 2, we found the round sphere of curvature κ . Berger spheres are also embedded 
spheres of constant mean curvature in the complex space forms of constant holomorphic sectional curvature 1 − τ 2 . In [10], 
we proved that M has a canonical Spinc structure carrying a Killing spinor of Killing constant − τ

2 . The curvature of the line 
bundle associated with this canonical Spinc structure is given in a local orthonormal frame {e1, e2, e3 = ξ} by

�(e1, e2) = (κ − 4τ 2) and �(ei, e j) = 0 if not. (9)

It is straightforward that D Mϕ = 3τ
2 ϕ . Moreover, the scalar curvature of M is given by 2κ − 2τ 2. By definition of the 

canonical Spinc structure, we have |�| = κ − 4τ 2. Finally, since c3 = 2, we get 3
8 (R − c3|�|) = 9τ 2

4 . Let now consider a 
domain of M bounded by a minimal surface. It remains to prove that ϕ satisfies the condition Pm

APSϕ = 0. The restriction 
of ϕ to the boundary satisfies Dϕ = Hϕ − τγ (ν)ϕ . Because the boundary is minimal, we have Dϕ = −τγ (ν)ϕ . Using the 
super-symmetry property D(γ (ν)ϕ) = −γ (ν)Dϕ , we have D(ϕ + γ (ν)ϕ) = −τ (ϕ + γ (ν)ϕ). For τ > 0, this implies that 
Pm

APSϕ = 0. For Berger spheres with τ < 0, we have to take the anti-canonical Spinc structure that has a Killing spinor of 
opposite Killing constant. To summarize, we proved that every domain of the Berger sphere bounded by a minimal surface is 
an example of the limiting case of Inequality (3) for the condition mAPS. Such domains exist because we know examples of 
compact minimal surfaces embedded into Berger spheres (for example, the equator of the Berger spheres and the minimal 
Clifford tori). In [13], Torralbo constructed a family of minimal unduloids and some of them are embedded.

The case of MIT bag condition. Under the MIT bag condition, the spectrum of the Dirac operator is an unbounded sequence 
of complex numbers with positive imaginary part. Equality in (3) cannot hold. Following the ideas of Raulot [12], we will 
derive an optimal inequality for the eigenvalues of the Dirac operator for the boundary condition PMIT.

Lemma 3.2. Let μ be a complex number and ψ a non-trivial Spinc �-Killing spinor field of Killing constant μ, i.e., for any X ∈ �(TM),{
∇Xψ = μX · ψ,

� · ψ = i cn
2 |�|ψ.

Then, μ is a real or an imaginary number and ψ has no zeros.

Proof. The fact that ψ has no zeros is well known (see [4]). The Schrödinger–Lichnerowicz formula applied for the spinor 
ψ , gives

D2ψ = n2μ2ψ = ∇∗∇ψ + 1

4
Rψ − 1

4
cn|�|ψ = nμ2ψ + 1

4
Rψ − 1

4
cn|�|ψ.

Since ψ has no zeros, we deduce that n(n − 1)μ2 = 1
4 (R − cn|�|). Thus μ2 is real and hence μ is real or pure imaginary. �

Proof of Theorem 1.2. Proceeding as in [12], we obtain from the Spinc Reilly formula, for an eigenspinor ϕ:∫
M

(
n − 1

n
|λ − n

2
iH0|2 − R

4
+ cn

4
|�| − n(n − 1)

4
H2

0

)
|ϕ|2dv g � 0, (10)

where H0 is the infimum of H on ∂M , with equality if and only if ϕ is a Killing spinor of Killing constant − λ
n , � · ϕ =

i cn
2 |�|gϕ , and H is constant (equals to H0). From (10), we obtain immediately the desired lower bound. If equality holds 

in this lower bound, from Lemma 3.2, λ is either real or imaginary, but as an eigenvalue of the Dirac operator for the MIT 
boundary condition, λ has positive imaginary part. Hence, lambda is imaginary and ϕ is an imaginary �-Killing spinor. The 
fact that the boundary ∂M is umbilical is similar to the spin case (see [12]). �
Examples. Riemannian manifolds with imaginary Spinc Killing spinors of Killing number iμ have been classified in [5]. Such 
manifolds are the hyperbolic space endowed with its unique Spin structure and the warped product with R of a Riemannian 
Spinc manifold carrying a parallel spinor, i.e. (F n−1 × R, e4μth ⊕ dt2) where (F n−1, h) is a complete Spinc manifold with 
a parallel spinor field. As examples that are not Spin, we can state (CP 2 × R, e4μt gFS ⊕ dt2) or (F 2m × R, e4μth ⊕ dt2), 
where gFS is the Fubini Study metric and (F 2m, h) is a Kähler manifold endowed with the canonical or the anti-canonical 
Spinc structure. Totally umbilical embedded hypersurfaces of constant mean curvature in (F 2m × R, e4μth ⊕ dt2) exist. For 
example, Montiel [9] proved that such a hypersurface is a leaf of a foliation generated by a non-trivial conformal closed 
vector field (such a vector exists for (F 2m × R, e4μth ⊕ dt2)) or is locally a Riemannian product R × Q2m−1 immersed into 
R

2 ×Q2m−1 as γ × IQ2m−1 , where γ is a line in R2 and Q a manifold of dimension 2m − 1.
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Moreover, Montiel also proved in [9] that the only compact hypersurfaces with constant mean curvature embedded into 
a pseudo-hyperbolic space R × f Pn−1, n � 2, where Pn−1, is a compact Riemannian manifold with positive Ricci curvature, 
are the slices {t} × Pn−1, for each t . These slices are embedded and totally umbilical. Therefore, a domain [a, b] ×CPm into 
R × f CPm is an example of the limiting case in Theorem 1.2. Note that the boundary is not connected (it is the reunion of 
two homothetic CPm with inverse orientations). Note also hat other examples can be derived by taking Pn−1 as an other 
compact Spinc manifold with positive Ricci curvature and carrying a parallel spinor.
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