Differential geometry

Extremal metrics for the Q^{\prime}-curvature in three dimensions

CrossMark

Métriques extrémales pour la Q^{\prime}-courbure en dimension 3

Jeffrey S. Case ${ }^{\text {a }}$, Chin-Yu Hsiao ${ }^{\text {b, }}$, Paul Yang ${ }^{\text {c, }}{ }^{2}$
${ }^{\text {a }}$ Department of Mathematics, McAllister Building, The Pennsylvania State University, University Park, PA 16802, United States
${ }^{\mathrm{b}}$ Institute of Mathematics, Academia Sinica, 6F, Astronomy-Mathematics Building, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
${ }^{\text {c }}$ Department of Mathematics, Princeton University, Princeton, NJ 08544, United States

A R T I CLE IN F O

Article history:

Received 16 November 2015
Accepted 16 November 2015
Available online 8 February 2016
Presented by Haïm Brézis

Abstract

We construct contact forms with constant Q^{\prime}-curvature on compact three-dimensional CR manifolds that admit a pseudo-Einstein contact form and satisfy some natural positivity conditions. These contact forms are obtained by minimizing the CR analogue of the II-functional from conformal geometry. Two crucial steps are to show that the P^{\prime}-operator can be regarded as an elliptic pseudodifferential operator and to compute the leading-order terms of the asymptotic expansion of the Green's function for $\sqrt{P^{\prime}}$.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

On construit des formes de contact à Q^{\prime}-courbure constante sur les variétés de CauchyRiemann de dimension 3 qui admettent une pseudo-forme de contact d'Einstein et satisfont certaines conditions naturelles de positivité. Ces formes sont obtenues en minimisant l'analogue en CR-géométrie de la II-fonctionelle en géométrie conforme. Cette construction repose sur deux étapes cruciales. On montre que le P^{\prime}-opérateur peut être vu comme un opérateur pseudo-differentiel elliptique et on calcule les termes dominants du développement asymtotique de la forme de Green pour $\sqrt{P^{\prime}}$.
© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

On an even-dimensional manifold $\left(M^{2 n}, g\right)$, the pair (P, Q) of the (critical) GJMS operator P and the (critical) Q-curvature Q possesses many of the same properties of the pair $(-\Delta, K)$ on surfaces, where K is the Gauss curvature. For example, P is a conformally covariant formally self-adjoint operator with leading-order term $(-\Delta)^{n / 2}$ that annihilates

[^0]constants [14,15], and Q is a Riemannian invariant with leading-order term $c_{n}(-\Delta)^{\frac{n-2}{2}} R$, where R is the scalar curvature, which transforms in a particularly simple way within a conformal class [4]: if $\widehat{g}=e^{2 u} g$, then
$$
\mathrm{e}^{n \sigma} \widehat{\mathrm{Q}}=Q+P u
$$

In particular, $\int Q$ is conformally invariant on closed even-dimensional manifolds; indeed, it computes the Euler characteristic modulo integrals of pointwise conformal invariants [1]. It also follows that metrics of constant Q-curvature within a conformal class are in one-to-one correspondence with critical points of the functional

$$
I I[u]=\int_{M} u P u+2 \int_{M} Q u-\frac{2}{n}\left(\int_{M} Q\right) \log \left(\frac{1}{\operatorname{Vol}(M)} \int_{M} \mathrm{e}^{n u}\right) .
$$

This functional can always be minimized on the two-sphere [21] and on four-manifolds with positive Yamabe constant and nonnegative Paneitz operator [2,9,16], with important applications to logarithmic functional determinants [5,21] and sharp Onofri-type inequalities [2]. Due to the parallels between conformal and CR geometry, it is interesting to determine whether a similar pair exists in the latter setting.

Works by Graham and Lee [13] and Hirachi [17] identified CR analogues of the Paneitz operator and Q-curvature in dimension three. However, the kernel of the Paneitz operator contains the (generally infinite-dimensional) space \mathcal{P} of CR pluriharmonic functions, and the total Q-curvature is always zero. In particular, an Onofri-type inequality involving the CR Paneitz operator cannot be satisfied. Branson, Fontana and Morpurgo overcame this latter issue on the CR spheres by introducing a formally self-adjoint operator P^{\prime}, which is CR covariant on CR pluriharmonic functions and in terms of which one has the sharp Onofri-type inequality

$$
\int_{S^{2 n+1}} u P^{\prime} u+2 \int_{S^{2 n+1}} Q^{\prime} u-\frac{2}{n+1}\left(\int_{S^{2 n+1}} Q^{\prime}\right) \log \left(\frac{1}{\operatorname{Vol}\left(S^{2 n+1}\right)} \int_{S^{2 n+1}} e^{(n+1) u}\right) \geq 0
$$

for all $u \in W^{n+1,2} \cap \mathcal{P}$, where Q^{\prime} is an explicit dimensional constant [6]. The construction of P^{\prime} is analogous to the construction of the Q-curvature from the GJMS operators by analytic continuation in the dimension.

It was observed by the first- and third-named authors in dimension three [7] and by Hirachi in general dimension [18] that one can define the P^{\prime}-operator on general pseudohermitian manifolds ($M^{2 n+1}, T^{1,0}, \theta$). Roughly speaking, if $P_{2 n+2}^{N}$ is the CR GJMS operator of order $2 n+2$ on a ($2 N+1$)-dimensional manifold, one defines P^{\prime} as the limit of $\left.\frac{2}{(N-n)} P_{2 n+2}^{N} \right\rvert\, \mathcal{P}$ as $N \rightarrow n$. This is made rigorous by explicit computation in dimension three [7] and via the ambient metric in general dimension [18]. Regarded as a map from \mathcal{P} to $C^{\infty}(M) / \mathcal{P}^{\perp}$, the P^{\prime}-operator is $C R$ covariant: if $\widehat{\theta}=\mathrm{e}^{\sigma} \theta$, then $\mathrm{e}^{(n+1) \sigma} \widehat{P}^{\prime}=P^{\prime}$.

If θ is a pseudo-Einstein contact form (cf. [7,18,20]), then the P^{\prime}-operator is formally self-adjoint and annihilates constants. Note that if $M^{2 n+1}$ is the boundary of a domain in \mathbb{C}^{n+1}, then the defining functions constructed by Fefferman [11] induce pseudo-Einstein contact forms on M. One can construct a pseudohermitian invariant Q^{\prime} on pseudo-Einstein manifolds by formally considering the limit $\left(\frac{2}{N-n}\right)^{2} P_{2 n+2}^{N}(1)$ as $N \rightarrow n$; this can be made rigorous by direct computation in dimension three [7] and via the ambient metric in general dimension [18]. Regarded as $C^{\infty}(M) / \mathcal{P}^{\perp}$-valued, the Q^{\prime}-curvature transforms linearly with a change of contact form: if $\widehat{\theta}=\mathrm{e}^{\sigma} \theta$ is also pseudo-Einstein, then

$$
\begin{equation*}
\mathrm{e}^{2(n+1)} \widehat{\mathrm{Q}}^{\prime}=Q^{\prime}+P^{\prime}(\sigma) . \tag{1.1}
\end{equation*}
$$

Since $\widehat{\theta}$ is pseudo-Einstein if and only if $\sigma \in \mathcal{P}[17,20]$, this makes sense. It follows from the properties of P^{\prime} that $\int Q^{\prime}$ is independent of the choice of the pseudo-Einstein contact form. Direct computation on $S^{2 n+1}$ shows that it is a nontrivial invariant; indeed, in dimension three it is a nonzero multiple of the Burns-Epstein invariant [7]. In particular, the pair (P^{\prime}, Q^{\prime}) on pseudo-Einstein manifolds has the same properties as the pair (P, Q) on Riemannian manifolds.

If ($M^{2 n+1}, T^{1,0}, \theta$) is a compact pseudo-Einstein manifold, the self-adjointness of P^{\prime} and (1.1) imply that critical points of the functional II: $\mathcal{P} \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
I I[u]=\int_{M} u P^{\prime} u+2 \int_{M} Q^{\prime} u-\frac{2}{n+1}\left(\int_{M} Q^{\prime}\right) \log \left(\frac{1}{\operatorname{Vol}(M)} \int_{M} \mathrm{e}^{(n+1) u}\right) \tag{1.2}
\end{equation*}
$$

are in one-to-one correspondence with pseudo-Einstein contact forms with constant Q^{\prime}-curvature (still regarded as $C^{\infty}(M) / \mathcal{P}^{\perp}$-valued). The existence and classification of minimizers of the II-functional on the standard $C R$ spheres was given by Branson, Fontana, and Morpurgo [6]. In this note, we discuss the main ideas used by the authors to give criteria that guarantee that minimizers exist for the II-functional on a given pseudo-Einstein three-manifold [8].

Theorem 1.1. Let $\left(M^{3}, T^{1,0}, \theta\right)$ be a compact, embeddable pseudo-Einstein three-manifold such that $P^{\prime} \geq 0$ and $\operatorname{ker} P^{\prime}=\mathbb{R}$. Suppose additionally that

$$
\begin{equation*}
\int_{M} Q^{\prime} \theta \wedge \mathrm{d} \theta<16 \pi^{2} \tag{1.3}
\end{equation*}
$$

Then there exists a function $w \in \mathcal{P}$ that minimizes the II-functional. Moreover, the contact form $\widehat{\theta}:=\mathrm{e}^{w} \theta$ is such that \widehat{Q}^{\prime} is constant.
The assumptions on P^{\prime} mean that the pairing $(u, v):=\int u P^{\prime} v$ defines a positive definite quadratic form on \mathcal{P}. It is important to emphasize that the conclusion is that \widehat{Q}_{4}^{\prime} is constant as a $C^{\infty}(M) / \mathcal{P}^{\perp}$-valued invariant: a local formula for the Q^{\prime}-curvature was given by the first- and third-named authors [7], while we observe that, on $S^{1} \times S^{2}$ with any of its locally spherical contact structures, there is no pseudo-Einstein contact form with Q^{\prime} pointwise zero; see [8, Section 5].

As in the study of Riemannian four-manifolds (cf. [9,16]), the hypotheses of Theorem 1.1 can be replaced by the nonnegativity of the pseudohermitian scalar curvature and of the CR Paneitz operator. Indeed, Chanillo, Chiu and the third-named author proved that these assumptions imply that $\left(M^{3}, T^{1,0}\right)$ is embeddable [10]; the first- and third-named authors proved that these assumptions imply both that $P^{\prime} \geq 0$ with $\operatorname{ker} P^{\prime}=\mathbb{R}$ and that $\int Q^{\prime} \leq 16 \pi^{2}$ with equality if and only if $\left(M^{3}, T^{1,0}\right)$ is $C R$ equivalent to the standard $C R$ three-sphere [7]; and Branson, Fontana and Morpurgo showed that minimizers of the II-functional exist on the standard CR three-sphere [6].

Corollary 1.2. Let $\left(M^{3}, T^{1,0}, \theta\right)$ be a compact pseudo-Einstein manifold with nonnegative scalar curvature and nonnegative $C R$ Paneitz operator. Then there exists a function $w \in \mathcal{P}$ which minimizes the II-functional. Moreover, the contact form $\widehat{\theta}:=\mathrm{e}^{w} \theta$ is such that $\widehat{Q^{\prime}}$ is constant.

2. Sketch of the proof of Theorem 1.1

The proof of Theorem 1.1 proceeds analogously to the proof of the corresponding result on four-dimensional Riemannian manifolds [9] with one important difference: P^{\prime} is defined as a $C^{\infty}(M) / \mathcal{P}^{\perp}$-valued operator; in particular, it is a nonlocal operator. Let $\tau: C^{\infty}(M) \rightarrow \mathcal{P}$ be the orthogonal projection with respect to the standard L^{2}-inner product. A key observation is that the operator $\bar{P}^{\prime}:=\tau P^{\prime}: \mathcal{P} \rightarrow \mathcal{P}$ is a self-adjoint elliptic pseudodifferential operator of order -2 ; see [8, Theorem 9.1]. This follows from the observation that, while the sub-Laplacian Δ_{b} is subelliptic, the Toeplitz operator $\tau \Delta_{b} \tau$ is a classical elliptic pseudodifferential operator of order -1 . This is achieved by writing $\Delta_{b}=2 \square_{b}+\mathrm{i} T$, relating τ to the Szegő projector S, and using well-known properties of the latter operator (cf. [3,19]).

Since $\int u P^{\prime} v=\int u \bar{P}^{\prime} v$ for all $u, v \in \mathcal{P}$, it follows that \bar{P}^{\prime} is a nonnegative operator with $\operatorname{ker} \bar{P}^{\prime}=\mathbb{R}$. In particular, the positive square root $\left(\bar{P}^{\prime}\right)^{1 / 2}$ of \bar{P}^{\prime} is well defined and such that $\operatorname{ker}(\bar{P})^{1 / 2}=\mathbb{R}$. Using the pseudodifferential calculus and the fact that, as a local operator, P^{\prime} equals Δ_{b}^{2} plus lower-order terms [7], we then observe that the Green's function of $\left(\bar{P}^{\prime}\right)^{1 / 2}$ is of the form $c \rho^{-2}+O\left(\rho^{-1-\varepsilon}\right)$ for $\rho^{4}(z, t)=|z|^{4}+t^{2}$ the Heisenberg pseudo-distance, $\varepsilon \in(0,1)$, and c the same constant as the computation on the three-sphere [6]; for a more precise statement, see [8, Theorem 1.3].

From this point, the remaining argument is fairly standard. The above fact about the Green's function of $\left(\bar{P}^{\prime}\right)^{1 / 2}$ allows us to apply the Adams-type theorem of Fontana and Morpurgo [12] to conclude that the former operator satisfies an Adams-type inequality with the same constant as on the standard CR three-sphere. This has two important effects. First, it implies that II-functional is coercive under the additional assumption $\int Q^{\prime}<16 \pi^{2}$; see [8, Theorem 4.1]. Second, it implies that if $w \in W^{2,2} \cap \mathcal{P}$ satisfies

$$
\tau\left(P^{\prime} w+Q^{\prime}-\lambda \mathrm{e}^{2 w}\right)=0
$$

then $w \in C^{\infty}(M)$; see [8, Theorem 4.2]. The former assumption allows us to minimize $I I$ within $W^{2,2} \cap \mathcal{P}$ and the latter assumption yields the regularity of the minimizers. The final conclusion follows from the transformation formula (1.1) for the Q^{\prime}-curvature.

Acknowledgements

The authors thank Po-Lam Yung for his careful reading of an early version of the article [8]. They also thank the Academia Sinica in Taipei and Princeton University for warm hospitality and generous support while this work was being completed.

References

[1] S. Alexakis, The Decomposition of Global Conformal Invariants, Ann. Math. Stud., vol. 182, Princeton University Press, Princeton, NJ, USA, 2012.
[2] W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality, Ann. Math. (2) 138 (1) (1993) 213-242.
[3] L. Boutet de Monvel, J. Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegő, in: Journées Équations aux dérivées partielles de Rennes, Rennes, France, 1975, in: Astérisque, vol. 34-35, Soc. Math. France, Paris, 1976, pp. 123-164.
[4] T.P. Branson, Sharp inequalities, the functional determinant, and the complementary series, Trans. Amer. Math. Soc. 347 (10) (1995) $3671-3742$.
[5] T.P. Branson, S.-Y.A. Chang, P.C. Yang, Estimates and extremals for zeta function determinants on four-manifolds, Commun. Math. Phys. 149 (2) (1992) 241-262.
[6] T.P. Branson, L. Fontana, C. Morpurgo, Moser-Trudinger and Beckner-Onofri's inequalities on the CR sphere, Ann. Math. (2) 177 (1) (2013) 1-52.
[7] J.S. Case, P.C. Yang, A Paneitz-type operator for CR pluriharmonic functions, Bull. Inst. Math. Acad. Sin. (N. S.) 8 (3) (2013) $285-322$.
[8] J.S. Case, C.-Y. Hsiao, P.C. Yang, Extremal metrics for the Q^{\prime}-curvature in three dimensions, Preprint.
[9] S.-Y.A. Chang, P.C. Yang, Extremal metrics of zeta function determinants on 4-manifolds, Ann. Math. (2) 142 (1) (1995) 171-212.
[10] S. Chanillo, H.-L. Chiu, P. Yang, Embeddability for 3-dimensional Cauchy-Riemann manifolds and CR Yamabe invariants, Duke Math. J. 161 (15) (2012) 2909-2921.
[11] C. Fefferman, Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains, Ann. Math. (2) 103 (2) (1976) $395-416$.
[12] L. Fontana, C. Morpurgo, Adams inequalities on measure spaces, Adv. Math. 226 (6) (2011) 5066-5119.
[13] C.R. Graham, J.M. Lee, Smooth solutions of degenerate Laplacians on strictly pseudoconvex domains, Duke Math. J. 57 (3) (1988) 697-720.
[14] C.R. Graham, M. Zworski, Scattering matrix in conformal geometry, Invent. Math. 152 (1) (2003) 89-118.
[15] C.R. Graham, R. Jenne, L.J. Mason, G.A.J. Sparling, Conformally invariant powers of the Laplacian. I. Existence, J. Lond. Math. Soc. (2) 46 (3) (1992) 557-565.
[16] M.J. Gursky, The principal eigenvalue of a conformally invariant differential operator, with an application to semilinear elliptic PDE, Commun. Math. Phys. 207 (1) (1999) 131-143.
[17] K. Hirachi, Scalar pseudo-Hermitian invariants and the Szegő kernel on three-dimensional CR manifolds, in: Complex Geometry, Osaka, 1990, in: Lecture Notes in Pure and Appl. Math., vol. 143, Dekker, New York, 1993, pp. 67-76.
[18] K. Hirachi, Q-prime curvature on CR manifolds, Differ. Geom. Appl. 33 (suppl) (2014) 213-245.
[19] C.-Y. Hsiao, Projections in several complex variables, Mém. Soc. Math. Fr. (N.S.) 123 (2010) 131.
[20] J.M. Lee, Pseudo-Einstein structures on CR manifolds, Amer. J. Math. 110 (1) (1988) 157-178.
[21] B. Osgood, R. Phillips, P. Sarnak, Extremals of determinants of Laplacians, J. Funct. Anal. 80 (1) (1988) 148-211.

[^0]: E-mail addresses: jscase@psu.edu (J.S. Case), chsiao@math.sinica.edu.tw (C.-Y. Hsiao), yang@math.princeton.edu (P. Yang).
 ${ }^{1}$ CYH was supported byTaiwan Ministry of Science of Technology project 103-2115-M-001-001, 104-2628-M-001-003-MY2 and the Golden-Jade fellowship of Kenda Foundation.
 2 PY was partially supported by NSF Grant DMS-1509505.
 http://dx.doi.org/10.1016/j.crma.2015.12.012
 1631-073X/© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

