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Let Dn,d be the set of all directed d-regular graphs on n vertices. Let G be a graph 
chosen uniformly at random from Dn,d and M be its adjacency matrix. We show that 
M is invertible with probability at least 1 − C ln3 d/

√
d for C ≤ d ≤ cn/ ln2 n, where c, C

are positive absolute constants. To this end, we establish a few properties of directed 
d-regular graphs. One of them, a Littlewood–Offord-type anti-concentration property, is 
of independent interest: let J be a subset of vertices of G with | J | ≤ cn/d. Let δi be the 
indicator of the event that the vertex i is connected to J and δ = (δ1, δ2, . . . , δn) ∈ {0, 1}n . 
Then δ is not concentrated around any vertex of the cube. This property holds even if a 
part of the graph is fixed.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit Dn,d l’ensemble des graphes orientés d-réguliers à n sommets. Soit G un élément 
choisi uniformément au hasard dans Dn,d et M sa matrice d’adjacente. On montre que 
M est inversible avec probabilité supérieure à 1 − C ln3 d/

√
d pour C ≤ d ≤ cn/ ln2 n, où 

c, C sont des constantes universelles positives. Afin d’établir ce résultat, nous montrons 
certaines propriétés des graphes orientés d-réguliers. Parmi celles-ci, une propriété d’anti-
concentration de type Littlewood–Offord. Soit J un sous-ensemble de sommets de G de 
taille | J | ≤ cn/d. Soit δi l’indicateur du fait que le sommet i est connecté à J ; on note 
δ = (δ1, δ2, . . . , δn) ∈ {0, 1}n . On montre alors que δ n’est concentré autour d’aucun sommet 
du cube. Cette propriété reste vraie si une partie du graphe est fixée.
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1. Introduction

An undirected (resp., directed) graph G with n vertices is d-regular if every vertex has exactly d neighbors (resp., 
d in-neighbors and d out-neighbors). In this definition, we allow graphs to have loops and, for directed graphs, opposite 
(anti-parallel) edges, but no multiple edges. Thus directed graphs (digraphs) can be viewed as bipartite graphs with both 
parts of size n. We denote sets of all such graphs by Gn,d and Dn,d , respectively, and the corresponding sets of adjacency 
matrices by Sn,d and Mn,d . Note that Mn,d coincides with the set of n × n matrices with 0/1-entries and such that every 
row and every column has exactly d ones. Clearly, Sn,d consists of symmetric matrices from Mn,d . Probability is always 
given by the normalized counting measure on the corresponding set.

Spectral properties of adjacency matrices of random d-regular graphs attracted considerable attention of researchers in 
the recent years. Many works were devoted to the eigenvalue distribution. At the same time, much less is known about the 
singular values of the matrices.

Our work is motivated by related questions on singular probability. One conjecture was mentioned by Vu in his survey 
[12, Problem 8.4] (see also 2014 ICM talks by Frieze and Vu [5, Problem 7], [13, Conjecture 5.8]). It asserts that for 3 ≤ d ≤
n − 3 the probability that a random matrix uniformly distributed on Sn,d is singular goes to zero as n grows to infinity. We 
formulate here the corresponding question for non-symmetric adjacency matrices (cf., [3, Conjecture 1.5]):

Is it true that for every 3 ≤ d ≤ n − 3, one has

pn,d := P
{

M ∈ Mn,d : M is singular
} −→ 0 as n → ∞? (∗)

Singularity of random square matrices is a subject with a long history and many results. A fundamental role in this 
topic is played by what is nowadays called the Littlewood–Offord theory. In its classical form, established by Erdös [4], 
the Littlewood–Offord inequality states that for every fixed z ∈ R, a vector a = (a1, a2, . . . , an) ∈ R

n with non-zero coor-
dinates and independent random signs rk (k ≤ n), the probability P 

{∑n
k=1 rkak = z

}
is bounded from above by n−1/2. This 

combinatorial result has been substantially strengthened and generalized in subsequent years, leading to a much better 
understanding of interrelationship between the law of the sum 

∑n
k=1 rkak and the arithmetic structure of the vector a. For 

more information and further references, we refer the reader to [11, Section 3] and [9, Section 4].
The use of the Littlewood–Offord theory in context of random matrices can be illustrated as follows: given an n × n

matrix A with i.i.d. elements, A is non-singular if and only if the inner product of a normal vector to the span of any subset 
of n −1 columns of A with the remaining column is non-zero. Thus, knowing the typical arithmetic structure of the random 
normal vectors and conditioning on their realization, one can estimate the probability that A is singular.

The main difficulty in singularity questions such as (∗) stems from the restrictions on row/column-sums, and from 
possible symmetry constraints for the entries. Note that for a random matrix uniformly distributed on Mn,d every two 
entries/rows/columns are probabilistically dependent; moreover, a realization of the first n − 1 columns uniquely defines 
the last column. This makes a straightforward application of the Littlewood–Offord theory (as illustrated in the previous 
paragraph) impossible. Thus, an extension of the theory covering this probabilistic model is needed.

In this note we address the question (∗) and provide a Littlewood–Offord type anti-concentration property of random 
graphs. For the complete proofs see [7].

2. Main results

The question (∗) has been recently studied in [3] by Cook who obtained the bound pn,d ≤ d−c for a small constant c > 0
and d satisfying ω(ln2 n) ≤ d ≤ n − ω(ln2 n), where f ≥ ω(an) means f /an → ∞ as n → ∞. Our main result shows that one 
can drop the condition d ≥ ω(ln2 n).

Theorem 1. There are positive constants c, C such that for 3 ≤ d ≤ cn/ ln2 n one has pn,d ≤ C ln3 d/
√

d.

Thus we proved that pn,d → 0 as d → ∞, which in particular verifies (∗) whenever d = ω(1), without any restrictions on 
the rate of convergence. We would like to notice that even in the range ω(ln2 n) ≤ d ≤ cn/ ln2 n covered in [3], our bound 
in Theorem 1 is better.

The following anti-concentration property plays a crucial role in our proof. Let a random matrix M be uniformly dis-
tributed on Mn,d . Denote its rows by Ri(M) and its columns by Xi(M), i ≤ n. Given a subset J of [n] := {1, 2, . . . , n}, 
consider a random 0/1-vector δ J (M) such that its i-th coordinate δ J

i (M) equals one if and only if the support of i-th row 
of M intersects J . In other words, δ J

i (M) is the indicator of the event J ∩ supp Ri(M) 
= ∅. We prove that for J whose cardi-
nality | J | is not too close to n the vector δ J (M) cannot concentrate around any vertex of the cube, i.e., that δ J (M) behaves 
similarly to a uniformly distributed random vector on {0, 1}n (in the abstract we described this property in terms of graphs). 
In a sense, this shows that 1’s are located rather uniformly across M . This property can be seen as an anti-concentration 
result for random graphs, matching anti-concentration properties of a weighted sum of independent random variables (or 
random vectors) studied in the Littlewood–Offord theory. In order to combine this property with an ε-net approximation 
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(discussed later on), we will need to determine the action of M on a part of a given vector corresponding to “small” coordi-
nates. To achieve this the columns of the matrix corresponding to the remaining part of the vector should be fixed and the 
anti-concentration is proved under this conditioning. Theorem 2 makes this precise.

Theorem 2. There are two positive absolute constants c and c1 such that the following holds. Let 32 ≤ d ≤ cn and I, J be disjoint 
subsets of [n] such that |I| ≤ d| J |/32 and 8 ≤ | J | ≤ 8cn/d. Let vectors ai ∈ {0, 1}n, i ∈ I , be such that the event E := {Xi(M) =
ai for all i ∈ I} has non-zero probability (if I = ∅ we set E =Mn,d). Then for every v ∈ {0, 1}n, one has

P{δ J (M) = v | E} ≤ 2 exp

(
−c1d| J | ln

(
n

d| J |
))

.

3. Methods of proof

In this section, we discuss the scheme and the methods of the proof. We also explain several novel ideas allowing to 
drop the restriction d ≥ ω(ln2 n) and to treat very sparse matrices.

The proof is naturally split into two distinct parts. First we establish certain properties of random d-regular directed 
graphs and their adjacency matrices. Then we use these results to deal with the singularity. Below, considering a random 
matrix M , we always mean a random matrix uniformly distributed on Mn,d . Saying that it has some property means that 
this property holds with probability going to one.

To work with the “shuffling” procedure described below, we show that supports of any two rows of a random matrix 
have small intersection. Moreover, the proof of Theorem 2 requires a stronger property:

Lemma 3. There exists an absolute constant c > 0 such that for every ε ∈ (
√

ln d/d, 1) and k ≤ cεn/d, the union of sup-
ports of any k rows (or columns) of a random matrix on Mn,d has cardinality exceeding (1 − ε)dk with probability at least 
1 − exp (−cε2d ln(cεn/d)).

Properties of this type are known for random undirected graphs (see [6] and references therein). A key ingredient in 
the proofs of these results is the simple switching (also called transfusion), which was introduced for general graphs by 
Senior [10]. In the context of d-regular graphs it was first applied by McKay [8]. We also use this technique to show that a 
random matrix has no large zero minors, namely:

Lemma 4. There are absolute positive constants c and C such that for Cn ln d/d ≤ � ≤ r ≤ n/4 a random matrix on Mn,d has no � × r
zero minors with probability at least 1 − exp (−cr�d/n).

Both properties (“no large intersections” and “no large zero minors”) illustrate a general phenomenon that a random 
graph has good “regularity” properties. Analogous statements for the Erdös–Rényi graphs (in this random model an edge 
between every two vertices is included/excluded in a graph independently of other edges) follow from standard Bernstein 
type inequalities. For related results on d-regular random graphs, we refer the reader to [6] where concentration properties 
of co-degrees were established in the undirected setting, and to [2] for concentration of co-degrees and the “edge counts” 
for directed graphs. In paper [2] which serves as a basis for the main theorem of [3], rather strong concentration properties 
were established; however, the results provided in that paper are valid only for d ≥ ω(ln n). The proof in [3] is based on the 
method of exchangeable pairs introduced by Stein and developed for concentration inequalities by Chatterjee (see survey [1]
for more information and references). On the contrary, our proof of the aforementioned statements is simpler, completely 
self-contained, and works for d ≥ C .

After establishing properties of random d-regular directed graphs and their adjacency matrices, we turn to the proof of 
Theorem 1. We follow the scheme and expand on some of the techniques developed in [3] adding new crucial ingredients 
to remove logarithmic lower bound on d. In this scheme, at the first step, one shows that a random matrix does not have 
any (left or right) null vectors with many (more than Cnd−c ) equal coordinates, provided that d ≥ ω(ln2 n). At the second 
step, one shows that, conditioned on this event, a random matrix is not singular.

The “no large zero-minors property,” which we apply on the second step, allows to modify this scheme so that at first 
step it is enough to consider a much smaller class of almost constant vectors. We show that for every C ≤ d ≤ cn, a random 
matrix does not have null vectors having n − n/ ln d equal coordinates. This step essentially uses Theorem 2 together with 
a new delicate approximation argument dealing with tails of appropriately rescaled vectors in R

n . Note that a logarithmic 
lower bound on d is not required.

Then, conditioning on the event that M does not have almost constant null vectors, we show that a random matrix M is 
non-singular with high probability. In [3], a sophisticated approach based on “shuffling” of two rows was developed to treat 
this case. The shuffling consists in a random perturbation of two rows of a fixed matrix M ∈ Mn,d in such a way that the 
sum of the rows remains unchanged. Then one uses a variant of the classical Erdös anti-concentration inequality to show 
that the number of “bad” perturbations is small. To apply this we need that the supports of these two rows have a small 
intersection. As shuffling involves supports of only two rows, at this step we get that the probability tends to zero with d
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and not with n (and this is the only such step – in all our other statements the probability converges with n). We developed 
further the shuffling technique to simplify the proof and to obtain better probability estimates.

Finally, we give more details about the completion of the proof. Using that there are no almost constant vectors and 
that there are no large zero minors, we show that for singular matrices with high probability the minor M1,2 obtained by 
removing the first two rows has largest possible rank, that is, either rk M1,2 = rk M when rk M ≤ n − 2 or rk M1,2 = n − 2
when rk M = n − 1. We consider the equivalence classes of matrices with the same minor M1,2. Noticing that fixing such a 
minor determines the support of the first two rows, we use the shuffling procedure for the first two rows and show that 
the set of matrices of rank ≤ n − 2 (resp. = n − 1) is small inside the set of matrices of rank ≤ n − 1 (resp. = n). This implies 
the bound on the probability that M is singular.
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