Numerical analysis

High-order accurate Lagrange-remap hydrodynamic schemes on staggered Cartesian grids

Schémas hydrodynamiques d’ordre très élevé Lagrange-projection sur grilles cartésiennes décalées

Gautier Dakin, Hervé Jourdren

CEA, DAM, DIF, 91297 Arpajon, France

Abstract

We consider a class of staggered grid schemes for solving the 1D Euler equations in internal energy formulation. The proposed schemes are applicable to arbitrary equations of state and high-order accurate in both space and time on smooth flows. Adding a discretization of the kinetic energy equation, a high-order kinetic energy synchronization procedure is introduced, preserving globally total energy and enabling proper shock capturing. Extension to nD Cartesian grids is done via C-type staggering and high-order dimensional splitting. Numerical results are provided up to 8th-order accuracy.

Résumé

Nous considérons une classe de schémas sur maillage décalé pour résoudre les équations d’Euler 1D. Les schémas proposés, formulés en énergie interne, sont d’ordre élevé en espace comme en temps, utilisables quelle que soit l’équation d’état. En ajoutant une discrétisation de l’équation de l’énergie cinétique, une procédure de synchronisation de l’énergie cinétique est introduite, préservant globalement l’énergie totale et permettant la capture correcte des chocs. Une extension nD sur grille cartésienne décalée de type C avec splitting directionnel d’ordre élevé est proposée. Des résultats numériques sont présentés jusqu’à l’ordre 8.

E-mail addresses: gautier.dakin.ocre@cea.fr (G. Dakin), herve.jourdren@cea.fr (H. Jourdren).

http://dx.doi.org/10.1016/j.crma.2015.11.008
1631-073X/© 2015 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the late 1940s, the first shock capturing hydrodynamic scheme by Richtmeyer [9] and von Neumann and Richtmyer [14] was a staggered 1D Lagrange explicit scheme, formulated in internal energy with artificial viscosity and 2nd-order accuracy in space and time on smooth flows.

In 1961, a key contribution to 1D Lagrange schemes was provided by Trulio and Trigger [12], who identified the lack of conservation of total energy with the original scheme and proposed an implicit conservative version, retaining spatial staggering of variables, without temporal staggering. See also Popov and Samarskii [8].

In the early 1970s, pioneered by Debar, several multifluid Eulerian hydrocodes with interface reconstruction on 2D Cartesian grids [2,11] relied on the Trulio–Trigger implicit Lagrangian scheme, making use of a Lagrange-remap approach with dimensional splitting. Later, a strictly explicit conservative version of the Trulio–Trigger scheme was reported in [15], with a description of the so-called BBC scheme on 2D Cartesian grids, in a 1D Lagrange-remap setting with Strang dimensional splitting, and a total energy conservation result credited to Noh [7]. See also Youngs [17] for related work on nD staggered Cartesian grids.

The aim of this Note is to propose an extension path of such schemes to high-order accuracy.

We choose a finite volume approach, combining high-order Runge–Kutta time integration in the Lagrange phase, high-order 1D spatial reconstructions and remap, and as presented in [4] with Godunov-type schemes, appropriate dimensional splitting sequences.

Section 2 is devoted to the 1D Lagrange-remap staggered grid schemes and associated total energy conservation results, keys to proper shock capturing. Section 3 details the dimensional splitting procedure. Section 4 provides numerical results on standard test problems up to 8th-order accuracy.

2. High-order 1D staggered grid schemes

First, let us consider the 1D hydrodynamics system (1) closed with an arbitrary EOS such that $p = EOS(\tau, \epsilon)$ where $\rho = 1/\tau$, $u, p, e, \epsilon, e_{\text{kin}} = u^2/2$ denote respectively the mass density, the velocity, the pressure and the total, internal and kinetic energies. Let us denote ρ_0 the initial mass density. Introducing the change of variable $(x, t) \rightarrow (X, t)$ satisfying $\rho dx = \rho_0 dX$ and using $e = \epsilon + e_{\text{kin}}$, (1) rewrites as (2) in Lagrangian coordinates:

$$
\begin{align*}
\partial_x \rho + \partial_t (\rho u) &= 0 \\
\partial_t (\rho u) + \partial_t (\rho u^2 + p) &= 0 \\
\partial_x (\rho \epsilon) + \partial_t (\rho u e + pu) &= 0 \\
\partial_t (\rho_0 \tau) - \partial_x u &= 0 \\
\partial_t (\rho_0 u) + \partial_x p &= 0 \\
\partial_t (\rho_0 \epsilon) + p \partial_x u &= 0 \\
\partial_t (\rho_0 e_{\text{kin}}) + u \partial_x p &= 0
\end{align*}
$$

(2)

The principle of the Lagrange-remap approach selected here is to integrate in time the Lagrangian system (2), and then to perform a conservative remap of the variables on the initial grid. We consider a primal uniform Cartesian grid $\{x_{i+\frac{1}{2}}\}$ with $\Delta X = x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}}$ and a dual grid $\{x_i\}$ with $x_i = \frac{1}{2}(x_{i+\frac{1}{2}} + x_{i-\frac{1}{2}})$. In the following, $\bar{\phi}$ and ϕ will respectively denote the space averaged value of ϕ and its point-wise value:

$$
\begin{align*}
\bar{\phi}_i^n &= \frac{1}{\Delta X} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \phi(x, t^n) dx \quad \text{and} \quad \phi_i^n = \phi(x_i, t^n) \quad \text{for} \ \phi \in \{\rho_0, \rho \tau, \rho_0 \epsilon\} \\
\bar{\phi}_{i+\frac{1}{2}}^n &= \frac{1}{\Delta X} \int_{x_i}^{x_{i+1}} \phi(x, t^n) dx \quad \text{and} \quad \phi_{i+\frac{1}{2}}^n = \phi(x_{i+\frac{1}{2}}, t^n) \quad \text{for} \ \phi \in \{\rho_0, \rho_0 u, \rho_0 e_{\text{kin}}\}
\end{align*}
$$

2.1. Lagrange step

We consider Nth-order explicit schemes with the following notations for Runge–Kutta sequences: α_m is the time step for the mth sub-cycle, $\alpha_m, t_{m,l}$ the m, l term of the Butcher table and θ_l the lth reconstruction coefficient for the last step. The artificial viscosity possibly applied for strong shocks [9,14,1] is denoted by q with $\Pi = p + q$.

The system (3) details one Runge–Kutta sub-cycle at time t^{n+d_m} and (4) details the final step at time t^{n+1}.
Table 1: Coefficients for the finite volume computation of point-wise values from cell-average ones and vice versa.

<table>
<thead>
<tr>
<th>Order</th>
<th>(C_0)</th>
<th>(C_{\pm 1})</th>
<th>(C_{\pm 2})</th>
<th>(C_{\pm 3})</th>
<th>(C_{\pm 4})</th>
<th>(\bar{C}_0)</th>
<th>(\bar{C}_{\pm 1})</th>
<th>(\bar{C}_{\pm 2})</th>
<th>(\bar{C}_{\pm 3})</th>
<th>(\bar{C}_{\pm 4})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3rd</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4th and 5th</td>
<td>1067</td>
<td>–29</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>863</td>
<td>77</td>
<td>17</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6th and 7th</td>
<td>30251</td>
<td>–7621</td>
<td>159</td>
<td>–5</td>
<td>0</td>
<td>215641</td>
<td>6351</td>
<td>–281</td>
<td>367</td>
<td>0</td>
</tr>
<tr>
<td>8th and 9th</td>
<td>5851097</td>
<td>–100027</td>
<td>31471</td>
<td>–425</td>
<td>35</td>
<td>4120899</td>
<td>3629953</td>
<td>801973</td>
<td>49879</td>
<td>–27859</td>
</tr>
</tbody>
</table>

\[
\phi_{i+\frac{1}{2}} = \sum_{k} C_k \tilde{\phi}_{i+\frac{1}{2}+k}
\]

where \(\phi \) is the difference between consecutive point-wise values: \(\delta \phi := \phi_{i+\frac{1}{2}} - \phi_{i-\frac{1}{2}} \) and \(\delta \phi_{i+\frac{1}{2}} := \phi_{i+1} - \phi_{i} \).

To achieve high-order resolution, it is mandatory to compute the point-wise (resp. average) values from the average (resp. point-wise) ones with high-order accuracy. Table 1 gives the usual coefficients for centered and symmetric reconstructions using the first equations of (5). Although other reconstructions may be used, centered and symmetric ones are retained here and sufficient for uniform Cartesian grids.

\[
\phi_{i+\frac{1}{2}} = \sum_{k} C_k \tilde{\phi}_{i+\frac{1}{2}+k} \quad \text{with} \quad \tilde{\phi}_{i+\frac{1}{2}} = \left\{ \begin{array}{ll} i & \text{on primal grid} \\ i+\frac{1}{2} & \text{on dual grid} \end{array} \right.
\]

The non-conservative terms \(\tilde{\psi} \delta \phi \) on RHS of (3) and (4) are computed by:

(i) applying the \(\delta \) operator to point-wise values of \(\phi \) using the coefficients in Table 2 and the last equation of (5);
(ii) multiplying by the point-wise value of \(\psi \), then reconstructing average values using the right part of Table 1 and the second equation of (5).
Table 2
Coefficients for the \(\delta \) operator and the interpolation of dual grid positions from primal grid ones.

<table>
<thead>
<tr>
<th>Order</th>
<th>(d_0)</th>
<th>(d_1)</th>
<th>(d_2)</th>
<th>(d_3)</th>
<th>(d_4)</th>
<th>(r_0)</th>
<th>(r_1)</th>
<th>(r_2)</th>
<th>(r_3)</th>
<th>(r_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(\frac{1}{2})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3rd</td>
<td>(\frac{9}{2})</td>
<td>(-\frac{21}{2})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(\frac{1}{8})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4th and 5th</td>
<td>(75)</td>
<td>(-24)</td>
<td>(\frac{1}{12})</td>
<td>0</td>
<td>0</td>
<td>(\frac{1}{4})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6th and 7th</td>
<td>(\frac{1225}{12})</td>
<td>(-3 - \frac{25}{12})</td>
<td>0</td>
<td>(-\frac{5}{108})</td>
<td>0</td>
<td>(\frac{75}{12})</td>
<td>(-\frac{25}{12})</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8th and 9th</td>
<td>(19841)</td>
<td>(-735)</td>
<td>(367)</td>
<td>(-\frac{405}{12})</td>
<td>(35)</td>
<td>(\frac{19841}{12})</td>
<td>(-\frac{735}{12})</td>
<td>(\frac{367}{12})</td>
<td>(-\frac{405}{12})</td>
<td>(35)</td>
</tr>
</tbody>
</table>

Lemma 2.1. For all Runge–Kutta sequences, all artificial viscosities, all spatial reconstructions, the schemes (3)–(5) formulated in internal energy are conservative in mass, momentum and total energy.

Proof. Conservation of mass and momentum is immediate, we only prove the conservation of total energy.

\[
\Delta E = \sum_i \left(\rho \phi \epsilon_i^{n+1} - \rho \phi \epsilon_i^n \right) = \sum_i \left(\rho \phi \epsilon_i^{n+1} - \rho \phi \epsilon_i^n \right) + \sum_i \left(\rho \phi \epsilon_{\text{kin}}^{n+1} - \rho \phi \epsilon_{\text{kin}}^n \right)
\]

\[
= -\frac{\Delta t}{\Delta x} \sum_i \sum_{i=1}^s \delta_i \left(\Pi \delta u_i^{n+\alpha_1} + u \delta \Pi^{n+\alpha_1} \right)
\]

\[
= -\frac{\Delta t}{\Delta x} \sum_i \sum_{i=1}^s \sum_{k} \sum_{k'} \delta_i C_k d_k' \left(\Pi^{n+\alpha_1} u_{i+k+k'+\frac{1}{2}}^{n+\alpha_1} + u_{i+k}^{n+\alpha_1} \Pi^{n+\alpha_1} - \Pi_{i+k+k'-\frac{1}{2}}^{n+\alpha_1} - u_{i+k}^{n+\alpha_1} \Pi_{i+k-k'}^{n+\alpha_1} \right).
\]

Making the change of index \(i \leftarrow i + k' \) in the first term and \(i \leftarrow i + k + 1 \) in the second term of the RHS, we get the result for wall (with non-trivial definitions of ghost-cell values) or periodic boundary conditions.

\[
\Delta E = -\frac{\Delta t}{\Delta x} \sum_i \sum_{i=1}^s \sum_{k} \sum_{k'} \delta_i C_k d_k' \left(\Pi^{n+\alpha_1} u_{i+k+k'+\frac{1}{2}}^{n+\alpha_1} + u_{i+k}^{n+\alpha_1} \Pi^{n+\alpha_1} - \Pi_{i+k+k'-\frac{1}{2}}^{n+\alpha_1} - u_{i+k}^{n+\alpha_1} \Pi_{i+k-k'}^{n+\alpha_1} \right) = 0. \quad \square
\]

Remark 1. The lemma still holds for implicit schemes based on implicit Runge–Kutta sequences.

Remark 2. An alternative version using \(\delta \Pi \) for the momentum equation instead of \(d \Pi \) also preserves momentum.

2.2. Remap step

After the Lagrange step, the dual deformed grid \(\{ x_i^{n+1} \} \) is computed by high-order interpolation of the primal deformed grid \(\{ x_i^{n+1} \} \) as \(x_i = \sum_{k=0}^s r_k \left(x_{i+k+\frac{1}{2}} + x_{i-k-\frac{1}{2}} \right) \) with \(r_k \) coefficients in Table 2. All variables \((\rho \phi) \) for \(\phi \in \{ 1, \epsilon \} \) are remapped on the primal grid \(\{ x_i^{n+1} \} \) and for \(\phi \in \{ 1, u, e_{\text{kin}} \} \) on the dual grid \(\{ x_i \} \).

For the primal grid (essentially identical for the dual one), we have:

\[
\frac{\partial \phi_{i}}{\partial t} = \frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \rho \phi (x, t^{n+1}) dx = \frac{1}{\Delta x} \left[\int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \rho \phi dx + \int_{x_{i+\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \rho \phi dx + \int_{x_{i+\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \rho \phi dx \right],
\]

written in conservative flux-form:

\[
\frac{\partial \phi_{i}}{\partial t} = \frac{\rho \phi_{i}}{\Delta x} \left[\sum_{i=0}^{N+1} \frac{x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}}}{\Delta x} (\rho \phi)_{i+\frac{1}{2}} - \frac{x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}}}{\Delta x} (\rho \phi)_{i-\frac{1}{2}} \right].
\]

To compute \((\rho \phi)_{i+\frac{1}{2}}^{n+1} \), we use the high-order Lagrange polynomial \(P_{\text{op}}^\phi \) interpolating point-wise values of \(H_{\text{op}}^\phi(X) = \int_{X_{op-\frac{N+1}{2}}}^{X_{op+\frac{N+1}{2}}} (\rho \phi)(y) dy \) on the deformed grid, with a stencil of length \((N+1) \) leading to:
Table 3

<table>
<thead>
<tr>
<th>Order</th>
<th>(Q_{\pm \frac{1}{2}})</th>
<th>(Q_{\pm \frac{3}{2}})</th>
<th>(Q_{\pm \frac{5}{2}})</th>
<th>(Q_{\pm \frac{7}{2}})</th>
<th>(\hat{Q}_{\pm \frac{1}{2}})</th>
<th>(\hat{Q}_{\pm \frac{3}{2}})</th>
<th>(\hat{Q}_{\pm \frac{5}{2}})</th>
<th>(\hat{Q}_{\pm \frac{7}{2}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd</td>
<td>(\frac{1}{2})</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>(\frac{1}{2})</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3rd</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>0</td>
<td>0</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4th</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>0</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>0</td>
</tr>
<tr>
<td>6th</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
<td>(\frac{1}{2})</td>
</tr>
</tbody>
</table>

\[
(r\phi)_{i+\frac{1}{2}}^n = \frac{1}{\rho_{i+\frac{1}{2}}^{n+1}}(\rho_{i+\frac{1}{2}}^{n+1} - \rho_{i+\frac{1}{2}}^{n}), \quad \text{where up = } \begin{cases} i & \text{if } x_{i+\frac{1}{2}}^{n+1} > x_{i+\frac{1}{2}}^{n} \\ i+1 & \text{otherwise} \end{cases}.
\]

Combined with first-order upwinding, various limiters may possibly be applied on the flux \((r\phi)_{i+\frac{1}{2}}^n\).

2.3. Point-wise kinetic energy synchronization step

A high-order accurate synchronization is introduced on point-wise kinetic energies\(^1\) according to (8).

(i) Compute the difference \(\Delta K\) between point-wise remapped kinetic energy and point-wise reconstructed kinetic energy.

(ii) Distribute \(\Delta K\) on the average values of kinetic energy and internal energy on the stencil.

\[
\begin{align*}
\Delta K_{i+\frac{1}{2}} &= \rho e_{\text{kin}}_{i+\frac{1}{2}}^{n+1} - \frac{1}{2} \left(\frac{\rho u_{i+\frac{1}{2}}^{n+1}}{\rho_{i+\frac{1}{2}}^{n+1}} \right)^2 \\
\rho e_{\text{kin}}_{i+\frac{1}{2}}^{n+1} - \rho e_{\text{kin}}_{i+\frac{1}{2}}^{n+1} &= \sum_k \hat{C}_k \Delta K_{i+k+\frac{1}{2}} \\
\rho u_{i+\frac{1}{2}}^{n+1} - \rho u_{i+\frac{1}{2}}^{n} &= \sum_k \hat{Q}_{k+\frac{1}{2}} \Delta K_{i+k+\frac{1}{2}}.
\end{align*}
\]

Lemma 2.2. The kinetic energy synchronization procedure is conservative in total energy.

Proof. For periodic or wall boundary conditions, we have:

\[
\Delta E = \sum_i \left(\sum_k \hat{Q}_{k+\frac{1}{2}} \Delta K_{i+k+\frac{1}{2}} - \sum_k \hat{C}_k \Delta K_{i+k+\frac{1}{2}} \right) = 0. \quad \Box
\]

3. High-order dimensional splitting procedure

The 1D schemes (3)-(8) are now to be used with a dimensional splitting method (DSM) on the nD system

\[
\begin{align*}
\hat{u}_t + \nabla \cdot (\hat{\rho} \hat{u}) &= 0, \\
\hat{u}_t + (\hat{\rho} \hat{\phi}) + \nabla \cdot (\hat{\rho} \hat{\phi} \otimes \hat{u} + \hat{f}) &= 0, \quad \text{with } \hat{\phi} = \begin{pmatrix} \hat{u} \\ \hat{e} \end{pmatrix} \text{ and } \hat{f} = \begin{pmatrix} p l_n \\ p l_t \end{pmatrix}.
\end{align*}
\]

For the sake of simplicity, we only detail the 2D case. A C-type staggering is retained: variables are indexed as \(\phi_{i,j}\) for \(\phi \in \{\rho_0, \rho_0^\tau, \rho_0 e\}\), as \(\phi_{i+\frac{1}{2},j}\) for \(\phi \in \{\rho_0, \rho_0^\tau, \rho_0 e_{\text{kin},u}\}\), and as \(\phi_{i,j+\frac{1}{2}}\) for \(\phi \in \{\rho_0, \rho_0 v, \rho_0 e_{\text{kin},v}\}\).

As previous 1D schemes are based on a 1D finite volume formulation, it is mandatory to add a transverse interpolation to deduce 1D-cell-average values from 2D-cell-average ones. The procedure originates from [4]; it is extended here to staggered grids. A sweep along the x-direction proceeds as follows:

(i) interpolate along the y-direction to get 1D-cell-average values of the conservative variables according to (5) if the variable is centered along the y-direction or according to (10) if staggered (see Table 3). This way, we only get 1D-cell-average values along the x-direction, centered along the y-direction.\(^2\)

\(^1\) A reminiscence of Debar’s procedure first used with the 2nd-order Trulio–Trigger scheme to recover total energy conservation as kinetic energy “dissipates” during momentum remap ([17], [2] pp. 14–17). Here with higher-order accuracy, kinetic energy is updated in both Lagrange and remap steps, and point-wisely synchronized (equivalent to Debar’s procedure in the 2nd-order case).

\(^2\) Another high-order accurate variant retains the staggering of transverse variables along the y-direction, requiring the remap of transverse variables on a third interpolated 1D grid \([x_{i+\frac{1}{2},j+\frac{1}{2}}^{n+1}]\) staggered along both x- and y-directions.
Table 4
Weights \(w_2 \) applied on the time step for the dimensional splitting methods (DSM).

<table>
<thead>
<tr>
<th>DSM Order</th>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd</td>
<td>0.5</td>
<td>1.0</td>
<td>0.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd</td>
<td>0.26833009</td>
<td>0.19966152</td>
<td>−0.18799161</td>
<td>0.91966152</td>
<td>0.26833009</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4th</td>
<td>0.5</td>
<td>−0.05032120</td>
<td>−0.27516060</td>
<td>0.55032120</td>
<td>0.55032120</td>
<td>−0.27516060</td>
<td>−0.05032120</td>
<td>0.5</td>
</tr>
<tr>
<td>5th and 6th</td>
<td>0.39225680</td>
<td>0.78451361</td>
<td>0.51004341</td>
<td>0.23557321</td>
<td>−0.47105338</td>
<td>−1.17767998</td>
<td>0.06875316</td>
<td>1.31518632</td>
</tr>
<tr>
<td>7th and 8th</td>
<td>0.31451533</td>
<td>0.62903065</td>
<td>0.99919006</td>
<td>1.36034946</td>
<td>0.15238116</td>
<td>−1.06458715</td>
<td>0.29938548</td>
<td>1.66335810</td>
</tr>
<tr>
<td></td>
<td>−1.6789628</td>
<td>−1.61921866</td>
<td>−1.55946804</td>
<td>−0.62383861</td>
<td>0.31179081</td>
<td>0.98539085</td>
<td>1.65899088</td>
<td>0.98539085</td>
</tr>
<tr>
<td></td>
<td>−0.62383861</td>
<td>−1.55946804</td>
<td>−1.61921866</td>
<td>−1.67896928</td>
<td>−0.00780559</td>
<td>1.66335810</td>
<td>0.29938548</td>
<td>−1.06458715</td>
</tr>
<tr>
<td></td>
<td>1.36034946</td>
<td>0.99919006</td>
<td>0.62903065</td>
<td>0.31451533</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(ii) Apply the 1D Lagrange scheme with extra equations for \(v \) contributions to momentum and kinetic energy (\(\partial_t \rho_0 v = \partial_i \rho_0 \xi_{\sin, v} = 0 \)). Remap fluxes must be computed for all 1D quantities.

(iii) Reconstruct the 2D fluxes from the 1D Lagrange and remap fluxes according to (5) if the 2D variable is centered along the \(y \)-direction or according to (10) if staggered.

(iv) Apply the reconstructed 2D fluxes on 2D-cell-average values.

\[
\begin{align*}
\phi_{\xi}(i) &= \sum_k Q_{k+\frac{1}{2}} \phi_{\xi}(i) + k + \frac{1}{2} \\
\phi_{\xi}(i) &= \sum_k \bar{Q}_{k+\frac{1}{2}} \phi_{\xi}(i) + k + \frac{1}{2}
\end{align*}
\]

with \(\xi(i) = \begin{cases} i & \text{on primal grid} \\ i + \frac{1}{2} & \text{on dual grid} \end{cases} \). (10)

Lemma 3.1. The resulting nD Cartesian grid schemes are conservative in mass, momentum, and total energy.

Proof. With the C-type staggering of variables, the nD schemes verify Lemmas 2.1 and 2.2 direction by direction and so are globally conservative in mass, momentum, and total energy for all dimensional splitting. \(\square \)

Those sweeps are made according to the DSM chosen, which consists in alternatively applying the previous procedure along the \(x \)- and \(y \)-direction with appropriate weighted time steps \(w_2 \Delta t \) (see Table 4 based on [16]).

The high-order DSM have negative time steps, which are easily handled as we focus during the remap, not on the material velocity, but rather on the resolution of the Lagrangian grid.

The kinetic energy synchronization procedure is applied at each DSM time step and in each direction after remap, without altering the accuracy of the schemes.

4. Numerical results

Computations are performed with the following Runge–Kutta sequences: SSPRK3 [10] for the 2nd and 3rd orders,\(^3\) Kutta’s scheme for 4th order, the Cash–Karp scheme for the 5th order, Verner’s “robust” sequences [13] for orders greater than 5. Neither artificial viscosities/hyperviscosities\(^4\) nor limiters are used in the Lagrange and remap steps. The point-wise kinetic energy synchronization procedure is applied in all cases.

The Shu–Osher test case [10] is initialized as (11) on a \([-5 : 5]\) domain with a Mach 3 shock wave interacting with a sinusoidal density field. Computations till \(t = 1.8 \) with CFL = 0.2 are reported in Fig. 1(a) and highlight the robustness and high resolution of the 6th- and 9th-order schemes with only 200 cells.

The 2D vortex advection test case is used to assess the accuracy of the schemes under IEEE-754 norm for double precision. The initial condition is given by (12). Computations are performed on a \([-10 : 10]^2\) domain till \(t = 1 \) with CFL = 0.9, \(\gamma = 1.4 \) and \(\beta = 5 \). The \(L^1 \)-errors in both space and time are computed as \(\text{err}_{L^1} = \sum_n \Delta x \cdot \Delta y \cdot \sum_{i,j} |\rho \Phi_{i,j} - \rho \Phi_{i,j}^\text{exact} (t^n)||_{L^1} \) with \(\Phi = (1, \tilde{u}, \tilde{v}, \rho, \epsilon)^T \) and reported in Fig. 1(b) with excellent agreement to the expected orders.\(^5\)

\[
(\rho_0, u_0, p_0) = \begin{cases}
\left(\frac{27}{7}, \frac{4\sqrt{35}}{3}, \frac{31}{3} \right) & \text{if } x \in [-5 : -4] \\
\left(1 + \frac{\sin(5x)}{5}, 0, 1 \right) & \text{if } x \in [-4 : 5]
\end{cases}
\]

\(^3 \) For stability issues, 2-stage Runge–Kutta sequences are never used.

\(^4 \) As in [4], when Cook–Cabot-type [1] LES bulk hyperviscosity is activated, numerical accuracy is limited to the 6th order.

\(^5 \) Except for the 9th-order scheme, as we limit it to a Yoshida 8th-order directional splitting.
Fig. 1. (a) Shu–Osher test case on 200 cells for the 6th- and 9th-order schemes. (b) Experimental order of convergence (EOC) on the 2D advected vortex test case from the 2nd to the 9th order and L1-error in both space and time with respect to the number of cells per direction.

\begin{equation}
\begin{aligned}
\rho_0 &= \left(1 - \frac{(y-y')^2}{8\pi^2} \right)^{-\frac{1}{2}}, \\
\hat{u}_0 &= \frac{1}{\rho_0^\gamma} \left(-\frac{\beta}{2r} \frac{(y-y')^2}{\rho_0^\gamma} \right), \\
p_0 &= \frac{\gamma - 1}{\gamma} \rho_0^\gamma \left(-\frac{\beta}{2r} \frac{(y-y')^2}{\rho_0^\gamma} \right) \cdot \frac{1}{\rho_0^\gamma}.
\end{aligned}
\end{equation}

5. Conclusion

The high-order accurate schemes proposed in this Note for solving the compressible Euler equations on C-type staggered Cartesian grids are flexible concerning (i) Runge–Kutta sequences, (ii) 1D spatial reconstructions, (iii) direction splitting methods, (iv) remap procedures, (v) artificial viscosity/hyperviscosity formulations.

Key to total energy conservation, stencils and associated coefficients used for the discretization of non-conservative terms in the 1D Lagrange equations for internal and kinetic energies are centered, symmetric and high-order accurate on uniform Cartesian grids. The proposed point-wise kinetic energy synchronization procedure enables proper shock capturing without altering the convergence rate for smooth flows.

Ongoing work includes integration to a hydrodynamic simulation platform [6] for comparison with Godunov-type schemes [5,4], especially on problems where high-order accuracy is valuable as long-range aeroacoustic propagation [3], vortex dynamics and LES subgrid-scale modeling.

References