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r é s u m é

Nous proposons d’améliorer la condition d’interface afin de prendre en compte la perte de 
charge pour un écoulement en conduite à section variable discontinue.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

We examine in this paper some possible improvement of the well-balanced strategy in order to compute approxima-
tions of solutions to Euler-type models in one-dimensional geometries corresponding basically to pipe configurations. From 
a practical point of view, these methods are very useful in order to build stable and efficient algorithms. If ρ, u, p re-
spectively denote the density, the velocity and the pressure of the fluid, and noting as usual ε(p, ρ) the internal energy, 
E = ρ

(
ε(p,ρ) + u2/2

)
the total energy, and A(x) the – steady – cross section of the pipe, the target set of equations is⎧⎨

⎩
∂t(Aρ) + ∂x(Aρu) = 0,

∂t(Aρu) + ∂x
(

Aρu2 + Ap
) − p ∂x A = A(x)Sr

u,

∂t(AE) + ∂x (Au(E + p)) = A(x)uSr
u,

(1)
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and the associated unknown is W = (Aρ, Aρu, AE)T . The terms on the right-hand side Sr
U stand for the regular head losses, 

which account for viscous effects on the walls of the pipe. This set of equations is meant when the cross-section A(x) is 
regular (at least C2). In practice, this information is provided by the user. When convergent or divergent regions occur 
in the pipe, and when the meshes that are used are rather coarse, the well-balanced strategy naturally arises for those 
who use Finite Volume methods. In that case, the cross section is assumed to be constant within each cell, and another 
equation is added to (1), which is ∂t A = 0. The idea is very appealing, and many authors have been investigating that 
particular topic, both at the continuous and discrete levels, among which we may at least cite [2,3,8–10,12]. Though the 
cross section A(x) is known, the new unknown is now W̃ = (A, Aρ, Aρu, AE)T, and terms of the form ψ(W )∂x A are now 
part of the convective subset. Meanwhile, a steady wave associated with λ = 0, corresponding to the “constraint” ∂t A = 0
arises. The one-dimensional Riemann problem associated with system (1) complemented with ∂t A = 0 and discontinuous 
initial conditions may then be investigated. As a consequence, there is the temptation to use this approach not only to deal 
with regular cross sections, but also to apply it when discontinuities are present in the pipe, which is obviously of major 
interest for practical computations in an industrial framework. In that case, the classical well-balanced strategy simply 
assumes that interface conditions that should be enforced at the steady interface separating two cells with distinct cross 
sections correspond to the Riemann invariants of the steady wave. In the case of Euler equations, this means that quantities 
Q = Aρu, Q H where H = (E + p)/ρ and the entropy s(p, ρ) should be preserved across the steady interface. Well-Balanced 
(WB) schemes relying on this approach can then be built, and some of them behave quite well owing to their stability and 
ability to maintain well-balanced initial conditions, even when the cross section is discontinuous. It even seems that the WB 
technique is mandatory in order to achieve numerical convergence towards the correct solutions (see for instance [6,11]).

Nonetheless, a major drawback is hidden in the basic formulation. This is due to the fact that for the case of discontinu-
ous cross sections, the physical singular head losses have not been accounted for. As a result, the comparison of the “true” 
multi-dimensional solution and of the one-dimensional well-balanced computational results is rather poor; this is described 
in [7] for instance. One retrieves the expected results that are the following: the quantities Q = Aρu, Q H should remain 
constant across interfaces supporting discontinuous cross sections, but the entropy does not. This is directly linked to the 
fact that some singular contribution has been omitted in the momentum equation.

In order to cure that deficiency, at least two strategies may be proposed. A first one simply consists in a modified 
one-dimensional approach that would rely on an integral formulation of the multi-dimensional set of governing equations. 
This scheme (called 1D+ in the sequel) has been partially investigated in [1], and this seems to be a rather promising 
technique in order to handle this difficulty. Another strategy that is appealing in based on similar ideas, and it simply 
consists in enforcing a new set of interface conditions at the steady interface associated with the cross-section discontinuity. 
The basic requirement is that these modified interface conditions should account for singular head losses due to pressure 
effects, at least in a weak way. This is precisely the main objective of the present contribution.

Thus the paper is organized as follows: we firstly introduce the new interface condition, we secondly explain how to 
compute left and right states satisfying the new interface condition, we thirdly introduce the numerical scheme and we 
finally do some numerical validations.

2. A new formulation for flows in variable cross section ducts

2.1. The new interface condition

We omit the regular head losses in System (1), which means that Sr
u = 0 in System (1). Integrating the multi-dimensional 

Euler equations on the physical domain � (see Figure below), we may now propose three natural candidates for the steady
interface conditions ⎧⎨

⎩
[Q ]+− = 0,

[Q u + Ap]+− − p� [A]+− = 0,

[Q H]+− = 0,

(2)

with p� =
{

p−, if A− > A+,

p+, otherwise,
(3)

where we note by ·+ (resp. ·−) the value of the quantity on the right (resp. the left) side of the discontinuous interface. The 
choice of the wall pressure p� is based on the two-dimensional approach. Indeed, if we have a contraction with A− > A+
(resp. an expansion with A− < A+), the pressure on the restricted wall is the left (resp. right) pressure.

2.2. Computation of left and right states satisfying the interface condition (2)

We assume that the fluid satisfies a perfect gas equation of states: p = (γ − 1) ρ ε .
W + = W + (

W −)
: we assume that W − is known and we compute W + such that the interface condition (2) is satisfied. For 

given value of W − , we can compute Q − = A−ρ−u− and H− = γ p−
− + (u−)2

. The first two conditions in (2) give
γ −1 ρ 2
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u+ = Q −

A+ρ+ and p+ = p− + Q −

min
(

A−, A+) (
u− − Q −

A+ρ+

)
.

Injecting these two quantities in the third condition of (2), we deduce that ρ+ is a root of the second-order polynomial:

P−(X) = H− X2 − γ

γ − 1

(
p− + Q −

min
(

A−, A+)u−
)

X +
(

Q −)2

A+

(
γ

γ − 1

1

min
(

A−, A+) − 1

2A+

)
= 0. (4)

W − = W −(W +): we now assume that W + is known and we compute W − as a function of W + . Given W + , we com-

pute Q + = A+ρ+u+ and H+ = γ
γ −1

p+
ρ+ + (u+)2

2 . We get at once:

u− = Q +

A−ρ− and p− = p+ + Q +

min
(

A−, A+) (
u+ − Q +

A−ρ−

)

where ρ− is a root of

P+(X) = H+ X2 − γ

γ − 1

(
p+ + Q +

min
(

A−, A+)u+
)

X +
(

Q +)2

A−

(
γ

γ − 1

1

min
(

A−, A+) − 1

2A−

)
= 0. (5)

If equations (4) and (5) have two distinct real solutions, we choose the one that has the same sonicity as the state on 
the other side of the interface. If there is only one solution, we choose this unique solution. When there is no real solution, 
the algorithm is stopped.

2.3. Numerical scheme

We present a scheme for approximating solutions to system (1) on [xmin, xmax], relying on the arguments in the previous 
sections. Given an uniform time step 
t and a mesh size 
x = xmax−xmin

N , setting x j = xmin + j 
x, j = 0 · · · N , and tn =
n
t, n ∈ N, we denote by W n

j the approximation of the values W (x j, tn) of the exact solution to system (1). The WB–HJ
scheme is defined by

W n+1
j = W n

j − 
t


x

(
F Rus

(
W n

j ,
(

W n
j+1

)−)
− F Rus

((
W n

j−1

)+
, W n

j

))
(6)

where
(

W n
j+1

)− = W −
(

W n
j+1

)
, 

(
W n

j−1

)+ = W +
(

W n
j−1

)
are computed in Section 2.2, and the numerical flux

F Rus(Wl, Wr) is the Rusanov flux

F Rus (Wl, Wr) = F (Wl) + F (Wr)

2
− max (|ul| + cl, |ur | + cr)

2
(Wr − Wl) (7)

with F (W ) = (Q , Q u + Ap, Q H)T. The WB–HJ scheme is an adaptation of the scheme of Kröner and Thanh [12], called 
WB–KT in the sequel, for which the classical interface condition on

(
Q , s = p

ργ , H
)

is replaced by the new interface condi-

tion (2).

Proposition 1. The scheme WB–HJ is well-balanced: if for all j, Q 0
j = Q 0 , I0

j = I0 and H0
j = H0 where I := Q u + A (p − p�), then 

for all j and for all n,

Q n
j = Q 0

j = Q 0, In
j = I0

j = I0 and Hn
j = H0

j = H0. (8)

3. Numerical results

For all test cases, we choose a perfect gas equation of state: p = (γ − 1)ρε , where γ is set to 7/5. The time step 
t
satisfies the CFL condition where the CFL constant has been set to 0.4.

3.1. A stationary flow for the new interface condition (2)

We start with a test case where initial conditions are Well-Balanced in the sense of (8) for the new interface condi-
tion (2). In practice, we consider the following values

(A,ρ, u, p) (x, t = 0) =
{

(2,4.711,−10.614,38.588) , if x < 0,

(1,10,−10,100) , otherwise.
(9)
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Fig. 1. A stationary flow for the new interface condition (2): density ρ (top left), mean discharge Q (top middle), total enthalpy H (top right), physical 
entropy s (bottom left) and the variation of the new invariant I = Q u + A (p − p�) (bottom right) at time t = 0.2 s for an initial condition satisfying the 
new interface condition (2).

Fig. 2. A classical Riemann problem: density ρ (left), velocity u (middle) and L1 norm of the error for the density (right). The coarser and finer meshes 
used for the computation of the error contain N = 200 and N = 15 000 regular cells.

The computational domain is [−0.5, 0.5], the mesh contains 4 000 nodes. In Fig. 1, we plot the density, the mean dis-
charge Q , the total enthalpy H , the physical entropy s and the variation of the new invariant I = Q u + A (p − p�) at 
time t = 0.025 s. Across the interface x = 0, Q and H are preserved by the three schemes: 1D+ [1], WB–HJ and WB–KT. 
The difference between these last two schemes is on the invariant I: WB–HJ preserves I , while s is preserved by the WB–KT
scheme.

3.2. A classical Riemann problem

One advantage of the WB–HJ scheme against the discrete 1D+ scheme [1] is that we can compare our result to the exact 
solution to a classical Riemann problem. The exact solution is computed with the classical approach where we use the three 
invariants (Q , I, H) at the steady contact discontinuity. We consider the Riemann problem involving a shock wave on the 
left of the interface discontinuity

(A,ρ, u, p) (x, t = 0) =
{

(2,2.970,−9.093,20) , if x < 0,

(1,10,−10,100) , otherwise.
(10)

The final time of computation is t = 0.03 s. In Fig. 2, we plot the density ρ and the velocity u obtained with 4 000 nodes. 
The approximated solution is close to the exact solution. We also perform a convergence study on the density variable. It 
may be checked that the convergence rate is very close to 0.8 in L1 norm.



J.-M. Hérard, J. Jung / C. R. Acad. Sci. Paris, Ser. I 354 (2016) 323–327 327
Fig. 3. A shock wave hitting a section contraction: density ρ (left), velocity u (middle) and pressure p (right).

3.3. A shock wave hitting a section contraction

We consider the following initial data

(A,ρ, u, p) (x, t = 0) =
⎧⎨
⎩

(
0.2,0.167,100,1.5 × 104

)
, if x < −0.1,(

0.2,0.125,0,104
)
, if − 0.1 ≤ x < 0,(

0.1,0.125,0,104
)
, otherwise.

(11)

A shock wave starting from x = −0.1 travels to the right and hits the section contraction located at x = 0. Part of the shock 
wave is reflected and part is transmitted through the right. We compare the results obtained with the three one-dimensional 
schemes (WB–HJ, WB–KT and 1D+) with 4 000 nodes to the results obtained with a two dimensional set of Euler equations 
on a very fine mesh containing 216 000 cells (1 200 in x-direction), using Rusanov scheme. The two-dimensional results are 
averaged in the y-direction. The computation was done using the toolbox CDMATH [4,5]. In Fig. 3, we plot the density ρ , 
the velocity u and the pressure p at time t = 12 × 10−4 s. We take the 2D-averaging solution as the reference solution. The 
WB–HJ scheme gives better results than WB–KT and 1D+ schemes. It remains to study the Riemann problem associated 
with system (1) together with the new invariant (Q , I, H) at the steady interface. It is also planned to develop a simple 
solver [3] associated with the new interface condition (2). This new solver could be more robust than the WB–HJ scheme. 
Finally, we emphasize that the present interface condition can be easily extended to other conservative systems.
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