The branch set of a quasiregular mapping between metric manifolds

L'ensemble de branchement d'une application quasi régulière entre variétés métriques

Chang-Yu Guo ${ }^{\text {a,1 }}$, Marshall Williams ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics and Statistics, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland
${ }^{\text {b }}$ Department of Mathematics, Kansas State University, Manhattan, KS 66506, USA

A R T I C L E IN F O

Article history:

Received 31 August 2015
Accepted after revision 27 October 2015
Available online 7 January 2016
Presented by the Editorial Board

Abstract

In this note, we announce some new results on quantitative countable porosity of the branch set of a quasiregular mapping in very general metric spaces. As applications, we solve a recent conjecture of Fässler et al., an open problem of Heinonen-Rickman, and an open question of Heinonen-Semmes. © 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Dans cette note, nous annonçons de nouveaux résultats quant à la porosité dénombrable quantitative de l'ensemble des branchements d'une application quasi régulière dans un cadre très général d'espaces métriques. Comme applications de nos résultats, nous répondons à une conjecture récente de Fässler et al., à un problème ouvert de HeinonenRickman et à une question ouverte de Heinonen-Semmes.
© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

A continuous mapping $f: X \rightarrow Y$ between topological spaces is said to be a branched covering if f is discrete and open, i.e., f is an open mapping and if, for each $y \in Y$, the preimage $f^{-1}(y)$ is a discrete subset of X. The branch set \mathcal{B}_{f} of f is the closed set of points in X where f does not define a local homeomorphism. In the case where X and Y are generalized n-manifolds, \mathcal{B}_{f} can be interpreted alternatively as the set of points at which the local index $i(x, f)=1$.

For a branched covering $f: X \rightarrow Y$ between two metric spaces, $x \in X$ and $r>0$, set

$$
H_{f}(x, r)=\frac{L_{f}(x, r)}{l_{f}(x, r)},
$$

[^0]where
$$
L_{f}(x, r):=\sup \{d(f(x), f(y)): d(x, y)=r\},
$$
and
$$
l_{f}(x, r):=\inf \{d(f(x), f(y)): d(x, y)=r\} .
$$

Then the linear dilatation function of f at x is defined pointwise by

$$
H_{f}(x)=\limsup _{r \rightarrow 0} H_{f}(x, r) .
$$

For each $x \in X$, denote by $U(x, r)$ the component of x in $f^{-1}(B(f(x), r))$. Set

$$
H_{f}^{*}(x, s)=\frac{L_{f}^{*}(x, s)}{l_{f}^{*}(x, s)}
$$

where

$$
L_{f}^{*}(x, s)=\sup _{z \in \partial U(x, s)} d(x, z) \quad \text { and } \quad l_{f}^{*}(x, s)=\inf _{z \in \partial U(x, s)} d(x, z) .
$$

The inverse linear dilatation function of f at x is defined pointwise by

$$
H_{f}^{*}(x)=\underset{s \rightarrow 0}{\limsup } H_{f}^{*}(x, s)
$$

A mapping $f: X \rightarrow Y$ between two metric measure spaces is termed H-quasiregular if the linear dilatation function H_{f} is finite everywhere and essentially bounded from above by H. We call f a quasiregular mapping if it is H-quasiregular for some $H \in[1, \infty)$.

The branch set of a quasiregular mapping can be very wild, for instance, it may contain many wild Cantor sets, such as the Antoine's necklace [10], of classical geometric topology. In his 2002 ICM address [8, Section 3], Heinonen asked about the following question: Can we describe the geometry and topology of allowable branch sets of quasiregular mappings between metric n-manifolds?

In [6], we explore the (geometric) porosity of $\mathcal{B}_{f} \cap A$ and $f\left(\mathcal{B}_{f} \cap A\right)$ when the linear dilatation of f is finite on A. Our main result states that if X satisfies a quantitative local connectivity assumption, the aforementioned sets are quantitatively porous.

In the remainder of this introduction, we take as standing assumptions that X and Y are compact and doubling metric spaces, which are also generalized n-manifolds, that X is linearly locally n-connected, and that Y has bounded turning. Recall that X is λ-linearly locally n-connected (abbreviated λ-LLC ${ }^{n}$) if for each $x \in X$ and $r<2 d(x, \partial X) / \lambda$, the ball $B(x, r)$ is n-connected in $B(x, \lambda r / 2)$. (The other definitions are standard and can be found for instance in [11,6].)

The following result is a special case of [6, Theorem 1.1] and it says that the branch set of a quasiregular mapping as well as its image are quantitatively porous.

Theorem 1.1. If $H_{f}(x) \leq H$ or $H_{f}^{*}(x) \leq H$ for every $x \in X$, then \mathcal{B}_{f} and $f\left(\mathcal{B}_{f}\right)$ are countably δ-porous, quantitatively. Moreover, the porosity constant can be explicitly calculated.

Recall that a set $E \subset X$ is said to be α-porous if for each $x \in E$,

$$
\begin{equation*}
\liminf _{r \rightarrow 0} r^{-1} \sup \{\rho: B(z, \rho) \subset B(x, r) \backslash E\} \geq \alpha . \tag{1}
\end{equation*}
$$

A subset E of X is called countablely $(\sigma$-)porous if it is a countable union of $(\sigma-)$ porous subsets of X.
In the special case where X and Y are Euclidean spaces, Theorem 1.1 strengthens the earlier quantitative porosity results of Bonk-Heinonen [1] and Onninen-Rajala [17] on the branch set of a quasiregular mapping. Moreover, the quantitative porosity bounds on $f\left(\mathcal{B}_{f}\right)$ are new and can be regarded as a strengthened version of the dimensional estimate of Sarvas [20].

Particularly important to the general theory of quasiconformal and quasisymmetric maps are Ahlfors Q-regular spaces. It is well known that porous subsets of such spaces have Hausdorff dimension strictly smaller than Q, quantitatively; see, e.g., [17, Lemma 9.2]. Thus we have the following consequence.

Corollary 1.2. If X and Y are Ahlfors Q-regular, and $H_{f}(x)<\infty$ or $H_{f}^{*}(x)<\infty$ for all $x \in X$, then $\mathcal{H}^{Q}\left(\mathcal{B}_{f}\right)=\mathcal{H}^{Q}\left(f\left(\mathcal{B}_{f}\right)\right)=0$. Moreover, if either $H_{f}(x) \leq H$ or $H_{f}^{*}(x) \leq H$ for all $x \in X$, then

$$
\max \left\{\operatorname{dim}_{\mathcal{H}}\left(\mathcal{B}_{f}\right), \operatorname{dim}_{\mathcal{H}}\left(f\left(\mathcal{B}_{f}\right)\right)\right\} \leq Q-\eta<Q,
$$

where η depends only on H and the data of X and Y, and it can be explicitly calculated.

Applying the first part of Corollary 1.2 to the special case where X and Y are equiregular sub-Riemannian manifolds, it gives an affirmative answer to a recent conjecture [2, Remark 1.2].

To prove that the branch set of a quasiregular mapping is null with respect to the right Hausdorff measure, the earlier proofs are based on two important assumptions: the first fact is that the mapping in question is differentiable almost everywhere in a suitable sense and the differential is linear with respect to the group structure of the tangent space; the second fact is that the determinant of the mapping is positive almost everywhere; see [14] for Euclidean case, [11,5] for the generalized manifolds of type A case, and [7] for the subRiemannian case for detailed information of this approach.

To obtain a dimensional estimate as in Corollary 1.2, the earlier proofs of Bonk-Heinonen [1] and Onninen-Rajala [17] go along the following lines: one first obtains a quantitative porosity estimate for the set of points with sufficiently large local index; then one proves other quantitative porosity results for the set of points with a precise local index bound. The quantitative porosity bound on the branch set then follows by combining the above two estimates. In both approaches, two important assumptions are necessary: the first assumption is that the domain has to be Euclidean, since the McAuleyRobinson theorem [16] is necessary and its proof relies crucially on the affine structure of Euclidean spaces; the second assumption is that certain abstract Poincaré inequalities in the sense of Heinonen-Koskela [9] are necessary, since we need to use the standard modulus (of a curve family) techniques.

To illustrate our idea for Theorem 1.1, we need the following terminology introduced in [6]. Let $f: X \rightarrow Y$ be a branched covering between two metric spaces. Fix $x_{0} \in X, y_{0}=f\left(x_{0}\right), r>0$. We say a map $g: B\left(y_{0}, r\right) \rightarrow X$ is a local left homotopy inverse for f at x_{0} if $\left.g \circ f\right|_{U\left(x_{0}, r\right)}$ is homotopic to the identity on $U\left(x_{0}, r\right)$, via a homotopy H_{t} for which $x_{0} \notin H_{t}\left(\partial U\left(x_{0}, r\right)\right)$ for all t. Similarly, g is a local right homotopy inverse for f if $f \circ g$ is homotopic to the identity on $B\left(y_{0}, r\right)$, via a homotopy H_{t} with $y_{0} \notin H_{t}\left(\partial B\left(y_{0}, r\right)\right)$ for all t. If g is a left and right local homotopy inverse, we simply call it a local homotopy inverse. We denote by \mathcal{B}_{f}^{*} the homotopy branch set of f, i.e., the set of points in X for which f has no (two-sided) local homotopy inverse. We also let $\mathcal{B}_{f}^{*, l}$ denote the left homotopy branch set, i.e., the set of points in X at which f has no left homotopy inverse. It is clear that if X and Y are generalized n-manifolds, then $\mathcal{B}_{f}=\mathcal{B}_{f}^{*, l}$.

Our starting point is to construct local left homotopy inverses away from a porous set. In the first step, we further developed a quantitative ENR theory, inspired by Groce, Petersen and Wu [3,4,18], and Semmes [21], for LLC ${ }^{n}$ spaces. As an immediate consequence, we obtain a generalized McAuley-Robinson theorem (cf. Theorem 4.1), which provides a criterion of being non-branching. The second step is to control the distortion of annuli, quantitatively, at points of finite dilatation, away from a porous set. The moral here is that if either of the sets

$$
S_{H, R}=\left\{x \in X: H_{f}(x, r) \leq H \text { for all } r<R\right\}
$$

or $f\left(S_{H, R}\right)$ is "dense" at some point at a certain scale, then the annular distortion around that point will get controlled. Thus we may construct a local homotopy inverse around that point and use the generalized McAuley-Robinson theorem to conclude that the point is non-branching. This, together with a simple decomposition argument (cf. [6, Proof of Theorem 1.1]), will lead to Theorem 1.1.

Our standing assumptions for the underlying spaces X and Y, except the local linear n-connectivity on X, are quite mild. On the other hand, the local linear n-connectivity is necessary for the validity of all the previous results, as [24, Theorem 1.2] indicates.

Theorem 1.3. For each $n \geq 3$, there exists an Ahlfors n-regular metric space X that is homeomorphic to \mathbb{R}^{n} and supports a (1, 1)-Poincaré inequality, and a 1-quasiregular mapping $f: X \rightarrow \mathbb{R}^{n}$, such that $\min \left\{\mathcal{H}^{n}\left(\mathcal{B}_{f}\right), \mathcal{H}^{n}\left(f\left(\mathcal{B}_{f}\right)\right)\right\}>0$.

The example in Theorem 1.3 is indeed 1-BLD and it disproves the following well-known conjecture of Heinonen and Rickman [11, Remark 6.32 (b)]: if X be a locally BLD n-Euclidean space that is locally bi-Lipschitz embeddable to some Euclidean space, then for all (Lipschitz) BLD-maps $f: X \rightarrow \mathbb{R}^{n}$, the branch set \mathcal{B}_{f} has zero Hausdorff n-measure. As a consequence, one cannot delete [13, Axiom II] from the a priori assumptions in [13, Theorem 2.1]; see [13, Section 5.1] and [24] for more detailed discussions.

2. Väisälä's inequality

The Väisälä's inequality was first proved by Väisälä [22] and it plays an important role in the theory of quasiregular mappings, in particular, many profound value-distributional type results; see [19].

Definition 2.1 (Väisälä's inequality). We say that f satisfies Väisälä's inequality with constant K_{I} if the following condition holds: suppose $m \in \mathbb{N}$, and Γ and Γ^{\prime} are curve families in X and Y respectively, such that for each $\gamma^{\prime} \in \Gamma^{\prime}$, there are curves $\gamma_{1}, \ldots, \gamma_{m} \in \Gamma$ such that $f\left(\gamma_{k}\right)$ is a subcurve of γ^{\prime} for each k, and for each $t \in[0, l(\gamma)]$ and each $x \in X$, we have $\#\left\{k: \gamma_{k}(t)=x\right\} \leq i(x, f)$. Then

$$
\operatorname{Mod}_{Q}\left(\Gamma^{\prime}\right) \leq K_{I} \operatorname{Mod}_{Q}(\Gamma) / m
$$

As an application of Corollary 1.2 and [23, Theorem 1.1], we obtain the following very general Väisälä's inequality in [6].

Theorem 2.1 (Väisälä's inequality). Let X and Y be Ahlfors Q-regular generalized n-manifolds, where X is LLC ${ }^{n}$ and Y is linearly locally connected, and suppose $f: X \rightarrow Y$ is discrete and open, with $H_{f}(x)<\infty$ for all $x \in X$, and $H_{f}(x) \leq H$ for \mathcal{H}^{Q}-almost every $x \in X$.

Then f satisfies Väisälä's inequality for some constant K_{I} depending only on H and the data of X and Y.
In the special case where Y is a generalized manifold with controlled geometry and topology and $X=\mathbb{R}^{n}$, Theorem 2.1 was first proved by Onninen and Rajala [17, Theorem 11.1].

3. Loewner spaces

There is a subtlety to the observation that Corollary 1.2 generalizes the Bonk-Heinonen theorem, which gave an indexfree upper bound on $\operatorname{dim}_{\mathcal{H}} \mathcal{B}_{f}$. In general, the linear dilatation $H_{f}(x)$ of a quasiregular map in \mathbb{R}^{n} does not need to be globally bounded - it is instead finite and essentially bounded, and at any point $x \in \mathbb{R}^{n}$, the dilatation depends quantitatively on not merely the essential supremum of H_{f}, but also on the index $i(x, f)$. That Corollary 1.2 is an actual generalization requires the fact that $H_{f}^{*}(x)$ is bounded everywhere by a constant H^{*} independent of $i(x, f)$. This latter fact was proved in the Euclidean case in [15], using the K_{O} - and Väisälä's inequalities, as well as the Loewner property of \mathbb{R}^{n}.

In the case where X and Y are Loewner, however, Väisälä's inequality allows us to generalize the corresponding result of [15], giving an index free upper bound on H_{f}^{*}.

Theorem 3.1. Suppose (under the standing assumptions) that X and Y are locally Ahlfors Q-regular and Q-Loewner, $H_{f}(x)<\infty$ for all $x \in X$, and $H_{f}(x) \leq H$ for \mathcal{H}^{Q}-almost every $x \in X$. Then $H_{f}^{*}(x) \leq H^{*}$ for every $x \in X$, where H^{*} depends only on H and the data of X and Y, and the sets \mathcal{B}_{f} and $f\left(\mathcal{B}_{f}\right)$ are δ-porous, for some δ depending only on H and the data.

Combining Theorem 3.1 with Corollary 1.2 , we obtain the following result, the first half of which is a true generalization of the Bonk-Heinonen theorem.

Corollary 3.2. Under the assumptions of Theorem 3.1, we have

$$
\max \left\{\operatorname{dim}_{\mathcal{H}}\left(\mathcal{B}_{f}\right), \operatorname{dim}_{\mathcal{H}}\left(f\left(\mathcal{B}_{f}\right)\right)\right\} \leq Q-\eta<Q
$$

for some constant η depending only on H and the data of X and Y.
Corollary 3.2 answers affirmatively the open problem of Heinonen and Rickman [11, Remark 6.7 (b)] in a stronger form, namely, we obtain dimensional estimates for the class of quasiregular mappings, which is strictly large than the class of BLD mappings.

It was asked by Heinonen and Semmes [12, Question 27] that if for a given branched covering $f: S^{n} \rightarrow S^{n}, n \geq 3$, there is a metric d on S^{n} so that $\left(S^{n}, d\right)$ is an Ahlfors n-regular and locally linearly contractible metric space, and $f:\left(S^{n}, d\right) \rightarrow S^{n}$ is a BLD mapping. By Corollary 3.2 , the existence of such a metric d necessarily implies that \mathcal{B}_{f} must be null with respect to the n-dimensional Hausdorff measure \mathcal{H}^{n}. On the other hand, there are plenty of branched coverings $f: S^{n} \rightarrow S^{n}$ such that $\mathcal{H}^{n}\left(\mathcal{B}_{f}\right)>0$ and so we have the following negative answer to this question.

Corollary 3.3. Not every branched covering $f: S^{n} \rightarrow S^{n}, n \geq 3$, can be made BLD by changing the metric in the domain but keeping the space Ahlfors n-regular and linearly locally contractible.

4. Generalization of the McAuley-Robinson theorem

One of the crucial ingredient in the proof of Theorem 1.1 is the following generalization of the McAuley-Robinson theorem [16], which is of independent interest.

Theorem 4.1. Let $A \subset X$, where X is a λ-LLCn generalized n-manifold and $\operatorname{dim}_{t o p}(A) \leq n$ and let Y be another generalized n-manifold. Let $f: X \rightarrow Y$ be a proper branched covering such that for some $x_{0} \in A \backslash \partial A, f^{-1}\left(\left\{f\left(x_{0}\right)\right\}\right)=x_{0}$ and

$$
\sup _{x \in \partial A} \frac{\operatorname{diam} f^{-1}(\{f(x)\})}{d\left(x, x_{0}\right)}<\frac{1}{\lambda^{2 n+1}} .
$$

Then $x_{0} \notin \mathcal{B}_{f}$.

Acknowledgement

C.Y. Guo was supported by the Magnus Ehrnrooth Foundation, the Finnish Cultural Foundation-Central Finland Regional Fund and the Academy of Finland (grant No. 131477). We are also grateful to the referee for his very helpful comments that improved our presentation.

References

[1] M. Bonk, J. Heinonen, Smooth quasiregular mappings with branching, Publ. Math. Inst. Hautes Études Sci. 100 (2004) 153-170.
[2] K. Fässler, A. Lukyanenko, K. Peltonen, Quasiregular mappings on subRiemannian manifolds, J. Geom. Anal. (2015), http://dx.doi.org/10.1007/s12220-015-9607-5, forthcoming.
[3] K. Grove, P. Petersen V, Bounding homotopy types by geometry, Ann. Math. (2) 128 (1) (1988) 195-206.
[4] K. Grove, P. Petersen V, J.Y. Wu, Geometric finiteness theorems via controlled topology, Invent. Math. 99 (1) (1990) 205-213.
[5] C.Y. Guo, Mappings of finite distortion between metric measure spaces, Conform. Geom. Dyn. 19 (2015) 95-121.
[6] C.Y. Guo, M. Williams, Porosity of the branch set of discrete open mappings with controlled linear dilatation, preprint, 2015.
[7] C.Y. Guo, S. Nicolussi Golo, M. Williams, Quasiregular mappings between subRimannian manifolds, preprint, 2015.
[8] J. Heinonen, The branch set of a quasiregular mapping, in: Proceedings of the International Congress of Mathematicians, vol. II, Beijing, 2002, Higher Education Press Limited Company, Beijing, 2002, pp. 691-700.
[9] J. Heinonen, P. Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998) 1-61.
[10] J. Heinonen, S. Rickman, Quasiregular maps $\mathbf{S}^{3} \rightarrow \mathbf{S}^{3}$ with wild branch sets, Topology 37 (1) (1998) 1-24.
[11] J. Heinonen, S. Rickman, Geometric branched covers between generalized manifolds, Duke Math. J. 113 (3) (2002) 465-529.
[12] J. Heinonen, S. Semmes, Thirty-three yes or no questions about mappings, measures, and metrics, Conform. Geom. Dyn. 1 (1997) 1-12.
[13] J. Heinonen, D. Sullivan, On the locally branched Euclidean metric gauge, Duke Math. J. 114 (1) (2002) 15-41.
[14] O. Martio, S. Rickman, J. Väisälä, Definitions for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I 448 (1969) 1-40.
[15] O. Martio, S. Rickman, J. Väisälä, Topological and metric properties of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I 488 (1971) 1-31.
[16] L.F. McAuley, E.E. Robinson, On Newman's theorem for finite-to-one open mappings on manifolds, Proc. Amer. Math. Soc. 87 (3) (1983) $561-566$.
[17] J. Onninen, K. Rajala, Quasiregular mappings to generalized manifolds, J. Anal. Math. 109 (2009) 33-79.
[18] P. Petersen V, A finiteness theorem for metric spaces, J. Differ. Geom. 31 (2) (1990) 387-395.
[19] S. Rickman, Quasiregular Mappings, Ergeb. Math. Grenzgeb. (3), vol. 26, Springer, Berlin, 1993.
[20] J. Sarvas, The Hausdorff dimension of the branch set of a quasiregular mapping, Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (2) (1975) $297-307$.
[21] S. Semmes, Finding curves on general spaces through quantitative topology, with applications for Sobolev and Poincaré inequalities, Sel. Math. New Ser. 2 (1996) 155-295.
[22] J. Väisälä, Modulus and capacity inequalities for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I 509 (1972) 1-14.
[23] M. Williams, Definition of quasiregularity in metric measure spaces, preprint, 2015.
[24] M. Williams, Bi-Lipschitz embeddability of BLD branched spaces, preprint, 2015.

[^0]: E-mail addresses: changyu.c.guo@jyu.fi, changyu.guo@unifr.ch (C.-Y. Guo), mcwill@ksu.edu (M. Williams).
 1 Present address: Department of Mathematics, University of Fribourg, Chemin du Musee 23, CH-1700, Fribourg, Switzerland.

