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In this note, we announce some new results on quantitative countable porosity of the 
branch set of a quasiregular mapping in very general metric spaces. As applications, we 
solve a recent conjecture of Fässler et al., an open problem of Heinonen–Rickman, and an 
open question of Heinonen–Semmes.
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r é s u m é

Dans cette note, nous annonçons de nouveaux résultats quant à la porosité dénombrable 
quantitative de l’ensemble des branchements d’une application quasi régulière dans 
un cadre très général d’espaces métriques. Comme applications de nos résultats, nous 
répondons à une conjecture récente de Fässler et al., à un problème ouvert de Heinonen–
Rickman et à une question ouverte de Heinonen–Semmes.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

A continuous mapping f : X → Y between topological spaces is said to be a branched covering if f is discrete and open, 
i.e., f is an open mapping and if, for each y ∈ Y , the preimage f −1(y) is a discrete subset of X . The branch set B f of f is 
the closed set of points in X where f does not define a local homeomorphism. In the case where X and Y are generalized 
n-manifolds, B f can be interpreted alternatively as the set of points at which the local index i(x, f ) = 1.

For a branched covering f : X → Y between two metric spaces, x ∈ X and r > 0, set

H f (x, r) = L f (x, r)

l f (x, r)
,
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where

L f (x, r) := sup {d( f (x), f (y)) : d(x, y) = r},
and

l f (x, r) := inf {d( f (x), f (y)) : d(x, y) = r}.
Then the linear dilatation function of f at x is defined pointwise by

H f (x) = lim sup
r→0

H f (x, r).

For each x ∈ X , denote by U (x, r) the component of x in f −1(B( f (x), r)). Set

H∗
f (x, s) = L∗

f (x, s)

l∗f (x, s)
,

where

L∗
f (x, s) = sup

z∈∂U (x,s)
d(x, z) and l∗f (x, s) = inf

z∈∂U (x,s)
d(x, z).

The inverse linear dilatation function of f at x is defined pointwise by

H∗
f (x) = lim sup

s→0
H∗

f (x, s).

A mapping f : X → Y between two metric measure spaces is termed H-quasiregular if the linear dilatation function H f is 
finite everywhere and essentially bounded from above by H . We call f a quasiregular mapping if it is H-quasiregular for 
some H ∈ [1, ∞).

The branch set of a quasiregular mapping can be very wild, for instance, it may contain many wild Cantor sets, such as 
the Antoine’s necklace [10], of classical geometric topology. In his 2002 ICM address [8, Section 3], Heinonen asked about 
the following question: Can we describe the geometry and topology of allowable branch sets of quasiregular mappings between 
metric n-manifolds?

In [6], we explore the (geometric) porosity of B f ∩ A and f
(
B f ∩ A

)
when the linear dilatation of f is finite on A. Our 

main result states that if X satisfies a quantitative local connectivity assumption, the aforementioned sets are quantitatively 
porous.

In the remainder of this introduction, we take as standing assumptions that X and Y are compact and doubling metric 
spaces, which are also generalized n-manifolds, that X is linearly locally n-connected, and that Y has bounded turning. Recall that 
X is λ-linearly locally n-connected (abbreviated λ-LLCn) if for each x ∈ X and r < 2d(x, ∂ X)/λ, the ball B(x, r) is n-connected 
in B(x, λr/2). (The other definitions are standard and can be found for instance in [11,6].)

The following result is a special case of [6, Theorem 1.1] and it says that the branch set of a quasiregular mapping as 
well as its image are quantitatively porous.

Theorem 1.1. If H f (x) ≤ H or H∗
f (x) ≤ H for every x ∈ X, then B f and f (B f ) are countably δ-porous, quantitatively. Moreover, the 

porosity constant can be explicitly calculated.

Recall that a set E ⊂ X is said to be α-porous if for each x ∈ E ,

lim inf
r→0

r−1 sup
{
ρ : B(z,ρ) ⊂ B(x, r)\E

} ≥ α. (1)

A subset E of X is called countablely (σ -)porous if it is a countable union of (σ -)porous subsets of X .
In the special case where X and Y are Euclidean spaces, Theorem 1.1 strengthens the earlier quantitative porosity results 

of Bonk–Heinonen [1] and Onninen–Rajala [17] on the branch set of a quasiregular mapping. Moreover, the quantitative 
porosity bounds on f (B f ) are new and can be regarded as a strengthened version of the dimensional estimate of Sar-
vas [20].

Particularly important to the general theory of quasiconformal and quasisymmetric maps are Ahlfors Q -regular spaces. It 
is well known that porous subsets of such spaces have Hausdorff dimension strictly smaller than Q , quantitatively; see, 
e.g., [17, Lemma 9.2]. Thus we have the following consequence.

Corollary 1.2. If X and Y are Ahlfors Q -regular, and H f (x) < ∞ or H∗
f (x) < ∞ for all x ∈ X, then HQ (B f ) = HQ ( f (B f )) = 0. 

Moreover, if either H f (x) ≤ H or H∗
f (x) ≤ H for all x ∈ X, then

max
{

dimH(B f ),dimH( f (B f ))
} ≤ Q − η < Q ,

where η depends only on H and the data of X and Y , and it can be explicitly calculated.



C.-Y. Guo, M. Williams / C. R. Acad. Sci. Paris, Ser. I 354 (2016) 155–159 157
Applying the first part of Corollary 1.2 to the special case where X and Y are equiregular sub-Riemannian manifolds, it 
gives an affirmative answer to a recent conjecture [2, Remark 1.2].

To prove that the branch set of a quasiregular mapping is null with respect to the right Hausdorff measure, the earlier 
proofs are based on two important assumptions: the first fact is that the mapping in question is differentiable almost 
everywhere in a suitable sense and the differential is linear with respect to the group structure of the tangent space; the 
second fact is that the determinant of the mapping is positive almost everywhere; see [14] for Euclidean case, [11,5] for the 
generalized manifolds of type A case, and [7] for the subRiemannian case for detailed information of this approach.

To obtain a dimensional estimate as in Corollary 1.2, the earlier proofs of Bonk–Heinonen [1] and Onninen–Rajala [17]
go along the following lines: one first obtains a quantitative porosity estimate for the set of points with sufficiently large 
local index; then one proves other quantitative porosity results for the set of points with a precise local index bound. The 
quantitative porosity bound on the branch set then follows by combining the above two estimates. In both approaches, 
two important assumptions are necessary: the first assumption is that the domain has to be Euclidean, since the McAuley–
Robinson theorem [16] is necessary and its proof relies crucially on the affine structure of Euclidean spaces; the second 
assumption is that certain abstract Poincaré inequalities in the sense of Heinonen–Koskela [9] are necessary, since we need 
to use the standard modulus (of a curve family) techniques.

To illustrate our idea for Theorem 1.1, we need the following terminology introduced in [6]. Let f : X → Y be a branched 
covering between two metric spaces. Fix x0 ∈ X , y0 = f (x0), r > 0. We say a map g: B(y0, r) → X is a local left homotopy 
inverse for f at x0 if g ◦ f |U (x0,r) is homotopic to the identity on U (x0, r), via a homotopy Ht for which x0 /∈ Ht(∂U (x0, r))
for all t . Similarly, g is a local right homotopy inverse for f if f ◦ g is homotopic to the identity on B(y0, r), via a homotopy 
Ht with y0 /∈ Ht(∂ B(y0, r)) for all t . If g is a left and right local homotopy inverse, we simply call it a local homotopy inverse. 
We denote by B∗

f the homotopy branch set of f , i.e., the set of points in X for which f has no (two-sided) local homotopy 

inverse. We also let B∗,l
f denote the left homotopy branch set, i.e., the set of points in X at which f has no left homotopy 

inverse. It is clear that if X and Y are generalized n-manifolds, then B f = B∗,l
f .

Our starting point is to construct local left homotopy inverses away from a porous set. In the first step, we further 
developed a quantitative ENR theory, inspired by Groce, Petersen and Wu [3,4,18], and Semmes [21], for LLCn spaces. As an 
immediate consequence, we obtain a generalized McAuley–Robinson theorem (cf. Theorem 4.1), which provides a criterion 
of being non-branching. The second step is to control the distortion of annuli, quantitatively, at points of finite dilatation, 
away from a porous set. The moral here is that if either of the sets

S H,R = {x ∈ X : H f (x, r) ≤ H for all r < R}
or f (S H,R) is “dense” at some point at a certain scale, then the annular distortion around that point will get controlled. 
Thus we may construct a local homotopy inverse around that point and use the generalized McAuley–Robinson theorem to 
conclude that the point is non-branching. This, together with a simple decomposition argument (cf. [6, Proof of Theorem 
1.1]), will lead to Theorem 1.1.

Our standing assumptions for the underlying spaces X and Y , except the local linear n-connectivity on X , are quite mild. 
On the other hand, the local linear n-connectivity is necessary for the validity of all the previous results, as [24, Theorem 
1.2] indicates.

Theorem 1.3. For each n ≥ 3, there exists an Ahlfors n-regular metric space X that is homeomorphic to Rn and supports a 
(1, 1)-Poincaré inequality, and a 1-quasiregular mapping f : X → R

n, such that min
{
Hn(B f ), Hn( f (B f ))

}
> 0.

The example in Theorem 1.3 is indeed 1-BLD and it disproves the following well-known conjecture of Heinonen and 
Rickman [11, Remark 6.32 (b)]: if X be a locally BLD n-Euclidean space that is locally bi-Lipschitz embeddable to some Euclidean 
space, then for all (Lipschitz) BLD-maps f : X →R

n, the branch set B f has zero Hausdorff n-measure. As a consequence, one cannot 
delete [13, Axiom II] from the a priori assumptions in [13, Theorem 2.1]; see [13, Section 5.1] and [24] for more detailed 
discussions.

2. Väisälä’s inequality

The Väisälä’s inequality was first proved by Väisälä [22] and it plays an important role in the theory of quasiregular 
mappings, in particular, many profound value-distributional type results; see [19].

Definition 2.1 (Väisälä’s inequality). We say that f satisfies Väisälä’s inequality with constant K I if the following condition 
holds: suppose m ∈ N, and 	 and 	′ are curve families in X and Y respectively, such that for each γ ′ ∈ 	′ , there are 
curves γ1, . . . , γm ∈ 	 such that f (γk) is a subcurve of γ ′ for each k, and for each t ∈ [0, l(γ )] and each x ∈ X , we have 
#{k : γk(t) = x} ≤ i(x, f ). Then

ModQ (	′) ≤ K I ModQ (	)/m.

As an application of Corollary 1.2 and [23, Theorem 1.1], we obtain the following very general Väisälä’s inequality in [6].
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Theorem 2.1 (Väisälä’s inequality). Let X and Y be Ahlfors Q -regular generalized n-manifolds, where X is LLCn and Y is linearly 
locally connected, and suppose f : X → Y is discrete and open, with H f (x) < ∞ for all x ∈ X, and H f (x) ≤ H for HQ -almost every 
x ∈ X.

Then f satisfies Väisälä’s inequality for some constant K I depending only on H and the data of X and Y .

In the special case where Y is a generalized manifold with controlled geometry and topology and X = R
n , Theorem 2.1

was first proved by Onninen and Rajala [17, Theorem 11.1].

3. Loewner spaces

There is a subtlety to the observation that Corollary 1.2 generalizes the Bonk–Heinonen theorem, which gave an index-
free upper bound on dimHB f . In general, the linear dilatation H f (x) of a quasiregular map in Rn does not need to be 
globally bounded – it is instead finite and essentially bounded, and at any point x ∈ R

n , the dilatation depends quantitatively 
on not merely the essential supremum of H f , but also on the index i(x, f ). That Corollary 1.2 is an actual generalization 
requires the fact that H∗

f (x) is bounded everywhere by a constant H∗ independent of i(x, f ). This latter fact was proved in 
the Euclidean case in [15], using the K O - and Väisälä’s inequalities, as well as the Loewner property of Rn .

In the case where X and Y are Loewner, however, Väisälä’s inequality allows us to generalize the corresponding result 
of [15], giving an index free upper bound on H∗

f .

Theorem 3.1. Suppose (under the standing assumptions) that X and Y are locally Ahlfors Q -regular and Q -Loewner, H f (x) < ∞ for 
all x ∈ X, and H f (x) ≤ H for HQ -almost every x ∈ X. Then H∗

f (x) ≤ H∗ for every x ∈ X, where H∗ depends only on H and the data 
of X and Y , and the sets B f and f

(
B f

)
are δ-porous, for some δ depending only on H and the data.

Combining Theorem 3.1 with Corollary 1.2, we obtain the following result, the first half of which is a true generalization 
of the Bonk–Heinonen theorem.

Corollary 3.2. Under the assumptions of Theorem 3.1, we have

max
{

dimH(B f ),dimH( f (B f ))
} ≤ Q − η < Q ,

for some constant η depending only on H and the data of X and Y .

Corollary 3.2 answers affirmatively the open problem of Heinonen and Rickman [11, Remark 6.7 (b)] in a stronger form, 
namely, we obtain dimensional estimates for the class of quasiregular mappings, which is strictly large than the class of 
BLD mappings.

It was asked by Heinonen and Semmes [12, Question 27] that if for a given branched covering f : Sn → Sn, n ≥ 3, there is 
a metric d on Sn so that (Sn, d) is an Ahlfors n-regular and locally linearly contractible metric space, and f : (Sn, d) → Sn is a BLD 
mapping. By Corollary 3.2, the existence of such a metric d necessarily implies that B f must be null with respect to the 
n-dimensional Hausdorff measure Hn . On the other hand, there are plenty of branched coverings f : Sn → Sn such that 
Hn(B f ) > 0 and so we have the following negative answer to this question.

Corollary 3.3. Not every branched covering f : Sn → Sn, n ≥ 3, can be made BLD by changing the metric in the domain but keeping 
the space Ahlfors n-regular and linearly locally contractible.

4. Generalization of the McAuley–Robinson theorem

One of the crucial ingredient in the proof of Theorem 1.1 is the following generalization of the McAuley–Robinson 
theorem [16], which is of independent interest.

Theorem 4.1. Let A ⊂ X, where X is a λ-LLCn generalized n-manifold and dimtop(A) ≤ n and let Y be another generalized n-manifold. 
Let f : X → Y be a proper branched covering such that for some x0 ∈ A\∂ A, f −1({ f (x0)}) = x0 and

sup
x∈∂ A

diam f −1({ f (x)})
d(x, x0)

<
1

λ2n+1
.

Then x0 /∈ B f .
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