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RESUME

Dans cette note, nous annong¢ons de nouveaux résultats quant a la porosité dénombrable
quantitative de I'ensemble des branchements d'une application quasi réguliére dans
un cadre trés général d’'espaces métriques. Comme applications de nos résultats, nous
répondons a une conjecture récente de Fassler et al., & un probléme ouvert de Heinonen-
Rickman et a une question ouverte de Heinonen-Semmes.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

A continuous mapping f : X — Y between topological spaces is said to be a branched covering if f is discrete and open,
ie., f is an open mapping and if, for each y € Y, the preimage f~'(y) is a discrete subset of X. The branch set By of fis
the closed set of points in X where f does not define a local homeomorphism. In the case where X and Y are generalized
n-manifolds, By can be interpreted alternatively as the set of points at which the local index i(x, f) =1.

For a branched covering f : X — Y between two metric spaces, x € X and r > 0, set
Le(x, 1
Hyxon = 280,

lp(x,7)
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where
Lyx, 1) :==sup{d(f(x), f(¥)) :d(x, y) =1},
and
ly(x,r) :=inf{d(f(x), f(¥)) : d(x, y) =T}
Then the linear dilatation function of f at x is defined pointwise by

Hyf(x) =limsup Hys(x,1).
r—0

For each x € X, denote by U(x,r) the component of x in f~1(B(f(x),r)). Set
*
Lf(x, s)
= )
lf (x,5)

H*}(x, s) =

where

L’}(x,s): sup d(x,z) and ’}(x,s): inf d(x,z).
zedU(x,s) zedU(x,S)

The inverse linear dilatation function of f at x is defined pointwise by

H“}(x) = limsup H?(x, s).
s—0

A mapping f : X — Y between two metric measure spaces is termed H-quasiregular if the linear dilatation function Hy is
finite everywhere and essentially bounded from above by H. We call f a quasiregular mapping if it is H-quasiregular for
some H € [1, 00).

The branch set of a quasiregular mapping can be very wild, for instance, it may contain many wild Cantor sets, such as
the Antoine’s necklace [10], of classical geometric topology. In his 2002 ICM address [8, Section 3], Heinonen asked about
the following question: Can we describe the geometry and topology of allowable branch sets of quasiregular mappings between
metric n-manifolds?

In [6], we explore the (geometric) porosity of Bf N A and f(Bf N A) when the linear dilatation of f is finite on A. Our
main result states that if X satisfies a quantitative local connectivity assumption, the aforementioned sets are quantitatively
porous.

In the remainder of this introduction, we take as standing assumptions that X and Y are compact and doubling metric
spaces, which are also generalized n-manifolds, that X is linearly locally n-connected, and that Y has bounded turning. Recall that
X is A-linearly locally n-connected (abbreviated A-LLC") if for each x € X and r < 2d(x, dX)/A, the ball B(x,r) is n-connected
in B(x, Ar/2). (The other definitions are standard and can be found for instance in [11,6].)

The following result is a special case of [6, Theorem 1.1] and it says that the branch set of a quasiregular mapping as
well as its image are quantitatively porous.

Theorem 1.1. If H(x) < H or H?(x) < H forevery x € X, then B¢ and f(By) are countably §-porous, quantitatively. Moreover, the
porosity constant can be explicitly calculated.

Recall that a set E C X is said to be «-porous if for each x € E,
liminfr—"sup{p: B(z, p) C B(x,N\E} > a. (1)
r—0

A subset E of X is called countablely (o -)porous if it is a countable union of (o -)porous subsets of X.

In the special case where X and Y are Euclidean spaces, Theorem 1.1 strengthens the earlier quantitative porosity results
of Bonk-Heinonen [1] and Onninen-Rajala [17] on the branch set of a quasiregular mapping. Moreover, the quantitative
porosity bounds on f(By) are new and can be regarded as a strengthened version of the dimensional estimate of Sar-
vas [20].

Particularly important to the general theory of quasiconformal and quasisymmetric maps are Ahlfors Q -regular spaces. It
is well known that porous subsets of such spaces have Hausdorff dimension strictly smaller than Q, quantitatively; see,
e.g., [17, Lemma 9.2]. Thus we have the following consequence.

Corollary 1.2. If X and Y are Ahlfors Q -regular, and H ¢ (x) < oo or Hji(x) < oo for all x € X, then HQ(Bf) = HQ(f(Bf)) =0.
Moreover, if either Hy (x) < H or H’;(x) < H forall x € X, then

max { dimy (By), dimy (f(Bf)} <Q —n<Q,
where 1 depends only on H and the data of X and Y, and it can be explicitly calculated.
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Applying the first part of Corollary 1.2 to the special case where X and Y are equiregular sub-Riemannian manifolds, it
gives an affirmative answer to a recent conjecture [2, Remark 1.2].

To prove that the branch set of a quasiregular mapping is null with respect to the right Hausdorff measure, the earlier
proofs are based on two important assumptions: the first fact is that the mapping in question is differentiable almost
everywhere in a suitable sense and the differential is linear with respect to the group structure of the tangent space; the
second fact is that the determinant of the mapping is positive almost everywhere; see [14] for Euclidean case, [11,5] for the
generalized manifolds of type A case, and [7] for the subRiemannian case for detailed information of this approach.

To obtain a dimensional estimate as in Corollary 1.2, the earlier proofs of Bonk-Heinonen [1] and Onninen-Rajala [17]
go along the following lines: one first obtains a quantitative porosity estimate for the set of points with sufficiently large
local index; then one proves other quantitative porosity results for the set of points with a precise local index bound. The
quantitative porosity bound on the branch set then follows by combining the above two estimates. In both approaches,
two important assumptions are necessary: the first assumption is that the domain has to be Euclidean, since the McAuley-
Robinson theorem [16] is necessary and its proof relies crucially on the affine structure of Euclidean spaces; the second
assumption is that certain abstract Poincaré inequalities in the sense of Heinonen-Koskela [9] are necessary, since we need
to use the standard modulus (of a curve family) techniques.

To illustrate our idea for Theorem 1.1, we need the following terminology introduced in [6]. Let f : X — Y be a branched
covering between two metric spaces. Fix xg € X, yo = f(Xp), r > 0. We say a map g: B(yo,r) — X is a local left homotopy
inverse for f at xo if go fly,,rn is homotopic to the identity on U (xg, ), via a homotopy H; for which xo ¢ H:(dU (xo,1))
for all t. Similarly, g is a local right homotopy inverse for f if f o g is homotopic to the identity on B(yg,r), via a homotopy
H: with yo ¢ H:(dB(yo, 1)) for all t. If g is a left and right local homotopy inverse, we simply call it a local homotopy inverse.
We denote by B’} the homotopy branch set of f, i.e., the set of points in X for which f has no (two-sided) local homotopy

inverse. We also let Bji’l denote the left homotopy branch set, i.e., the set of points in X at which f has no left homotopy

inverse. It is clear that if X and Y are generalized n-manifolds, then By = Bj‘,’l.

Our starting point is to construct local left homotopy inverses away from a porous set. In the first step, we further
developed a quantitative ENR theory, inspired by Groce, Petersen and Wu [3,4,18], and Semmes [21], for LLC" spaces. As an
immediate consequence, we obtain a generalized McAuley-Robinson theorem (cf. Theorem 4.1), which provides a criterion
of being non-branching. The second step is to control the distortion of annuli, quantitatively, at points of finite dilatation,
away from a porous set. The moral here is that if either of the sets

Sur={xe€X:Hf(x,r) <Hforallr <R}

or f(Su,r) is “dense” at some point at a certain scale, then the annular distortion around that point will get controlled.
Thus we may construct a local homotopy inverse around that point and use the generalized McAuley-Robinson theorem to
conclude that the point is non-branching. This, together with a simple decomposition argument (cf. [6, Proof of Theorem
1.1]), will lead to Theorem 1.1.

Our standing assumptions for the underlying spaces X and Y, except the local linear n-connectivity on X, are quite mild.
On the other hand, the local linear n-connectivity is necessary for the validity of all the previous results, as [24, Theorem
1.2] indicates.

Theorem 1.3. For each n > 3, there exists an Ahlfors n-regular metric space X that is homeomorphic to R" and supports a
(1, 1)-Poincaré inequality, and a 1-quasiregular mapping f : X — R", such that min {H"(Bf), ’H”(f(Bf))} > 0.

The example in Theorem 1.3 is indeed 1-BLD and it disproves the following well-known conjecture of Heinonen and
Rickman [11, Remark 6.32 (b)]: if X be a locally BLD n-Euclidean space that is locally bi-Lipschitz embeddable to some Euclidean
space, then for all (Lipschitz) BLD-maps f : X — R", the branch set B has zero Hausdorff n-measure. As a consequence, one cannot
delete [13, Axiom II| from the a priori assumptions in [13, Theorem 2.1]; see [13, Section 5.1] and [24] for more detailed
discussions.

2. Vaisdld’s inequality

The Vidisdld's inequality was first proved by Vdisdld [22] and it plays an important role in the theory of quasiregular
mappings, in particular, many profound value-distributional type results; see [19].

Definition 2.1 (Viisdld’s inequality). We say that f satisfies Vdisdld’s inequality with constant K; if the following condition
holds: suppose m € N, and I' and I’ are curve families in X and Y respectively, such that for each y’ € I/, there are
curves yi,...,¥m € I such that f(y,) is a subcurve of y’ for each k, and for each t € [0,I(y)] and each x € X, we have
#{k: v (t) =x} <i(x, f). Then

Mod (I') < K; Modg (T') /m.

As an application of Corollary 1.2 and [23, Theorem 1.1], we obtain the following very general Vdisdld’s inequality in [6].
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Theorem 2.1 (Viisdld’s inequality). Let X and Y be Ahlfors Q -regular generalized n-manifolds, where X is LLC" and Y is linearly
locally connected, and suppose f : X — Y is discrete and open, with H(x) < oo forall x € X, and Hy(x) < H for H 2 -almost every
xeX.

Then f satisfies Vdisdld’s inequality for some constant K; depending only on H and the data of X and Y.

In the special case where Y is a generalized manifold with controlled geometry and topology and X = R", Theorem 2.1
was first proved by Onninen and Rajala [17, Theorem 11.1].

3. Loewner spaces

There is a subtlety to the observation that Corollary 1.2 generalizes the Bonk-Heinonen theorem, which gave an index-
free upper bound on dimy By. In general, the linear dilatation Hy(x) of a quasiregular map in R" does not need to be
globally bounded - it is instead finite and essentially bounded, and at any point x € R", the dilatation depends quantitatively
on not merely the essential supremum of H ¢, but also on the index i(x, f). That Corollary 1.2 is an actual generalization
requires the fact that H 7(x) is bounded everywhere by a constant H* independent of i(x, f). This latter fact was proved in
the Euclidean case in [15], using the K- and Viisdld's inequalities, as well as the Loewner property of R".

In the case where X and Y are Loewner, however, Vdisdld’s inequality allows us to generalize the corresponding result
of [15], giving an index free upper bound on H’}.

Theorem 3.1. Suppose (under the standing assumptions) that X and Y are locally Ahlfors Q -regular and Q -Loewner, H 7 (x) < oo for
allx e X, and Hy(x) < H for H2 -almost every x € X. Then H’;(x) < H* for every x € X, where H* depends only on H and the data

of X and Y, and the sets By and f(Bf) are §-porous, for some § depending only on H and the data.

Combining Theorem 3.1 with Corollary 1.2, we obtain the following result, the first half of which is a true generalization
of the Bonk-Heinonen theorem.

Corollary 3.2. Under the assumptions of Theorem 3.1, we have
max { dimy, (By). dimy (f(Bs)} < Q —n < Q.
for some constant n depending only on H and the dataof X and Y.

Corollary 3.2 answers affirmatively the open problem of Heinonen and Rickman [11, Remark 6.7 (b)] in a stronger form,
namely, we obtain dimensional estimates for the class of quasiregular mappings, which is strictly large than the class of
BLD mappings.

It was asked by Heinonen and Semmes [12, Question 27] that if for a given branched covering f : S" — S", n > 3, there is
a metric d on S™ so that (S, d) is an Ahlfors n-regular and locally linearly contractible metric space, and f : (S",d) — S™ is a BLD
mapping. By Corollary 3.2, the existence of such a metric d necessarily implies that B¢ must be null with respect to the
n-dimensional Hausdorff measure #". On the other hand, there are plenty of branched coverings f :S"™ — S" such that
H"(Bf) >0 and so we have the following negative answer to this question.

Corollary 3.3. Not every branched covering f : S — S™, n > 3, can be made BLD by changing the metric in the domain but keeping
the space Ahlfors n-regular and linearly locally contractible.

4. Generalization of the McAuley-Robinson theorem

One of the crucial ingredient in the proof of Theorem 1.1 is the following generalization of the McAuley-Robinson
theorem [16], which is of independent interest.

Theorem 4.1. Let A C X, where X is a A-LLC" generalized n-manifold and dim;o, (A) < n and let Y be another generalized n-manifold.
Let f : X — Y be a proper branched covering such that for some xg € A\dA, f~1({f(x0)}) = xo and

diam f~1({f (0} 1

< .
x€dA d(x, xo) A2+l
Then xq ¢ By.
Acknowledgement

C.Y. Guo was supported by the Magnus Ehrnrooth Foundation, the Finnish Cultural Foundation-Central Finland Regional
Fund and the Academy of Finland (grant No. 131477). We are also grateful to the referee for his very helpful comments that
improved our presentation.



C.-Y. Guo, M. Williams / C. R. Acad. Sci. Paris, Ser. 1 354 (2016) 155-159 159

References

[1] M. Bonk, J. Heinonen, Smooth quasiregular mappings with branching, Publ. Math. Inst. Hautes Etudes Sci. 100 (2004) 153-170.
[2] K. Féssler, A. Lukyanenko, K. Peltonen, Quasiregular mappings on subRiemannian manifolds, J. Geom. Anal. (2015), http://dx.doi.org/10.1007/s12220-
015-9607-5, forthcoming.
[3] K. Grove, P. Petersen V, Bounding homotopy types by geometry, Ann. Math. (2) 128 (1) (1988) 195-206.
[4] K. Grove, P. Petersen V, J.Y. Wu, Geometric finiteness theorems via controlled topology, Invent. Math. 99 (1) (1990) 205-213.
[5] C.Y. Guo, Mappings of finite distortion between metric measure spaces, Conform. Geom. Dyn. 19 (2015) 95-121.
[6] C.Y. Guo, M. Williams, Porosity of the branch set of discrete open mappings with controlled linear dilatation, preprint, 2015.
[7] C.Y. Guo, S. Nicolussi Golo, M. Williams, Quasiregular mappings between subRimannian manifolds, preprint, 2015.
[8] J. Heinonen, The branch set of a quasiregular mapping, in: Proceedings of the International Congress of Mathematicians, vol. II, Beijing, 2002, Higher
Education Press Limited Company, Beijing, 2002, pp. 691-700.
[9] J. Heinonen, P. Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998) 1-61.
[10] J. Heinonen, S. Rickman, Quasiregular maps S*> — S> with wild branch sets, Topology 37 (1) (1998) 1-24.
[11] J. Heinonen, S. Rickman, Geometric branched covers between generalized manifolds, Duke Math. J. 113 (3) (2002) 465-529.
[12] ]. Heinonen, S. Semmes, Thirty-three yes or no questions about mappings, measures, and metrics, Conform. Geom. Dyn. 1 (1997) 1-12.
[13] J. Heinonen, D. Sullivan, On the locally branched Euclidean metric gauge, Duke Math. J. 114 (1) (2002) 15-41.
[14] O. Martio, S. Rickman, J. Vdisdld, Definitions for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I 448 (1969) 1-40.
[15] O. Martio, S. Rickman, J. Vdisdld, Topological and metric properties of quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A I 488 (1971) 1-31.
[16] L.E. McAuley, E.E. Robinson, On Newman'’s theorem for finite-to-one open mappings on manifolds, Proc. Amer. Math. Soc. 87 (3) (1983) 561-566.
[17] ]. Onninen, K. Rajala, Quasiregular mappings to generalized manifolds, ]. Anal. Math. 109 (2009) 33-79.
[18] P. Petersen V, A finiteness theorem for metric spaces, J. Differ. Geom. 31 (2) (1990) 387-395.
[19] S. Rickman, Quasiregular Mappings, Ergeb. Math. Grenzgeb. (3), vol. 26, Springer, Berlin, 1993.
[20] J. Sarvas, The Hausdorff dimension of the branch set of a quasiregular mapping, Ann. Acad. Sci. Fenn. Ser. A I Math. 1 (2) (1975) 297-307.
[21] S. Semmes, Finding curves on general spaces through quantitative topology, with applications for Sobolev and Poincaré inequalities, Sel. Math. New
Ser. 2 (1996) 155-295.
[22] J. Vdisdld, Modulus and capacity inequalities for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A 1 509 (1972) 1-14.
[23] M. Williams, Definition of quasiregularity in metric measure spaces, preprint, 2015.
[24] M. Williams, Bi-Lipschitz embeddability of BLD branched spaces, preprint, 2015.


http://refhub.elsevier.com/S1631-073X(15)00304-0/bib62683034s1
http://dx.doi.org/10.1007/s12220-015-9607-5
http://refhub.elsevier.com/S1631-073X(15)00304-0/bib67703838s1
http://refhub.elsevier.com/S1631-073X(15)00304-0/bib6770773930s1
http://refhub.elsevier.com/S1631-073X(15)00304-0/bib673134s1
http://refhub.elsevier.com/S1631-073X(15)00304-0/bib683032s1
http://refhub.elsevier.com/S1631-073X(15)00304-0/bib683032s1
http://refhub.elsevier.com/S1631-073X(15)00304-0/bib686B3938s1
http://refhub.elsevier.com/S1631-073X(15)00304-0/bib68723938s1
http://refhub.elsevier.com/S1631-073X(15)00304-0/bib68723032s1
http://refhub.elsevier.com/S1631-073X(15)00304-0/bib68733937s1
http://refhub.elsevier.com/S1631-073X(15)00304-0/bib68733032s1
http://refhub.elsevier.com/S1631-073X(15)00304-0/bib6D72763639s1
http://refhub.elsevier.com/S1631-073X(15)00304-0/bib6D72763731s1
http://refhub.elsevier.com/S1631-073X(15)00304-0/bib6D723833s1
http://refhub.elsevier.com/S1631-073X(15)00304-0/bib6F723039s1
http://refhub.elsevier.com/S1631-073X(15)00304-0/bib703930s1
http://refhub.elsevier.com/S1631-073X(15)00304-0/bib723933s1
http://refhub.elsevier.com/S1631-073X(15)00304-0/bib733735s1
http://refhub.elsevier.com/S1631-073X(15)00304-0/bib733936s1
http://refhub.elsevier.com/S1631-073X(15)00304-0/bib733936s1
http://refhub.elsevier.com/S1631-073X(15)00304-0/bib763732s1
http://dx.doi.org/10.1007/s12220-015-9607-5

	The branch set of a quasiregular mapping between metric manifolds
	1 Introduction and main results
	2 Väisälä's inequality
	3 Loewner spaces
	4 Generalization of the McAuley-Robinson theorem
	Acknowledgement
	References


