Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

The ε -positive center set and its applications *

L'ensemble des centres ε -positifs et ses applications

Shengliang Pan^a, Yunlong Yang^a, Pingliang Huang^b

^a Mathematics Department, Tongji University, Shanghai, 200092, PR China

^b Mathematics Department, Shanghai University, Shanghai, 200444, PR China

ARTICLE INFO

Article history: Received 23 July 2015 Accepted after revision 4 November 2015 Available online 6 January 2016

Presented by Étienne Ghys

Keywords: Constant width curve ε -Positive center set Inner parallel body Kaiser's conjecture Positive center set

ABSTRACT

In this paper we will first give a positive answer to Kaiser's conjecture on ε -positive centers for convex curves and then present its two applications.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Dans cette Note, nous apportons une réponse positive à la conjecture de Kaiser sur les centres ε-positifs des courbes convexes, puis nous en présentons deux applications. © 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

For a convex plane curve γ with length *L* and area *A*, Bonnesen [1] had proved the famous inequality that is now known as the *Bonnesen inequality*:

$$Lr - A - \pi r^2 \ge 0$$
, $r_{\rm in} \le r \le r_{\rm out}$,

where r_{in} and r_{out} are the inradius and circumradius of γ . The equality in (1.1) holds when $r = r_{in}$ if and only if γ is either a circle or a sausage curve and when $r = r_{out}$ if and only if γ is a circle. The proof of (1.1) can be found in [1–3,13,14], etc.

To understand the curve shortening problem (cf. [4,5,7]), Gage [6] introduced, for the first time, the positive center for a convex curve γ with length *L* and area *A* as a point for which its support function $h(\theta)$ satisfies

$$Lh(\theta) - A - \pi h(\theta)^2 \ge 0, \tag{1.2}$$

for all $\theta \in [0, 2\pi]$. Gage [6] has shown that the center of the minimal annulus must be a positive center and that many other natural "centers" of γ are not positive centers in general, such as the center of mass, the centroid and the Steiner point. Following Gage's idea, the authors of the present paper have proven in [10] that the positive center set of a convex curve is convex and shown that circles and sausage curves are the only examples of positive center sets of zero area. In

http://dx.doi.org/10.1016/j.crma.2015.10.021

Geometry

^{*} This work is supported by the National Science Foundation of China (No. 11171254) and a grant of "The First-class Discipline of Universities in Shanghai".

E-mail addresses: slpan@tongji.edu.cn (S. Pan), 88ylyang@tongji.edu.cn (Y. Yang), huangpingliang@shu.edu.cn (P. Huang).

¹⁶³¹⁻⁰⁷³X/ \odot 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1996, Kaiser [12] had defined the ε -positive center for a curve as Gage and put forward the following conjecture by some computer graphics:

Conjecture (Kaiser). Let γ be a simple closed curve.

- (i) If γ has more than one positive center, then it has an ε -positive center for some $\varepsilon > 0$.
- (ii) The ε -positive center set of γ is convex for any $\varepsilon \ge 0$.

Let *K* be the domain enclosed by γ and *D* the unit disk. For a point $c \in K$, let

 $r_{\text{in}}(c) = \max\{r \ge 0 \mid c + rD \subseteq K\}, \quad r_{\text{out}}(c) = \min\{r > 0 \mid c + rD \supseteq K\}.$

Through the Bonnesen function

$$B(r) = Lr - A - \pi r^2, \tag{1.3}$$

one can get the equivalent definitions of positive centers and ε -positive centers. A point $c \in \operatorname{int} K$ is a *positive center* of γ if it satisfies

$$B(r_{\rm in}(c)) \ge 0 \quad \text{and} \quad B(r_{\rm out}(c)) \ge 0. \tag{1.4}$$

A point $c \in int K$ is an ε -positive center of γ if there exists an $\varepsilon \ge 0$ such that

$$B(r_{in}(c)) \ge \varepsilon$$
 and $B(r_{out}(c)) \ge \varepsilon$. (1.5)

It is obvious that $0 \le \varepsilon \le \min\{Lr_{in} - A - \pi r_{in}^2, Lr_{out} - A - \pi r_{out}^2\}$ and an ε -positive center must be a positive center.

The purpose of this paper is to describe the ε -positive center set and give a positive answer to Kaiser's conjecture for convex curves. As applications of ε -positive centers, we investigate the ε -positive center sets of constant width curves and give a shorter proof of a geometric inequality that is appeared in [8].

2. Preliminaries

Let *E* and *F* be two compact sets in \mathbb{R}^2 , *D* the unit disk. The *Minkowski sum* of *E* and *F* is defined by

$$E + F = \{x + y \mid x \in E, y \in F\}.$$

The Minkowski sum of a disk and a line segment is called a *sausage body* (cf. [9]), its boundary is called a *sausage curve*. Let K be a convex domain with perimeter L and area A. The area of the *outer parallel body* of K at distance t, K + tD ($t \ge 0$), can be given by

$$A_K(t) \triangleq A(K+tD) = A + Lt + \pi t^2, \tag{2.1}$$

which is called the *Steiner polynomial* of *K*. If the boundary of *K*, ∂K , is a strictly convex and C^2 curve, then the area of K + tD can be expressed in terms of the support function $h(\theta)$ of ∂K as

$$A_{K}(t) = \frac{1}{2} \int_{0}^{2\pi} \left((h(\theta) + t)^{2} - h'(\theta)^{2} \right) d\theta.$$
(2.2)

The Minkowski difference of E and F is defined by

$$E \sim F = \{x \in \mathbb{R}^2 \mid x + F \subseteq E\}.$$

If *E* and *F* are both convex domains, then so is $E \sim F$. For convex domains *E* and *F* we say that *F* is a *summand* of *E* if there is a convex domain *M* such that E = F + M. It is clear that $(E + F) \sim F = E$ holds for any convex domains *E* and *F*, while $(E \sim F) + F = E$ holds if and only if *F* is a summand of *E*. Denote by r_{in} the inradius of a convex domain *E*. The set

$$E_{-\lambda} \triangleq E \sim \lambda D, \quad 0 \leq \lambda \leq r_{\rm in},$$

is called an *inner parallel body of E at distance* λ .

If there exists an ε -positive center, then it is clear that the equation $B(r) = \varepsilon$ has two non-negative real roots. We denote them by $r_1(\varepsilon)$ and $r_2(\varepsilon)$ with $r_1(\varepsilon) \le r_2(\varepsilon)$.

In the following, "convex curve" means "closed convex plane curve", the set of all positive centers of a convex curve γ is denoted by $\mathfrak{P}(\gamma)$ and that of all ε -positive centers is denoted by $\mathfrak{P}_{\varepsilon}(\gamma)$, and C(x, r) represents the circle with radius r and centered at x.

3. The ε -positive center and Kaiser's conjecture

In this section, we will show that the ε -positive center set of a convex curve is a non-empty convex set. Firstly, we introduce a lemma about the positive center set for centrally symmetric convex curves.

Lemma 3.1. (See [10].) If γ is a convex curve centrally symmetric with respect to point o, then o is the center of the minimal annulus of γ and $\mathfrak{P}(\gamma)$ is a centrally symmetric domain with the same symmetry center o.

Proposition 3.2. If a convex curve γ is neither a circle nor a sausage curve, then $o \in int \mathfrak{P}(\gamma)$, where o is the center of the minimal annulus of γ .

To prove the above proposition, we need the following lemma, which is a direct consequence of Proposition 1.6 and Theorem 1.8 of Gage [6].

Lemma 3.3. (See [6].) Let γ be a convex plane curve, o the center of its minimal annulus. If $s, t \in \gamma \cap C(o, r_{in}(o))$ and $S, T \in \gamma \cap C(o, r_{out}(o))$ and the line segments \overline{st} and \overline{ST} satisfy $\overline{st} \cap \overline{ST} \neq \emptyset$, then there is a line l with the following properties:

- (i) $l \cap K$ is a line segment with o as its midpoint, where K is the domain enclosed by γ ;
- (ii) the points s and t lie on different sides of l, and so do S and T.

Proof of Proposition 3.2. From [10, Theorems 2.6 and 2.7], we have known that $\operatorname{int} \mathfrak{P}(\gamma) \neq \emptyset$ when γ is neither a circle nor a sausage curve. Since the center o of the minimal annulus of γ must be a point of $\mathfrak{P}(\gamma)$, $o \in \operatorname{int} \mathfrak{P}(\gamma)$ or $o \in \partial \mathfrak{P}(\gamma)$. If $o \in \partial \mathfrak{P}(\gamma)$, then γ is not symmetric with respect to o by Lemma 3.1. The domain K enclosed by γ can be cut into two parts by a chord through o as shown in Fig. 1a by Lemma 3.3. Denote by L_i and A_i (i = 1, 2) the length and the area of the two parts, respectively. Through a symmetrization of the two parts with respect to o, we obtain two centrally symmetric domains K_1 and K_2 as shown in Figs. 1b and 1c. It is obvious that the $r_{in}(o)$ s in these three figures are equal and so are $r_{out}(o)$ s.

Since K_1 is convex, from Lemma 3.1, we have

$$2L_1r_{in}(o) - 2A_1 - \pi r_{in}^2(o) \ge 0, \quad 2L_1r_{out}(o) - 2A_1 - \pi r_{out}^2(o) \ge 0.$$

As for K_2 , as it is unnecessarily convex, we consider its convex hull \tilde{K}_2 , denote its perimeter and area by \tilde{L}_2 and \tilde{A}_2 , respectively. Again by Lemma 3.1 and the fact that $\tilde{L}_2 \leq 2L_2$ and $\tilde{A}_2 \geq 2A_2$, we get

$$2L_2 r_{in}(o) - 2A_2 - \pi r_{in}^2(o) \ge \tilde{L}_2 r_{in}(o) - \tilde{A}_2 - \pi r_{in}^2(o) \ge 0,$$

$$2L_2 r_{out}(o) - 2A_2 - \pi r_{out}^2(o) \ge \tilde{L}_2 r_{out}(o) - \tilde{A}_2 - \pi r_{out}^2(o) \ge 0.$$

Hence

$$B(r_{in}(o)) = Lr_{in}(o) - A - \pi r_{in}^2(o) \ge 0,$$

$$B(r_{out}(o)) = Lr_{out}(o) - A - \pi r_{out}^2(o) > 0.$$

From [10, Theorem 2.1] and the fact that $o \in \partial \mathfrak{P}(\gamma)$, it follows that $B(r_{in}(o)) = 0$ or $B(r_{out}(o)) = 0$. If $B(r_{in}(o)) = 0$, then

$$2L_1 r_{in}(o) - 2A_1 - \pi r_{in}^2(o) = 0,$$

$$2L_2 r_{in}(o) - 2A_2 - \pi r_{in}^2(o) = \widetilde{L}_2 r_{in}(o) - \widetilde{A}_2 - \pi r_{in}^2(o) = 0$$

Therefore, $\tilde{K}_2 = K_2$. Since K_1 and K_2 are centrally symmetric with respect to o, $r_{in} = r_{in}(o)$ and $r_{out} = r_{out}(o)$, which implies that ∂K_1 is a circle or a sausage curve, so is ∂K_2 . If either ∂K_1 is a circle and ∂K_2 is a sausage curve or ∂K_1 is a sausage

Fig. 2. $r_{in}(c_3)$ and $r_{out}(c_3)$.

curve and ∂K_2 is a circle, then it contradicts the fact that K_1 and K_2 have the same $r_{in}(o)$ and $r_{out}(o)$. If both ∂K_1 and ∂K_2 are circles or sausage curves, then γ must be a circle or a sausage curve, which is a contradiction of the fact that γ is not centrally symmetric.

If $B(r_{out}(o)) = 0$, a similar argument implies that γ is a circle, which is impossible. Therefore, $o \in int \mathfrak{P}(\gamma)$.

Theorem 3.4. If a convex curve γ is neither a circle nor a sausage curve, then there exists a positive number $\varepsilon > 0$ such that $\mathfrak{P}_{\varepsilon}(\gamma) \neq \emptyset$.

Proof. By Proposition 3.2, one can see that

 $B(r_{in}(o)) > 0$ and $B(r_{out}(o)) > 0$,

where *o* is the center of the minimal annulus of γ . It follows from the continuities of $r_{in}(\cdot)$, $r_{out}(\cdot)$, $B(r_{in}(\cdot))$ and $B(r_{out}(\cdot))$ that there exists an $\varepsilon > 0$ such that

 $B(r_{in}(o)) \ge \varepsilon$ and $B(r_{out}(o)) \ge \varepsilon$.

Hence, $o \in \mathfrak{P}_{\mathcal{E}}(\gamma)$, that is to say, $\mathfrak{P}_{\mathcal{E}}(\gamma) \neq \emptyset$. \Box

Remark 3.5. This theorem gives a positive answer to Conjecture (i) of Kaiser.

Corollary 3.6. If γ is a strictly convex non-circular curve, then there exists an $\varepsilon > 0$ such that $\mathfrak{P}_{\varepsilon}(\gamma) \neq \emptyset$.

To prove the convexity of the ε -positive center set of a convex curve, we need the following lemma.

Lemma 3.7. Let γ be a convex curve. If c_1 and c_2 are two ε -positive centers of γ , then for any point c_3 on line segment $\overline{c_1c_2}$, one can get

 $B(r_{in}(c_3)) \ge \varepsilon$ and $B(r_{out}(c_3)) \ge \varepsilon$.

Proof. Let $C(c_3, \tilde{r}_{in}(c_3))$ be the largest inscribed circle of the convex hull of circles $C(c_1, r_{in}(c_1))$ and $C(c_2, r_{in}(c_2))$, $C(c_3, \tilde{r}_{out}(c_3))$ the circle that contains the two intersection points of the circles $C(c_1, r_{out}(c_1))$ and $C(c_2, r_{out}(c_2))$ (see Fig. 2). Since γ is convex, for the case $r_{in}(\cdot)$, γ contains circles $C(c_1, r_{in}(c_1))$, $C(c_2, r_{in}(c_2))$ and $C(c_3, \tilde{r}_{in}(c_3))$; for the case $r_{out}(\cdot)$, circles $C(c_1, r_{out}(c_1))$, $C(c_2, r_{out}(c_2))$ and $C(c_3, \tilde{r}_{out}(c_3))$; for the case $r_{out}(\cdot)$, circles $C(c_1, r_{out}(c_1))$, $C(c_2, r_{out}(c_2))$ and $C(c_3, \tilde{r}_{out}(c_3))$ contain γ . From Fig. 2, it is clear that

$$\min\{r_{in}(c_1), r_{in}(c_2)\} \le \widetilde{r}_{in}(c_3) \le r_{in}(c_3), \tag{3.1}$$

$$r_{\text{out}}(c_3) \le \widetilde{r}_{\text{out}}(c_3) < \max\{r_{\text{out}}(c_1), r_{\text{out}}(c_2)\}.$$
(3.2)

From (3.1) and (3.2) it follows that

 $r_1(\varepsilon) \leq \min\{r_{\text{in}}(c_1), r_{\text{in}}(c_2)\} \leq r_{\text{in}}(c_3) \leq r_{\text{out}}(c_3) \leq \max\{r_{\text{out}}(c_1), r_{\text{out}}(c_2)\} \leq r_2(\varepsilon).$

Thus

 $B(r_{\text{in}}(c_3)) \ge \varepsilon$ and $B(r_{\text{out}}(c_3)) \ge \varepsilon$. \Box

Theorem 3.8. If γ is a convex curve, then $\mathfrak{P}_{\varepsilon}(\gamma)$ is a closed convex set for any $\varepsilon \ge 0$. Moreover, if $\mathfrak{P}_{\varepsilon}(\gamma) \neq \emptyset$, then for any boundary point c of $\mathfrak{P}_{\varepsilon}(\gamma)$, at least one of $B(r_{in}(c)) = \varepsilon$ and $B(r_{out}(c)) = \varepsilon$ holds.

Proof. From the definition of ε -positive centers and the continuity of B(r), it follows that there exists a maximum of ε , denoted by ε_{\max} , such that $\mathfrak{P}_{\varepsilon}(\gamma)$ is not an empty set. If $\varepsilon > \varepsilon_{\max}$, then $\mathfrak{P}_{\varepsilon}(\gamma) = \emptyset$. If $0 \le \varepsilon \le \varepsilon_{\max}$, then it is clear that $\mathfrak{P}_{\varepsilon}(\gamma)$ is closed. Next, we deal with its convexity. If $\mathfrak{P}_{\varepsilon}(\gamma)$ has only one point, its convexity is obvious. If $\mathfrak{P}_{\varepsilon}(\gamma)$ has more than one point, then Lemma 3.7 can yield that $\mathfrak{P}_{\varepsilon}(\gamma)$ is a convex set. And therefore, for any boundary point c of $\mathfrak{P}_{\varepsilon}(\gamma)$, at least one of $B(r_{in}(c)) = \varepsilon$ and $B(r_{out}(c)) = \varepsilon$ holds when $0 \le \varepsilon \le \varepsilon_{\max}$. \Box

4. Applications

As an application of ε -positive centers, we describe the ε -positive center sets of constant width curves. We need the following lemma about constant width curves; its proof can be found in [10].

Lemma 4.1. (See [10].) If γ is a curve of constant width w and K is the domain enclosed by γ , then

 $r_{\text{in}}(c) + r_{\text{out}}(c) = w, \quad c \in K.$

Proposition 4.2. If γ is a curve of constant width w with area A, then for any $\varepsilon \in [0, \pi wr_{in} - A - \pi r_{in}^2]$, we have

(i) $\mathfrak{P}_{\varepsilon}(\gamma)$ is its inner parallel body $K_{-r_1(\varepsilon)}$, where $r_1(\varepsilon)$ is the smaller root of π wr $-A - \pi r^2 = \varepsilon$. Moreover, if $\varepsilon = \pi$ wr_{in} $-A - \pi r_{in}^2$, then $\mathfrak{P}_{\varepsilon}(\gamma)$ has only one point, which is just the center o of the minimal annulus of γ ;

(ii) $B(r_{in}(c)) = B(r_{out}(c)) = \varepsilon$ holds for each boundary point c of $\mathfrak{P}_{\varepsilon}(\gamma)$.

Proof. (i) Let K be the domain bounded by γ . Since γ is a curve of constant width w, by Lemma 4.1, we have

$$r_{\rm in}(c) + r_{\rm out}(c) = w, \quad c \in K.$$

$$\tag{4.1}$$

For any $\varepsilon \in [0, \pi w r_{in} - A - \pi r_{in}^2]$, the quadratic equation $B(r) = \varepsilon$ has two real roots $r_1(\varepsilon)$, $r_2(\varepsilon)$ and

$$r_1(\varepsilon) + r_2(\varepsilon) = W$$
.

(4.2)

Eqs. (4.1) and (4.2) imply that $r_{in}(c)$ and $r_{out}(c)$ are symmetric with respect to $\frac{w}{2}$ and so are $r_1(\varepsilon)$ and $r_2(\varepsilon)$. Thus, if $r_{in}(c) \ge r_1(\varepsilon)$, then $r_{out}(c) \le r_2(\varepsilon)$. It follows from the definitions of $\mathfrak{P}_{\varepsilon}(\gamma)$ and inner parallel body that $\mathfrak{P}_{\varepsilon}(\gamma)$ is the inner parallel body $K_{-r_1(\varepsilon)}$ of K.

If $\varepsilon = \pi w r_{in} - A - \pi r_{in}^2$, then it is clear that the center *o* of the minimal annulus of γ is the only point of $\mathfrak{P}_{\varepsilon}(\gamma)$.

(ii) Since $r_{in}(c)$ and $r_{out}(c)$ are symmetric with respect to $\frac{w}{2}$, $B(r_{in}(c)) = B(r_{out}(c))$, which together with Theorem 3.8 yields that $B(r_{in}(c)) = B(r_{out}(c)) = \varepsilon$ holds for any boundary point c of $\mathfrak{P}_{\varepsilon}(\gamma)$. \Box

Motivated by Jetter's idea in [11], we give a different proof of Theorem 1.10 of [8] through ε -positive center and Blaschke's rolling theorem (cf. [15, Corollary 3.2.10]).

Proposition 4.3. If γ is a strictly convex non-circular C^2 curve with length L and area A, then

$$-\rho_{\max} < t_2 < -r_{\rm out} < -\frac{L}{2\pi} < -r_{\rm in} < t_1 < -\rho_{\rm min} < 0,$$

where ρ_{max} and ρ_{min} are the maximum and minimum curvature radii of γ , r_{in} and r_{out} are the inradius and circumradius of γ , t_1 and t_2 are the roots of the Steiner polynomial of domain K enclosed by γ .

Proof. Since $r_{in}D \subseteq K \subseteq r_{out}D$, $r_{in} \leq \frac{L}{2\pi} \leq r_{out}$ and the equalities hold if and only if *K* is a disk, that is, γ is a circle. From Corollary 3.6, there exists an $\varepsilon > 0$ such that $\mathfrak{P}_{\varepsilon}(\gamma) \neq \emptyset$. For any point *c* of $\mathfrak{P}_{\varepsilon}(\gamma)$, we have

 $B(r_{in}(c)) > 0$ and $B(r_{out}(c)) > 0$.

Thus, $-r_{\text{in}} \leq -r_{\text{in}}(c) < t_1$ and $t_2 < -r_{\text{out}}(c) \leq -r_{\text{out}}$.

Denote by $h(\theta)$ the support function of γ . Let $0 \le m \le \rho_{\min}$. It follows from the Blaschke rolling theorem (cf. [15, Corollary 3.2.10]) that $(K \sim mD) + mD = K$, hence $h_{K \sim mD} = h_K - m$. By (2.2), we obtain

$$A_{K \sim mD}(t) = \frac{1}{2} \int_{0}^{2\pi} \left((h(\theta) - m + t)^2 - h'(\theta)^2 \right) d\theta = A_K(t - m).$$

From the fact that t_1 , t_2 are the two roots of $A_K(t) = 0$, it follows that $t_1 + m$ and $t_2 + m$ are roots of $A_{K \sim mD}(t) = 0$. Since for any convex domain K, $A_K(t) = 0$ has two non-positive real roots, we have $t_1 + m \le 0$ and the inequality is sharp when the area of K is positive. Hence, $t_1 \le -m$, $\forall m \le \rho_{\min}$. Set $m = \rho_{\min}$, we get $t_1 \le -\rho_{\min}$. From the above discussions, $r_{\text{in}} > \rho_{\min}$, which implies that the area of $K \sim \rho_{\min}D$ is positive, and thus $t_1 < -\rho_{\min}$. Similarly, let $m \ge \rho_{\max}$, we can get $-\rho_{\max} < t_2$. \Box

Acknowledgement

We are grateful to the anonymous referee for his or her careful reading of the original manuscript of this paper and giving us some invaluable comments.

References

- [1] T. Bonnesen, Les Problèmes des Isopérimètres et des Isépiphanes, Gauthier-Villars, Paris, 1929.
- [2] K.J. Böröczky, E. Lutwak, D. Yang, G. Zhang, The log-Brunn-Minkowski inequality, Adv. Math. 231 (2012) 1974–1997.
- [3] Y.D. Burago, V.A. Zalgaller, Geometric Inequalities, Springer-Verlag, Berlin, 1988.
- [4] M.E. Gage, An isoperimetric inequality with applications to curve shortening, Duke Math. J. 50 (1983) 1225-1229.
- [5] M.E. Gage, Curve shortening makes convex curves circular, Invent. Math. 76 (1984) 357-364.
- [6] M.E. Gage, Positive centers and the Bonnesen inequality, Proc. Amer. Math. Soc. 110 (1990) 1041-1048.
- [7] M.E. Gage, R.S. Hamilton, The heat equation shrinking convex plane curves, J. Differ. Geom. 23 (1986) 69-96.
- [8] M. Green, S. Osher, Steiner polynomials, Wulff flows, and some new isoperimetric inequalities for convex plane curves, Asian J. Math. 3 (1999) 659-676.
- [9] M. Henk, M.A. Hernández Cifre, On the location of roots of Steiner polynomials, Bull. Braz. Math. Soc. 42 (2011) 153-170.
- [10] P.L. Huang, S.L. Pan, Y.L. Yang, Positive center sets of convex curves, Discrete Comput. Geom. 54 (2015) 728-740.
- [11] M. Jetter, Bounds on the roots of the Steiner polynomial, Adv. Geom. 11 (2011) 313-317.
- [12] M.J. Kaiser, The ε -positive center figure, Appl. Math. Lett. 9 (1996) 67–70.
- [13] R. Osserman, Bonnesen-style isoperimetric inequalities, Amer. Math. Mon. 86 (1979) 1-29.
- [14] L.A. Santaló, Integral Geometry and Geometric Probability, second edition, Cambridge University Press, Cambridge, 2004.
- [15] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and Its Applications, vol. 44, Cambridge University Press, Cambridge, 1993.