Geometry
The ε-positive center set and its applications ${ }^{\text {s }}$
CrossMark

L'ensemble des centres ε-positifs et ses applications
Shengliang Pan ${ }^{\text {a }}$, Yunlong Yang ${ }^{\text {a }}$, Pingliang Huang ${ }^{\text {b }}$
${ }^{\text {a }}$ Mathematics Department, Tongji University, Shanghai, 200092, PR China
${ }^{\text {b }}$ Mathematics Department, Shanghai University, Shanghai, 200444, PR China

A R T I C L E I N F O

Article history:

Received 23 July 2015
Accepted after revision 4 November 2015
Available online 6 January 2016
Presented by Étienne Ghys

Keywords:

Constant width curve
ε-Positive center set
Inner parallel body
Kaiser's conjecture
Positive center set

Abstract

In this paper we will first give a positive answer to Kaiser's conjecture on ε-positive centers for convex curves and then present its two applications.

(C) 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Dans cette Note, nous apportons une réponse positive à la conjecture de Kaiser sur les centres ε-positifs des courbes convexes, puis nous en présentons deux applications.
© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

For a convex plane curve γ with length L and area A, Bonnesen [1] had proved the famous inequality that is now known as the Bonnesen inequality:

$$
\begin{equation*}
L r-A-\pi r^{2} \geq 0, \quad r_{\mathrm{in}} \leq r \leq r_{\mathrm{out}} \tag{1.1}
\end{equation*}
$$

where $r_{\text {in }}$ and $r_{\text {out }}$ are the inradius and circumradius of γ. The equality in (1.1) holds when $r=r_{\text {in }}$ if and only if γ is either a circle or a sausage curve and when $r=r_{\text {out }}$ if and only if γ is a circle. The proof of (1.1) can be found in [1-3,13,14], etc.

To understand the curve shortening problem (cf. [4,5,7]), Gage [6] introduced, for the first time, the positive center for a convex curve γ with length L and area A as a point for which its support function $h(\theta)$ satisfies

$$
\begin{equation*}
\operatorname{Lh}(\theta)-A-\pi h(\theta)^{2} \geq 0 \tag{1.2}
\end{equation*}
$$

for all $\theta \in[0,2 \pi]$. Gage [6] has shown that the center of the minimal annulus must be a positive center and that many other natural "centers" of γ are not positive centers in general, such as the center of mass, the centroid and the Steiner point. Following Gage's idea, the authors of the present paper have proven in [10] that the positive center set of a convex curve is convex and shown that circles and sausage curves are the only examples of positive center sets of zero area. In

[^0]1996, Kaiser [12] had defined the ε-positive center for a curve as Gage and put forward the following conjecture by some computer graphics:

Conjecture (Kaiser). Let γ be a simple closed curve.
(i) If γ has more than one positive center, then it has an ε-positive center for some $\varepsilon>0$.
(ii) The ε-positive center set of γ is convex for any $\varepsilon \geq 0$.

Let K be the domain enclosed by γ and D the unit disk. For a point $c \in K$, let

$$
r_{\text {in }}(c)=\max \{r \geq 0 \mid c+r D \subseteq K\}, \quad r_{\text {out }}(c)=\min \{r>0 \mid c+r D \supseteq K\}
$$

Through the Bonnesen function

$$
\begin{equation*}
B(r)=L r-A-\pi r^{2} \tag{1.3}
\end{equation*}
$$

one can get the equivalent definitions of positive centers and ε-positive centers. A point $c \in \operatorname{int} K$ is a positive center of γ if it satisfies

$$
\begin{equation*}
B\left(r_{\text {in }}(c)\right) \geq 0 \quad \text { and } \quad B\left(r_{\text {out }}(c)\right) \geq 0 \tag{1.4}
\end{equation*}
$$

A point $c \in \operatorname{int} K$ is an ε-positive center of γ if there exists an $\varepsilon \geq 0$ such that

$$
\begin{equation*}
B\left(r_{\text {in }}(c)\right) \geq \varepsilon \quad \text { and } \quad B\left(r_{\text {out }}(c)\right) \geq \varepsilon . \tag{1.5}
\end{equation*}
$$

It is obvious that $0 \leq \varepsilon \leq \min \left\{L r_{\text {in }}-A-\pi r_{\text {in }}^{2}, L r_{\text {out }}-A-\pi r_{\text {out }}^{2}\right\}$ and an ε-positive center must be a positive center.
The purpose of this paper is to describe the ε-positive center set and give a positive answer to Kaiser's conjecture for convex curves. As applications of ε-positive centers, we investigate the ε-positive center sets of constant width curves and give a shorter proof of a geometric inequality that is appeared in [8].

2. Preliminaries

Let E and F be two compact sets in \mathbb{R}^{2}, D the unit disk. The Minkowski sum of E and F is defined by

$$
E+F=\{x+y \mid x \in E, y \in F\}
$$

The Minkowski sum of a disk and a line segment is called a sausage body (cf. [9]), its boundary is called a sausage curve. Let K be a convex domain with perimeter L and area A. The area of the outer parallel body of K at distance $t, K+t D(t \geq 0)$, can be given by

$$
\begin{equation*}
A_{K}(t) \triangleq A(K+t D)=A+L t+\pi t^{2} \tag{2.1}
\end{equation*}
$$

which is called the Steiner polynomial of K. If the boundary of $K, \partial K$, is a strictly convex and C^{2} curve, then the area of $K+t D$ can be expressed in terms of the support function $h(\theta)$ of ∂K as

$$
\begin{equation*}
A_{K}(t)=\frac{1}{2} \int_{0}^{2 \pi}\left((h(\theta)+t)^{2}-h^{\prime}(\theta)^{2}\right) \mathrm{d} \theta \tag{2.2}
\end{equation*}
$$

The Minkowski difference of E and F is defined by

$$
E \sim F=\left\{x \in \mathbb{R}^{2} \mid x+F \subseteq E\right\}
$$

If E and F are both convex domains, then so is $E \sim F$. For convex domains E and F we say that F is a summand of E if there is a convex domain M such that $E=F+M$. It is clear that $(E+F) \sim F=E$ holds for any convex domains E and F, while $(E \sim F)+F=E$ holds if and only if F is a summand of E. Denote by $r_{\text {in }}$ the inradius of a convex domain E. The set

$$
E_{-\lambda} \triangleq E \sim \lambda D, \quad 0 \leq \lambda \leq r_{\text {in }}
$$

is called an inner parallel body of E at distance λ.
If there exists an ε-positive center, then it is clear that the equation $B(r)=\varepsilon$ has two non-negative real roots. We denote them by $r_{1}(\varepsilon)$ and $r_{2}(\varepsilon)$ with $r_{1}(\varepsilon) \leq r_{2}(\varepsilon)$.

In the following, "convex curve" means "closed convex plane curve", the set of all positive centers of a convex curve γ is denoted by $\mathfrak{P}(\gamma)$ and that of all ε-positive centers is denoted by $\mathfrak{P}_{\varepsilon}(\gamma)$, and $C(x, r)$ represents the circle with radius r and centered at x.

Fig. 1. Symmetry.

3. The ε-positive center and Kaiser's conjecture

In this section, we will show that the ε-positive center set of a convex curve is a non-empty convex set. Firstly, we introduce a lemma about the positive center set for centrally symmetric convex curves.

Lemma 3.1. (See [10].) If γ is a convex curve centrally symmetric with respect to point 0 , then o is the center of the minimal annulus of γ and $\mathfrak{P}(\gamma)$ is a centrally symmetric domain with the same symmetry center o.

Proposition 3.2. If a convex curve γ is neither a circle nor a sausage curve, then $o \in \operatorname{int} \mathfrak{P}(\gamma)$, where o is the center of the minimal annulus of γ.

To prove the above proposition, we need the following lemma, which is a direct consequence of Proposition 1.6 and Theorem 1.8 of Gage [6].

Lemma 3.3. (See [6].) Let γ be a convex plane curve, o the center of its minimal annulus. If $s, t \in \gamma \cap C\left(o, r_{\mathrm{in}}(0)\right)$ and $S, T \in \gamma \cap$ $C\left(o, r_{\text {out }}(0)\right)$ and the line segments $\overline{s t}$ and $\overline{S T}$ satisfy $\overline{s t} \cap \overline{S T} \neq \emptyset$, then there is a line l with the following properties:
(i) $I \cap K$ is a line segment with o as its midpoint, where K is the domain enclosed by γ;
(ii) the points s and t lie on different sides of l, and so do S and T.

Proof of Proposition 3.2. From [10, Theorems 2.6 and 2.7], we have known that int $\mathfrak{P}(\gamma) \neq \emptyset$ when γ is neither a circle nor a sausage curve. Since the center o of the minimal annulus of γ must be a point of $\mathfrak{P}(\gamma), o \in \operatorname{int} \mathfrak{P}(\gamma)$ or $o \in \partial \mathfrak{P}(\gamma)$. If $o \in \partial \mathfrak{P}(\gamma)$, then γ is not symmetric with respect to o by Lemma 3.1. The domain K enclosed by γ can be cut into two parts by a chord through o as shown in Fig. 1a by Lemma 3.3. Denote by L_{i} and $A_{i}(i=1,2)$ the length and the area of the two parts, respectively. Through a symmetrization of the two parts with respect to o, we obtain two centrally symmetric domains K_{1} and K_{2} as shown in Figs. 1b and 1c. It is obvious that the $r_{\text {in }}(o)$ s in these three figures are equal and so are $r_{\text {out }}(0) \mathrm{s}$.

Since K_{1} is convex, from Lemma 3.1, we have

$$
2 L_{1} r_{\text {in }}(o)-2 A_{1}-\pi r_{\mathrm{in}}^{2}(o) \geq 0, \quad 2 L_{1} r_{\text {out }}(o)-2 A_{1}-\pi r_{\text {out }}^{2}(o) \geq 0
$$

As for K_{2}, as it is unnecessarily convex, we consider its convex hull $\widetilde{\sim}_{2}$, denote its perimeter and area by \widetilde{L}_{2} and \widetilde{A}_{2}, respectively. Again by Lemma 3.1 and the fact that $\widetilde{L}_{2} \leq 2 L_{2}$ and $\widetilde{A}_{2} \geq 2 A_{2}$, we get

$$
\begin{aligned}
& 2 L_{2} r_{\text {in }}(0)-2 A_{2}-\pi r_{\text {in }}^{2}(0) \geq \widetilde{L}_{2} r_{\text {in }}(0)-\widetilde{A}_{2}-\pi r_{\text {in }}^{2}(0) \geq 0 \\
& 2 L_{2} r_{\text {out }}(0)-2 A_{2}-\pi r_{\text {out }}^{2}(0) \geq \widetilde{L}_{2} r_{\text {out }}(o)-\widetilde{A}_{2}-\pi r_{\text {out }}^{2}(o) \geq 0
\end{aligned}
$$

Hence

$$
\begin{aligned}
& B\left(r_{\text {in }}(o)\right)=L r_{\text {in }}(o)-A-\pi r_{\text {in }}^{2}(o) \geq 0, \\
& B\left(r_{\text {out }}(o)\right)=L r_{\text {out }}(o)-A-\pi r_{\text {out }}^{2}(o) \geq 0 .
\end{aligned}
$$

From [10, Theorem 2.1] and the fact that $0 \in \partial \mathfrak{P}(\gamma)$, it follows that $B\left(r_{\text {in }}(0)\right)=0$ or $B\left(r_{\text {out }}(0)\right)=0$.
If $B\left(r_{\text {in }}(o)\right)=0$, then

$$
\begin{aligned}
& 2 L_{1} r_{\mathrm{in}}(o)-2 A_{1}-\pi r_{\mathrm{in}}^{2}(o)=0 \\
& 2 L_{2} r_{\mathrm{in}}(o)-2 A_{2}-\pi r_{\text {in }}^{2}(o)=\widetilde{L}_{2} r_{\mathrm{in}}(o)-\widetilde{A}_{2}-\pi r_{\mathrm{in}}^{2}(o)=0 .
\end{aligned}
$$

Therefore, $\widetilde{K}_{2}=K_{2}$. Since K_{1} and K_{2} are centrally symmetric with respect to $o, r_{\text {in }}=r_{\text {in }}(0)$ and $r_{\text {out }}=r_{\text {out }}(o)$, which implies that ∂K_{1} is a circle or a sausage curve, so is ∂K_{2}. If either ∂K_{1} is a circle and ∂K_{2} is a sausage curve or ∂K_{1} is a sausage

Fig. 2. $r_{\text {in }}\left(c_{3}\right)$ and $r_{\text {out }}\left(c_{3}\right)$.
curve and ∂K_{2} is a circle, then it contradicts the fact that K_{1} and K_{2} have the same $r_{\text {in }}(o)$ and $r_{\text {out }}(0)$. If both ∂K_{1} and ∂K_{2} are circles or sausage curves, then γ must be a circle or a sausage curve, which is a contradiction of the fact that γ is not centrally symmetric.

If $B\left(r_{\text {out }}(o)\right)=0$, a similar argument implies that γ is a circle, which is impossible. Therefore, $o \in \operatorname{int} \mathfrak{P}(\gamma)$.
Theorem 3.4. If a convex curve γ is neither a circle nor a sausage curve, then there exists a positive number $\varepsilon>0$ such that $\mathfrak{P}_{\varepsilon}(\gamma) \neq \emptyset$.
Proof. By Proposition 3.2, one can see that

$$
B\left(r_{\text {in }}(0)\right)>0 \quad \text { and } \quad B\left(r_{\text {out }}(0)\right)>0,
$$

where o is the center of the minimal annulus of γ. It follows from the continuities of $r_{\text {in }}(\cdot), r_{\text {out }}(\cdot), B\left(r_{\text {in }}(\cdot)\right)$ and $B\left(r_{\text {out }}(\cdot)\right)$ that there exists an $\varepsilon>0$ such that

$$
B\left(r_{\text {in }}(o)\right) \geq \varepsilon \quad \text { and } \quad B\left(r_{\text {out }}(o)\right) \geq \varepsilon .
$$

Hence, $o \in \mathfrak{P}_{\varepsilon}(\gamma)$, that is to say, $\mathfrak{P}_{\varepsilon}(\gamma) \neq \emptyset$.
Remark 3.5. This theorem gives a positive answer to Conjecture (i) of Kaiser.
Corollary 3.6. If γ is a strictly convex non-circular curve, then there exists an $\varepsilon>0$ such that $\mathfrak{P}_{\varepsilon}(\gamma) \neq \emptyset$.
To prove the convexity of the ε-positive center set of a convex curve, we need the following lemma.
Lemma 3.7. Let γ be a convex curve. If c_{1} and c_{2} are two ε-positive centers of γ, then for any point c_{3} on line segment $\overline{c_{1} c_{2}}$, one can get

$$
B\left(r_{\text {in }}\left(c_{3}\right)\right) \geq \varepsilon \quad \text { and } \quad B\left(r_{\text {out }}\left(c_{3}\right)\right) \geq \varepsilon
$$

Proof. Let $C\left(c_{3}, \widetilde{r}_{\text {in }}\left(c_{3}\right)\right)$ be the largest inscribed circle of the convex hull of circles $C\left(c_{1}, r_{\text {in }}\left(c_{1}\right)\right)$ and $C\left(c_{2}, r_{\text {in }}\left(c_{2}\right)\right)$, $C\left(c_{3}, \tilde{r}_{\text {out }}\left(c_{3}\right)\right)$ the circle that contains the two intersection points of the circles $C\left(c_{1}, r_{\text {out }}\left(c_{1}\right)\right)$ and $C\left(c_{2}, r_{\text {out }}\left(c_{2}\right)\right)$ (see Fig. 2). Since γ is convex, for the case $r_{\text {in }}(\cdot), \gamma$ contains circles $C\left(c_{1}, r_{\text {in }}\left(c_{1}\right)\right), C\left(c_{2}, r_{\text {in }}\left(c_{2}\right)\right)$ and $C\left(c_{3}, \tilde{r}_{\text {in }}\left(c_{3}\right)\right)$; for the case $r_{\text {out }}(\cdot)$, circles $C\left(c_{1}, r_{\text {out }}\left(c_{1}\right)\right), C\left(c_{2}, r_{\text {out }}\left(c_{2}\right)\right)$ and $C\left(c_{3}, \tilde{r}_{\text {out }}\left(c_{3}\right)\right)$ contain γ. From Fig. 2, it is clear that

$$
\begin{align*}
& \min \left\{r_{\text {in }}\left(c_{1}\right), r_{\text {in }}\left(c_{2}\right)\right\} \leq \tilde{r}_{\text {in }}\left(c_{3}\right) \leq r_{\text {in }}\left(c_{3}\right), \tag{3.1}\\
& r_{\text {out }}\left(c_{3}\right) \leq \widetilde{r}_{\text {out }}\left(c_{3}\right)<\max \left\{r_{\text {out }}\left(c_{1}\right), r_{\text {out }}\left(c_{2}\right)\right\} . \tag{3.2}
\end{align*}
$$

From (3.1) and (3.2) it follows that

$$
r_{1}(\varepsilon) \leq \min \left\{r_{\text {in }}\left(c_{1}\right), r_{\text {in }}\left(c_{2}\right)\right\} \leq r_{\text {in }}\left(c_{3}\right) \leq r_{\text {out }}\left(c_{3}\right) \leq \max \left\{r_{\text {out }}\left(c_{1}\right), r_{\text {out }}\left(c_{2}\right)\right\} \leq r_{2}(\varepsilon)
$$

Thus

$$
B\left(r_{\text {in }}\left(c_{3}\right)\right) \geq \varepsilon \quad \text { and } \quad B\left(r_{\text {out }}\left(c_{3}\right)\right) \geq \varepsilon
$$

Theorem 3.8. If γ is a convex curve, then $\mathfrak{P}_{\varepsilon}(\gamma)$ is a closed convex set for any $\varepsilon \geq 0$. Moreover, if $\mathfrak{P}_{\varepsilon}(\gamma) \neq \emptyset$, then for any boundary point c of $\mathfrak{P}_{\varepsilon}(\gamma)$, at least one of $B\left(r_{\text {in }}(c)\right)=\varepsilon$ and $B\left(r_{\text {out }}(c)\right)=\varepsilon$ holds.

Proof. From the definition of ε-positive centers and the continuity of $B(r)$, it follows that there exists a maximum of ε, denoted by $\varepsilon_{\max }$, such that $\mathfrak{P}_{\varepsilon}(\gamma)$ is not an empty set. If $\varepsilon>\varepsilon_{\max }$, then $\mathfrak{P}_{\varepsilon}(\gamma)=\emptyset$. If $0 \leq \varepsilon \leq \varepsilon_{\max }$, then it is clear that $\mathfrak{P}_{\varepsilon}(\gamma)$ is closed. Next, we deal with its convexity. If $\mathfrak{P}_{\varepsilon}(\gamma)$ has only one point, its convexity is obvious. If $\mathfrak{P}_{\varepsilon}(\gamma)$ has more than one point, then Lemma 3.7 can yield that $\mathfrak{P}_{\varepsilon}(\gamma)$ is a convex set. And therefore, for any boundary point c of $\mathfrak{P}_{\varepsilon}(\gamma)$, at least one of $B\left(r_{\text {in }}(c)\right)=\varepsilon$ and $B\left(r_{\text {out }}(c)\right)=\varepsilon$ holds when $0 \leq \varepsilon \leq \varepsilon_{\max }$.

4. Applications

As an application of ε-positive centers, we describe the ε-positive center sets of constant width curves. We need the following lemma about constant width curves; its proof can be found in [10].

Lemma 4.1. (See [10].) If γ is a curve of constant width w and K is the domain enclosed by γ, then

$$
r_{\text {in }}(c)+r_{\text {out }}(c)=w, \quad c \in K
$$

Proposition 4.2. If γ is a curve of constant width w with area A, then for any $\varepsilon \in\left[0, \pi w r_{\text {in }}-A-\pi r_{\mathrm{in}}^{2}\right]$, we have
(i) $\mathfrak{P}_{\varepsilon}(\gamma)$ is its inner parallel body $K_{-r_{1}(\varepsilon)}$, where $r_{1}(\varepsilon)$ is the smaller root of $\pi w r-A-\pi r^{2}=\varepsilon$. Moreover, if $\varepsilon=\pi w r_{\mathrm{in}}-A-\pi r_{\mathrm{in}}^{2}$, then $\mathfrak{P}_{\varepsilon}(\gamma)$ has only one point, which is just the center o of the minimal annulus of γ;
(ii) $B\left(r_{\text {in }}(c)\right)=B\left(r_{\text {out }}(c)\right)=\varepsilon$ holds for each boundary point c of $\mathfrak{P}_{\varepsilon}(\gamma)$.

Proof. (i) Let K be the domain bounded by γ. Since γ is a curve of constant width w, by Lemma 4.1, we have

$$
\begin{equation*}
r_{\text {in }}(c)+r_{\text {out }}(c)=w, \quad c \in K \tag{4.1}
\end{equation*}
$$

For any $\varepsilon \in\left[0, \pi w r_{\text {in }}-A-\pi r_{\text {in }}^{2}\right]$, the quadratic equation $B(r)=\varepsilon$ has two real roots $r_{1}(\varepsilon), r_{2}(\varepsilon)$ and

$$
\begin{equation*}
r_{1}(\varepsilon)+r_{2}(\varepsilon)=w \tag{4.2}
\end{equation*}
$$

Eqs. (4.1) and (4.2) imply that $r_{\text {in }}(c)$ and $r_{\text {out }}(c)$ are symmetric with respect to $\frac{w}{2}$ and so are $r_{1}(\varepsilon)$ and $r_{2}(\varepsilon)$. Thus, if $r_{\text {in }}(c) \geq r_{1}(\varepsilon)$, then $r_{\text {out }}(c) \leq r_{2}(\varepsilon)$. It follows from the definitions of $\mathfrak{P}_{\varepsilon}(\gamma)$ and inner parallel body that $\mathfrak{P}_{\varepsilon}(\gamma)$ is the inner parallel body $K_{-r_{1}(\varepsilon)}$ of K.

If $\varepsilon=\pi w r_{\text {in }}-A-\pi r_{\text {in }}^{2}$, then it is clear that the center o of the minimal annulus of γ is the only point of $\mathfrak{P}_{\varepsilon}(\gamma)$.
(ii) Since $r_{\text {in }}(c)$ and $r_{\text {out }}(c)$ are symmetric with respect to $\frac{w}{2}, B\left(r_{\text {in }}(c)\right)=B\left(r_{\text {out }}(c)\right)$, which together with Theorem 3.8 yields that $B\left(r_{\text {in }}(c)\right)=B\left(r_{\text {out }}(c)\right)=\varepsilon$ holds for any boundary point c of $\mathfrak{P}_{\varepsilon}(\gamma)$.

Motivated by Jetter's idea in [11], we give a different proof of Theorem 1.10 of [8] through ε-positive center and Blaschke's rolling theorem (cf. [15, Corollary 3.2.10]).

Proposition 4.3. If γ is a strictly convex non-circular C^{2} curve with length L and area A, then

$$
-\rho_{\max }<t_{2}<-r_{\text {out }}<-\frac{L}{2 \pi}<-r_{\text {in }}<t_{1}<-\rho_{\min }<0
$$

where $\rho_{\max }$ and $\rho_{\min }$ are the maximum and minimum curvature radii of γ, r_{in} and $r_{\text {out }}$ are the inradius and circumradius of γ, t_{1} and t_{2} are the roots of the Steiner polynomial of domain K enclosed by γ.

Proof. Since $r_{\text {in }} D \subseteq K \subseteq r_{\text {out }} D, r_{\text {in }} \leq \frac{L}{2 \pi} \leq r_{\text {out }}$ and the equalities hold if and only if K is a disk, that is, γ is a circle. From Corollary 3.6 , there exists an $\varepsilon>0$ such that $\mathfrak{P}_{\varepsilon}(\gamma) \neq \emptyset$. For any point c of $\mathfrak{P}_{\varepsilon}(\gamma)$, we have

$$
B\left(r_{\text {in }}(c)\right)>0 \quad \text { and } \quad B\left(r_{\text {out }}(c)\right)>0
$$

Thus, $-r_{\text {in }} \leq-r_{\text {in }}(c)<t_{1}$ and $t_{2}<-r_{\text {out }}(c) \leq-r_{\text {out }}$.
Denote by $h(\theta)$ the support function of γ. Let $0 \leq m \leq \rho_{\min }$. It follows from the Blaschke rolling theorem (cf. [15, Corollary 3.2.10]) that $(K \sim m D)+m D=K$, hence $h_{K \sim m D}=h_{K}-m$. By (2.2), we obtain

$$
A_{K \sim m D}(t)=\frac{1}{2} \int_{0}^{2 \pi}\left((h(\theta)-m+t)^{2}-h^{\prime}(\theta)^{2}\right) \mathrm{d} \theta=A_{K}(t-m)
$$

From the fact that t_{1}, t_{2} are the two roots of $A_{K}(t)=0$, it follows that $t_{1}+m$ and $t_{2}+m$ are roots of $A_{K \sim m D}(t)=0$. Since for any convex domain $K, A_{K}(t)=0$ has two non-positive real roots, we have $t_{1}+m \leq 0$ and the inequality is sharp when the area of K is positive. Hence, $t_{1} \leq-m, \forall m \leq \rho_{\min }$. Set $m=\rho_{\min }$, we get $t_{1} \leq-\rho_{\min }$. From the above discussions, $r_{\text {in }}>\rho_{\min }$, which implies that the area of $K \sim \rho_{\min } D$ is positive, and thus $t_{1}<-\rho_{\min }$. Similarly, let $m \geq \rho_{\max }$, we can get $-\rho_{\max }<t_{2}$.

Acknowledgement

We are grateful to the anonymous referee for his or her careful reading of the original manuscript of this paper and giving us some invaluable comments.

References

[1] T. Bonnesen, Les Problèmes des Isopérimètres et des Isépiphanes, Gauthier-Villars, Paris, 1929.
[2] K.J. Böröczky, E. Lutwak, D. Yang, G. Zhang, The log-Brunn-Minkowski inequality, Adv. Math. 231 (2012) 1974-1997.
[3] Y.D. Burago, V.A. Zalgaller, Geometric Inequalities, Springer-Verlag, Berlin, 1988.
[4] M.E. Gage, An isoperimetric inequality with applications to curve shortening, Duke Math. J. 50 (1983) 1225-1229.
[5] M.E. Gage, Curve shortening makes convex curves circular, Invent. Math. 76 (1984) 357-364.
[6] M.E. Gage, Positive centers and the Bonnesen inequality, Proc. Amer. Math. Soc. 110 (1990) 1041-1048.
[7] M.E. Gage, R.S. Hamilton, The heat equation shrinking convex plane curves, J. Differ. Geom. 23 (1986) 69-96.
[8] M. Green, S. Osher, Steiner polynomials, Wulff flows, and some new isoperimetric inequalities for convex plane curves, Asian J. Math. 3 (1999) 659-676.
[9] M. Henk, M.A. Hernández Cifre, On the location of roots of Steiner polynomials, Bull. Braz. Math. Soc. 42 (2011) 153-170.
[10] P.L. Huang, S.L. Pan, Y.L. Yang, Positive center sets of convex curves, Discrete Comput. Geom. 54 (2015) 728-740.
[11] M. Jetter, Bounds on the roots of the Steiner polynomial, Adv. Geom. 11 (2011) 313-317.
[12] M.J. Kaiser, The ε-positive center figure, Appl. Math. Lett. 9 (1996) 67-70.
[13] R. Osserman, Bonnesen-style isoperimetric inequalities, Amer. Math. Mon. 86 (1979) 1-29.
[14] L.A. Santaló, Integral Geometry and Geometric Probability, second edition, Cambridge University Press, Cambridge, 2004,
[15] R. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Encyclopedia of Mathematics and Its Applications, vol. 44, Cambridge University Press, Cambridge, 1993.

[^0]: 새 This work is supported by the National Science Foundation of China (No. 11171254) and a grant of "The First-class Discipline of Universities in Shanghai".

 E-mail addresses: slpan@tongji.edu.cn (S. Pan), 88ylyang@tongji.edu.cn (Y. Yang), huangpingliang@shu.edu.cn (P. Huang).
 http://dx.doi.org/10.1016/j.crma.2015.10.021
 1631-073X/© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

