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In this paper, we study a 4-sublinear Schrödinger–Poisson system with sign-changing 
potential. Under some suitable assumptions, the existence of two nontrivial solutions are 
obtained by using the Morse theory. Our result improves the recent ones of Chen and 
Zhang (2014) [6].

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main results

In this paper, we mainly consider the multiplicity of the nontrivial solutions for the following nonlinear Schrödinger–
Poisson system{ −�u + V (x)u + φu = f (x, u), in R3,

−�φ = u2, in R3,
(1.1)

where the potential V (x) satisfies the following condition:

(V ) V (x) ∈ C(R3) is a bounded function.

Under condition (V ), we consider the following increasing sequence λ1 ≤ λ2 ≤ λ3 ≤ · · · of minimax values defined by

λn := inf
V ∈Vn

sup
u∈V ,u �=0

∫
R3

(|∇u|2 + V u2
)

dx∫
R3 u2 dx

,

where Vn denotes the family of n-dimensional subspaces of C∞
0 (R3). Denote λ∞ = limn→∞ λn . Following [15], λ∞ is the 

bottom of the essential spectrum of −� + V if it is finite and for every n ∈ N the inequality λn < λ∞ implies that λn is an 
eigenvalue of −� + V of finite multiplicity. Throughout this paper, we assume that there exists k ≥ 1 such that
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λk < 0 < λk+1. (1.2)

Problem (1.1) and a similar problem have been widely studied by many researchers in recent years. There are many 
results on the existence, nonexistence or multiplicity of solutions for problem (1.1) with positive potential V (x). For example, 
when V (x) ≡ 1, f (x, u) = a(x)|u|p−1u, Cerami and Vaira [2] employed the Nehari manifold and the linking theorem to 
prove that the problem had a positive solution. Huang et al. [9] considered the problem (1.1) with V (x) ≡ 1 and f (x, u) =
k(x)|u|p−2u + μh(x)u. By the mountain-pass theorem, they verified that the problem has two positive solutions, which 
improves the results of [1]. When f (x, u) = up , Ruiz [16] get both existence and nonexistence of a solution to problem (1.1). 
When V (x) = (1 + μg(x)), f (x, u) = |u|p−1u, Jiang and Zhou [10] proved that the problem has a ground sated solution by 
combining a priori estimates and approximation methods. Chen [4] get the multiple positive solutions to problem (1.1) by 
the variational method. When V (x) �≡ 1, but infR3 V (x) > 0, there are also many results (see, e.g., [18,17,5,21]). For other 
interesting results on the Schrödinger–Poisson system, we refer readers to [12,19,20,11,7,8,13] and references therein.

In a very recent paper [6], Chen and Zhang studied the existence of nontrivial solutions to problem (1.1) under condition 
(V ) and the following assumptions imposed on the nonlinearity f .

( f 1) f ∈ C1(R3 ×R) and there exist p ∈ (2, 6) and c1 > 0 such that

| f (x, t)| ≤ c1(1 + |t|p−1), ∀(x, t) ∈R3 ×R. (1.3)

( f 2) f (x, t) = o(t) as t → 0 uniformly in x ∈ R3.
( f 3) lim sup|t|→∞ F (x,t)

t4 ≤ 0 uniformly in x ∈ R3.
( f 4) There exists 0 < h < λ∞ such that

4F (x, t) ≤ t f (x, t) + ht2, ∀(x, t) ∈R3 ×R, (1.4)

where and in the sequel F (x, u) = ∫
R3 f (x, s) ds.

By using a finite-dimensional approximation method, the authors obtained the following result.

Theorem 1.1. (See [6].) Suppose that (V ) and ( f 1)–( f 4) are satisfied, then the problem (1.1) has a nontrivial solution.

Inspired by [6], in the present paper, we revisit the existence of nontrivial solutions to problem (1.1) under conditions 
(V ), ( f 1), ( f 2) and the following condition:

( f 5) lim sup|t|→∞ F (x,t)
t4 < 0 uniformly in x ∈ R3.

By using the Morse theory, we get two nontrivial solutions. More precisely, the following theorem is our main result in 
this paper.

Theorem 1.2. Suppose that (V ), ( f 1), ( f 2) and ( f 5) are satisfied, then the problem (1.1) has at least two nontrivial solutions.

Remark 1.1. From (V ), one can easily see that the potential V (x) is allowed to be sign-changing. This makes this problem 
more difficult than the positive ones [2,4,18,17,9,5,21], because under our assumption on V (x), the variational functional 
related to problem (1.1) does not satisfy the (PS)-condition in general. We delicately analyze the norm of the working space 
E and use the uniqueness of the limit to overcome this difficulty (see, Lemmas 3.1 and 3.2).

Remark 1.2. From [6], we know that the nonlinearity f (u) = F ′(u) = β ln(1 + |u|3) satisfies the conditions ( f 1), ( f 2), and 
( f 5) if β is a sufficiently small positive number.

Remark 1.3. The condition ( f 4) is a variant version Ambrosetti–Rabinowitz (AR for short) condition that is always assumed 
to prove the boundedness of the Palais–Smale ((PS) for short) sequences of the energy functional. However, in the present 
paper, we can verify the boundedness of (PS) sequences without the condition ( f 4) if the limit in ( f 3) is strictly negative, 
that is, condition ( f 5) holds. Moreover, by using the Morse theory, we obtain two different nontrivial solutions.

The remainder of this paper is organized as follows. In Section 2, some important preliminaries and variational setting 
are presented, while the proofs of the main result are given in Section 3.

2. Preliminaries and variational setting

Throughout this paper, we denote by C , Ci positive constants that may vary from line to line and denote by → (⇀) the 
strong (weak) convergence. E∗ denotes the dual space of E .
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Let

E =
{

u|u ∈ H1(RN), V u2 ∈ L1(R3)
}

.

Corresponding to the eigenvalue λk , we let W − and W + be the negative space and positive space of the quadratic form∫
R3

[|∇u|2 + V (x)u2]dx.

From (1.2), we deduct that E = W − ⊕
W + . For any u, v ∈ E , we define

(u, v) =
∫
R3

(∇û+∇ v̂+ + V (x)̂u+ v̂+)dx −
∫
R3

(∇û−∇ v̂− + V (x)̂u− v̂−)dx,

where u = û+ + û− , v = v̂+ + v̂− , û+, ̂v+ ∈ W + and û−, ̂v− ∈ W − . Then (·, ·) is an inner product in E . Therefore, E is a 
Hilbert space with the norm

‖u‖ = (u, u)
1
2 =

(
‖u+‖2 − ‖u−‖2

) 1
2
.

For u ∈ H1(R3), it is well known that the Poisson equations −�φ = u2 has a unique solution

φ(x) = φu(x) = 1

4π

∫
R3

u2(y)

|x − y|dy, in D1,2(R3).

Now we define a functional J on E by

J (u) = 1

2

∫
R3

[|∇u|2 + V (x)u2]dx + 1

4

∫
R3

φuu2dx −
∫
R3

F (x, u)dx, (2.1)

for all u ∈ E . Under the assumptions (V ) and ( f 1), J is a C1 functional in E and for any u, v ∈ E , the derivative of it is 
given by

〈 J ′(u), v〉 =
∫
R3

[∇u∇v + V (x)uv]dx +
∫
R3

φuuv dx −
∫
R3

f (x, u)v dx. (2.2)

Clearly, if u is a critical point of J , then (u, φu) is the solution to problem (1.1).
Now, we collect some definitions and propositions about Morse theory, which are very useful for us to look for the 

critical points of functional J .
Let E be a real Banach space, J ∈ C1(E, R) and J satisfy (PS)-condition.

Definition 2.1. (See Chang [3].) Let u be an isolated critical point of J with J (u) = c, for c ∈R, and let U be a neighborhood 
of u, containing the unique critical point. We call

Cq( J , u) := Hq( J c ∩ U , J c ∩ U \ {u}), q = 0,1,2, · · · ,

the qth critical group of J at u, where J c := {u ∈ E : J (u) ≤ c}, Hq(·, ·) stands for the qth singular relative homology group 
with integer coefficients.

We say that u is a homological nontrivial critical point of J if at least one of its critical groups is nontrivial.
Let K = {u ∈ E| J ′(u) = 0} be the set of critical point of J and a < inf J (K ). If #K < ∞ then the Morse-type numbers of 

the pair (E, J a) are defined by

Mq := Mq(E, J a) =
∑
u∈K

dim Cq( J , u).

By the Morse theory [14,3] if βq := dim Cq( J , ∞), then

q∑
j=0

(−1)q− j M j ≥
q∑

j=0

(−1)q− jβ j, (2.3)

∞∑
j=0

(−1)q Mq =
∞∑
j=0

(−1)qβq. (2.4)
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The formal expression of the Morse inequality reads as
∞∑
j=0

Mqtq =
∞∑
j=0

βqtq + (1 + t)
∞∑
j=0

aqtq. (2.5)

Remark 2.1. From (2.3), we easily deduce the inequalities Mq ≥ βq for all q ∈ Z. Thus, if βq �= 0 for some q, then J must 
have a critical point, say, w , with Cq( J , w) � 0. If equality (2.4) does not hold, then J must have another critical point 
differing from the known ones and if u, v are two critical points of J and Cq( J , u) � Cq( J , v) for some q, then u �= v .

3. Proofs of the main results

In this section, we are in the position to prove our main result. To complete the proof, we need the following lemmas.

Lemma 3.1. Assume that V (x) satisfies (V ) and the conditions ( f 1), ( f 2) and ( f 5) hold. Then any (PS) sequence {un} ⊂ E is bounded 
in E.

Proof. We first claim that J is coercive in E . In fact, if it is not true, there must exist a constant C > 0 and ‖un‖ → ∞ such 
that J (un) ≤ C as n → ∞. From ( f 5), for any ε > 0, there exist C(ε) > 0 and Rε > 0 such that

F (x, t) ≤ −C(ε)t4 + εt4, if |t| > Rε. (3.1)

By ( f 2), for ε, C1(ε) and Rε in (3.1), we have

F (x, t) ≤ C1(ε)t2, if |t| ≤ Rε. (3.2)

Then, (3.1) and (3.2) yields that

F (x, u) ≤ − (C(ε) − ε) u4 + C1(ε)u2, ∀u ∈ E. (3.3)

Now, we choose h̄ /∈ {λi |1 ≤ i < +∞} such that h̄ ≥ 2C1(ε). Let E− be the space spanned by the eigenfunctions with 
corresponding eigenvalue less than h̄. Then, it is easy to see that dimE− < ∞. Let E+ be the orthogonal complement 
space of E− in E . Then, for every u ∈ E , we have a unique decomposition u = u+ − u− with u+ ∈ E+ and u− ∈ E− . Since 
h̄ /∈ {λi |1 ≤ i < +∞}, then there exists an equivalent norm of E , still denoted by ‖ · ‖, such that∫

R3

|∇un|2 +
∫
R3

V (x)u2
ndx − h̄

∫
R3

u2
ndx = ‖u+

n ‖2 − ‖u−
n ‖2. (3.4)

It follows from (2.1), (3.3) and (3.4) that

J (un) = 1

2

∫
R3

(
|∇un|2 + V (x)u2

n − h̄u2
n

)
dx + 1

4

∫
R3

φun u2
ndx +

∫
R3

[
1

2
h̄u2

n − F (x, un)

]
dx

≥ 1

2
‖u+

n ‖2 − 1

2
‖u−

n ‖2 +
∫
R3

[
1

2
h̄u2

n − F (x, un)

]
dx

≥ 1

2
‖u+

n ‖2 − 1

2
‖u−

n ‖2 +
∫
R3

[
1

2
h̄u2

n − C1(ε)u2
n + (C(ε) − ε)u4

n

]
dx

≥ 1

2
‖u+

n ‖2 − 1

2
‖u−

n ‖2. (3.5)

Let wn = un‖un‖ . Then it follows from (3.5), ‖un‖ → ∞ and J (un) ≤ C that

‖w+
n ‖2 ≤ ‖w−

n ‖2 + o(1). (3.6)

Since ‖wn‖ = 1, then passing to a subsequence, we assume that wn ⇀ w in E and wn → w a.e. in R3. Now, we show that 
w �= 0. Arguing indirectly, assume that w = 0. Then we deduce from the finite dimension of E− that w−

n → 0 in E . This 
together with (3.6) yields wn → 0 in E . Obviously, this is a contradiction with ‖wn‖ = 1 for every n. Hence, w �= 0. By the 
Fatou lemma, we have

lim inf
n→∞ ‖un‖−4

∫
R3

φun u2
ndx ≥

∫
R3

φw w2dx > 0. (3.7)
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Noting that the assumption J (un) ≤ C , then ‖un‖−4 J (un) → 0. Multiplying both sides of the following inequality by ‖un‖−4

and letting n → ∞,

J (un) ≥ 1

2
‖u+

n ‖2 − 1

2
‖u−

n ‖2 + 1

4

∫
R3

φun u2
ndx +

∫
R3

[
1

2
h̄u2

n − C1(ε)u2
n + (C(ε) − ε)u4

n

]
dx

≥ 1

2
‖u+

n ‖2 − 1

2
‖u−

n ‖2 + 1

4

∫
R3

φun u2
ndx,

we have 0 ≥ 1
4

∫
R3 φw w2dx > 0, which is a contradiction. Therefore, J is coercive in E .

Let {un} ⊂ E be a (PS) sequence, i.e., J (un) → c and J ′(un) → 0 in E∗ , as n → ∞. Then J (un) → c implies that {un} is 
bounded since J is coercive. The proof is completed. �
Lemma 3.2. Assume that conditions (V ), ( f 1), ( f 2) and ( f 5) hold. Then J satisfies the (PS)-condition.

Proof. Let {un} be a (PS)c sequence. Then Lemma 3.1 shows that {un} is bounded. By (2.2) and J ′(un) → 0 we have

o(‖un‖) = 〈 J ′(un), un〉
=

∫
R3

[|∇un|2 + V (x)u2
n]dx +

∫
R3

φun u2
n dx −

∫
R3

f (x, un)un dx

= ‖u+
n ‖2 − ‖u−

n ‖2 +
∫
R3

φun u2
n dx −

∫
R3

f (x, un)un dx. (3.8)

Then we deduce from (3.8) that

o(‖un‖) + ‖u−
n ‖2 = ‖u+

n ‖2 +
∫
R3

φun u2
n dx −

∫
R3

f (x, un)un dx. (3.9)

Going if necessary to a subsequence (renamed {un}), we may assume un ⇀ u in E . Then u is a critical point of J . It follows 
that

0 = 〈 J ′(u), u〉 = ‖u+‖2 − ‖u−‖2 +
∫
R3

φuu2 dx −
∫
R3

f (x, u)u dx,

which implies that

‖u−‖2 = ‖u+‖2 +
∫
R3

φuu2 dx −
∫
R3

f (x, u)u dx. (3.10)

Since E− is a finite dimensional subspace of E , we get u−
n → u− , and then ‖u−

n ‖2 → ‖u−‖2. This together with (3.9) and 
(3.10) implies

lim
n→∞

⎡
⎢⎣‖u+

n ‖2 +
∫
R3

φun u2
n dx −

∫
R3

f (x, un)un dx

⎤
⎥⎦ = ‖u+‖2 +

∫
R3

φuu2 dx −
∫
R3

f (x, u)u dx. (3.11)

Furthermore, by the Fatou lemma, we have

lim inf
n→∞

⎡
⎢⎣∫
R3

φun u2
ndx −

∫
R3

f (x, un)undx

⎤
⎥⎦ ≥ lim inf

n→∞

∫
R3

φun u2
ndx − lim sup

n→∞

∫
R3

f (x, un)undx

≥
∫
R3

φuu2dx −
∫
R3

f (x, u)u dx. (3.12)

Followed by (3.11) and (3.12), we have limn→∞ ‖u+
n ‖2 = ‖u+‖2. It follows that un → u in E . The proof is completed. �

Proof of Theorem 1.2. By Lemma 3.2, J satisfies (PS)-condition. Now, we show that J is weakly sequentially lower semi-
continuous. By Lemma 3.1, any (PS) consequence {un} ⊂ E is bounded in E . Thus, we can assume that un ⇀ u in E . Then, 
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we have lim infn→∞ ‖u+
n ‖ ≥ ‖u+‖. Since W − is a finite dimensional space of E , then u−

n → u− in E . So, it follows from the 
Fatou lemma that

lim inf
n→∞ J (un) = lim inf

n→∞

⎡
⎢⎣1

2
‖u+

n ‖2 − 1

2
‖u−

n ‖2 + 1

4

∫
R3

φun u2
ndx −

∫
R3

F (x, un)dx

⎤
⎥⎦

≥ 1

2
‖u+‖2 − 1

2
‖u−‖2 + 1

4

∫
R3

φuu2dx −
∫
R3

F (x, u)dx

= J (u),

which shows that J is weakly sequentially lower semi-continuous in E . Therefore, we get that there exists u∗ ∈ E , such 
that

J (u∗) = inf
E

J (u),

which means that J has global minimizer u∗ . And then by Theorem 4.6 in Chapter I of [3], we have

Cq( J , u∗) = δq,0Z. (3.13)

Since f is C1 function, it follows from (1.2) and ( f 2) that 0 is a non-degenerate critical point of J . By the implicit 
function theorem, we imply that 0 is an isolated critical point of J with Morse index μ0 and nullity ν0. So, by Theorem 4.1 
in Chapter I of [3], we have

Cq( J ,0) = δq,μ0Z. (3.14)

From (3.13), (3.14) and Remark 2.1, we imply that u∗ �= 0. If J does not have any other critical points except for 0 and 
u∗ , i.e., K = {0, u∗}, then equality (2.5) reads as

(−1)μ0+ν0 + (−1)1 = (−1)1. (3.15)

Noticing that μ0 + ν0 �= 0. So, (3.15) can not hold. Therefore, J has at least two nontrivial critical points. The proof is 
completed. �
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