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We prove a simple criterion for transverse linear instability of nonlinear waves for partial 
differential equations in a spatial domain � × R ⊂ R

n × R. For stationary solutions 
depending upon x ∈ � only, the question of transverse (in)stability is concerned with their 
(in)stability with respect to perturbations depending upon (x, y) ∈ � × R. Starting with 
a formulation of the PDE as a dynamical system in the transverse direction y, we give 
sufficient conditions for transverse linear instability. We apply the general result to the 
Davey–Stewartson equations, which arise as modulation equations for three-dimensional 
water waves.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Nous montrons un critère simple d’instabilité transverse linéaire d’ondes non linéaires 
d’équations aux dérivées partielles posées dans un domaine spatial � ×R ⊂ R

n × R. Pour 
des solutions stationnaires dépendant de x ∈ �, la question de l’(in)stabilité transverse 
concerne leur (in)stabilité par rapport à des perturbations dépendantes de (x, y) ∈ � × R. 
En utilisant une formulation de l’équation comme système dynamique par rapport à la 
direction transverse y, nous donnons des conditions suffisantes d’instabilité transverse 
linéaire. Nous appliquons ce résultat aux équations de Davey–Stewartson, qui apparaissent 
comme équations de modulation dans le problème des vagues en trois dimensions.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

We consider partial differential equations of the form

u y = Dut + F (u), (1)
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where the unknown u depends upon the time variable t ∈ R and a space variable y ∈ R, with values in a Banach space X , 
D is a linear operator acting in X and F a nonlinear map. Typically X represents a space of functions defined on a domain 
� ⊂ Rn . In this work we present a simple criterion for the linear instability of y-independent steady solutions of (1) with 
respect to y-dependent perturbations. We refer to such perturbations as transverse perturbations and the corresponding 
(in)stability is called transverse (in)stability. For a y-independent steady solution u∗ to (1), hence satisfying F (u∗) = 0, the 
question of transverse linear instability concerns the existence of growing-in-time solutions to the linearized equation

u y = Dut +Lu, (2)

in which L := dF (u∗) is the differential of F at u∗ . We give sufficient conditions for the existence of solutions to (2) that are 
exponentially growing in time. Our main assumptions are the reversibility of (2) and a condition on the purely imaginary 
spectrum of L.

This criterion allows us to recover several existing results on transverse instability for both periodic and solitary waves, 
as, for instance, the transverse linear instability of solitary and periodic waves for the nonlinear Schrödinger and the 
Kadomtsev–Petviashvili-I equations [7,9,10,12], or for the classical water-wave problem [4,6,8] (see Section 4). Recently, 
Rousset and Tzvetkov [10] obtained a criterion of transverse instability for solitary waves in Hamiltonian systems. Besides 
the Hamiltonian structure, their main assumptions are also spectral conditions for the linearization about the steady wave. 
A key difference with the result here is the starting formulation of the stability problem. Our starting point is a formulation 
of the equations as an evolutionary problem in the transverse direction y, and the reversibility hypothesis concerns this 
formulation, whereas in [10] the system is an evolutionary problem in time t , and the Hamiltonian structure is required for 
this formulation. While the criterion in [10] is more suitable for a further study of the nonlinear transverse instability of 
solitary waves [11], the present result is more convenient for a further study of the bifurcations induced by this transverse 
instability [5,6,8]. The paper is organized as follows. We give the main assumptions and prove the instability result in Sec-
tion 2. Then we use it in Section 3 for the study of the transverse linear instability of a family of periodic solutions to the 
Davey–Stewartson equations. We conclude with a short discussion.

2. The main result

Consider the partial differential equation (1), in which F is a smooth map defined on a subspace Y ⊂ X , and D is a 
linear operator with domain Dom(D) such that Y ⊂ Dom(D). Suppose that u∗ ∈ Y is an equilibrium of the system (1), and 
consider the linearized equation (2) at u∗ . We say that u∗ is transversely linearly unstable if the equation (2) has a solution 
u of the form u : (y, t) �→ eλt v(y), where λ is a complex number with positive real part, v(y) ∈ Y for any y ∈ R, and the 
map y �→ v(y) is bounded on R. We make the following assumptions on (2).

(i) L and D are closed real operators in X with domains Dom(L) = Y ⊂ Dom(D).
(ii) The spectrum σ(L) of the linear operator L contains a pair of isolated purely imaginary eigenvalues ±ik∗, k∗ ∈ R∗ with 

odd algebraic multiplicity.
(iii) The system (2) is reversible, i.e., there exists a linear symmetry R ∈ L(Y ) ∩ L(X) such that R2 = id and R Du =

−D Ru, RLu = −LRu, for all u ∈ Y .

Our main result is the following instability criterion.

Theorem 2.1 (Transverse linear instability criterion). Under the assumptions (i), (ii), (iii), for any sufficiently small positive real num-
ber λ, the system (2) has a solution of the form u : (y, t) �→ eλt v(y), where v(y) ∈ Y , for any y ∈R and the map y �→ v(y) is smooth 
and periodic. Consequently, the equilibrium u∗ is transversely linearly unstable.

Proof. We claim that it is enough to prove that for any sufficiently small λ > 0 the spectrum σ(λD +L) of the real operator 
λD +L contains a pair of purely imaginary eigenvalues ±ik, k ∈ R∗ . Indeed, if w denotes an eigenvector associated with ik, 
its complex conjugate w is an eigenvector associated with −ik, and the function v defined through v(y) = eiky w + e−iky w , 
for all y ∈R, is a real, smooth, periodic solution to the equation

v y = (λD +L)v.

Consequently, the function u defined through u(y, t) = eλt v(y) satisfies (2), which proves the claim.
We show now that the operator λD + L possesses a pair of isolated purely imaginary eigenvalues, for any sufficiently 

small λ > 0. Since the spectrum of L contains a pair of isolated purely imaginary eigenvalues of odd algebraic multiplicity, 
and since D is a relatively bounded perturbation of L, a standard perturbation argument implies that for any λ > 0 suffi-
ciently small, there exist two neighborhoods of ±ik∗ , each containing an odd number of eigenvalues of λD +L, counted with 
their algebraic multiplicity. Then the reversibility of the linearized system (2) implies that R anticommutes with λD + L. 
Consequently, the spectrum σ(λD + L) is symmetric with respect to the origin. Moreover, the operator λD + L is real, 
so that σ(λD + L) is symmetric with respect to the real axis. We deduce that σ(λD + L) is symmetric with respect to 
the imaginary axis. Then at least one pair of the eigenvalues close to the ±ik∗ above will be purely imaginary, since their 
number is odd. This completes the proof of the theorem. �
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Remark 1. This result can be easily extended to systems of the form

u y = P u + F (u), P =
n∑

k=1

Dk∂
(k)
t ,

in which D1, . . . , Dn are closed linear operators whose domains contain Y and ∂(k)
t represents the differential operator of 

order k with respect to t (see also [6]).

3. Application: periodic waves of the Davey–Stewartson equations

Consider the Davey–Stewartson equations

iAt + Axx + αA yy + λA + δBx A + γ |A|2 A = 0, (3)

Bxx + νB yy + μ
(
|A|2

)
x
= 0, (4)

where the unknowns A and B are complex- and real-valued functions, respectively, depending on the space variables x, y
and the time t , and where the coefficients α, λ, δ, γ , μ and ν are real. The system (3)–(4) arises as a model in the 
water-wave problem, approximately describing three-dimensional gravity-capillary waves (see [1]). The dynamics of the 
solutions to (3)–(4) strongly depends on the signs of the coefficients α, δ, μ and ν . Following [1], we focus on the three 
following cases, which are relevant for the water-wave problem:

– Case 1: α > 0, δ < 0, μ > 0 and ν > 0.
– Case 2: α > 0, δ < 0, μ < 0 and ν < 0.
– Case 3: α < 0, δ > 0, μ > 0 and ν > 0.

Our goal is to study the transverse linear instability of a family of y-independent periodic steady waves of (3)–(4). We check 
that the assumptions (i), (ii) and (iii) in Theorem 2.1 hold.

The system (3)–(4) has a family of one-dimensional periodic solutions (A∗, B∗), given by

A∗(x) = a0eikx, B∗
x = χ − μ |a0|2 ,

with k2 = (γ − δμ) |a0|2 +λ + δχ , where χ is an arbitrary constant (see [3]). Since the system (3)–(4) is invariant under the 
change Bx �−→ Bx + χ , λ �−→ λ + δχ , without loss of generality, we may assume that χ = 0. Notice that the system (3)–(4)
is invariant under multiplication of the complex variable A by eiθ , θ ∈R, so that we can restrict to the case a0 ∈ R.

In order to study the transverse stability of 
(

A∗, B∗), we set

A(x, y, t) = A∗(x) [1 + a(x, y, t)] , Bx(x, y, t) = B∗
x + b(x, y, t), (5)

where the functions a and b are assumed to be periodic with respect to x, with wavenumber K , and b has zero mean. 
Notice that the perturbations A∗a and b belong to a rather general class. In particular, these perturbations are periodic in x
with the same period as (A∗, B∗) if K = nk, for some n ∈ Z. Then a and b satisfy the nonlinear system:

ayy = − 1

α

(
iat + axx + 2ikax + γ a2

0

(
a + a

) + δb + δab + γ a2
0

(
a2 + 2aa + a2a

))
, (6)

byy = − 1

ν

(
bxx + μa2

0

(
a + a

)
xx + μa2

0

(
aa

)
xx

)
. (7)

With this formulation, the steady solution (A∗, B∗) of the system (3)–(4) corresponds to the trivial equilibrium (0, 0) of 
(6)–(7).

Next we set a = ar + iai , ay = ãr + ĩai , by = b̃ and U = (
ar, ai, b, ãr, ãi, b̃

)T
, so that the system (6)–(7) is written in 

the form (1), with D and F (U ) that can be easily computed from (6)–(7). Linearizing this system at the origin, we find a 
system of the form (2) with

L = dF (0) =
(

03 I3
C 03

)
, C =

⎛
⎜⎜⎝

− 1
α (∂xx + 2γ a2

0)
2
α k∂x − δ

α

− 2
α k∂x − 1

α ∂xx 0

− 2
ν μa2

0∂xx 0 − 1
ν ∂xx

⎞
⎟⎟⎠ ,

where 03 is the zero matrix of order 3 and I3 is the identity matrix of order 3. For the function space X we choose the set 

X =
(

H1
per

)2 × H̃1
per ×

(
L2

per

)2 × L̃2
per, where
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L2
per =

{
v ∈ L2

loc(R), v

(
x + 2π

K

)
= v(x), for a.e. x ∈R

}
,

H j
per =

{
v ∈ H j

loc(R), v

(
x + 2π

K

)
= v(x),∀ x ∈ R

}
, for j ∈N∗,

and L̃2
per ⊂ L2

per, ˜H j
per ⊂ H j

per are the subspaces consisting of functions with zero mean.

Theorem 3.1. The periodic wave (A∗, B∗) is transversely linearly unstable with respect to perturbations of the form (5) in Case 1 if 
K 2 − 2(3k2 − λ) < 0, or if K 2 − 2(3k2 − λ) > 0 and γ > 0, and in Cases 2 and 3.

Proof. We apply Theorem 2.1 and check that the assumptions (i), (ii) and (iii) are satisfied by L and D .

With the choice of X above, the operator L is closed with domain Y =
(

H2
per

)2 × H̃2
per ×

(
H1

per

)2 × H̃1
per. Furthermore D

is a bounded operator in X , so that the assumption (i) is satisfied. Next, the linearized system is reversible, since L and D
anti-commute with the linear symmetry R = diag (1,1,1,−1,−1,−1). This proves the assumption (iii). It remains to check 
the assumption (ii) and show that the spectrum of the operator L contains at least one pair of purely imaginary eigenvalues 
with odd algebraic multiplicity.

The compact embedding Y ⊂ X ensures that the spectrum σ(L) of L is a discrete set of isolated eigenvalues with finite 
multiplicities. Using Fourier series, we obtain that σ(L) is the set of the roots of the polynomials

Pn = s6 − p4s4 + p2s2 − n4 K 4(n2 K 2 − 2(3k2 − λ))

να2
,

for n ∈ Z, where

p4 = n2 K 2(α + 2ν) − 2νγ a2
0

να
, p2 = n2 K 2

[
2α(n2 K 2 − (γ − δμ)a2

0) + ν(n2 K 2 − 2(2k2 + γ a2
0))

]
να2

.

Notice that Pn = P−n , so that the eigenvalues of L have even algebraic multiplicity. In order to check the assumption (ii), 
which requires purely imaginary eigenvalues with odd algebraic multiplicity, we restrict the analysis to the invariant sub-
space

Xr = {
(ar, ai, b, ãr, ãi, b̃) ∈ X

∣∣ ar, b, ãr, b̃ even functions, ai, ãi odd functions
}
.

With this restriction, for n 	= 0, we can count the multiplicity of the eigenvalues of L from the roots of Pn , with n > 0. 
When n = 0 we are left with the two eigenvalues ±

√
−2γ a2

0/α, which are purely imaginary if αγ > 0.

Case 1. This case has been analyzed in [3]. The results in [3] imply that the spectrum σ(L) contains a pair of simple 
purely imaginary eigenvalues and prove the result in this case.

Case 2. Suppose that α > 0, δ < 0, μ < 0 and ν < 0. If n is large enough, the cubic polynomial Pn possesses a simple 
negative root s2

0,n and two positive roots s2
1,n and s2

2,n . The negative root s2
0,n has the asymptotic expansion

s2
0,n = n2 K 2

ν
+ O (1) ,

as n tends to +∞. In particular, the sequence 
(

s2
0,n

)
n�1

is strictly decreasing when n is large enough, so that the negative 

roots s2
0,n1

and s2
0,n2

are distinct for n1 	= n2 sufficiently large. Consequently, for n large enough, the spectrum of L contains 
at least one pair of simple purely imaginary eigenvalues, and proves the result in Case 2.

Case 3. Suppose that α < 0, δ > 0, μ > 0 and ν > 0. For n sufficiently large, the cubic polynomial Pn possesses, in this 
case, two distinct negative roots s2

1,n, s2
2,n and one positive root s2

0,n . Using the Newton polygon method (e.g., see [2]) we 
find the asymptotic expansion of the negative roots

s2
1,n = n2 K 2

α
− 2k

α
|nK | + O (1) , s2

2,n = n2 K 2

α
+ 2k

α
|nK | + O (1) ,

as n tends to +∞. Using the fact that the sequences 
(

s2
1,n

)
n�1

and 
(

s2
2,n

)
n�1

are strictly decreasing when n is large enough, 

we conclude that these roots are simple and distinct for n1 	= n2. As in the previous case, this implies that L possesses at 
least one pair of simple purely imaginary eigenvalues, which completes the proof of the theorem. �
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4. Discussion

Solitary waves. As mentioned in the introduction, our result can also be used to show transverse instability for solitary 
waves. A simple example is the Kadomtsev–Petviashvili-I equation

u yy = (ut + uxxx + uux)x,

which possesses a family of one-dimensional traveling solitary waves of the form u(x, y, t) = u∗(x − ct). It turns out that 
the linearized equation at u∗ can be written in the form (2), with L and D satisfying the assumptions (i)–(iii). In particular, 
the spectrum of L consists of the real line and a pair of simple, isolated purely imaginary eigenvalues. This result easily 
follows from the fact that the spectrum of the operator L0 = ∂xxxx − ∂xx + ∂xx(u∗·) is the positive real axis [0, +∞) and a 
simple, isolated negative eigenvalue (see [10]). Our result allows us to recover the result in [10], showing that u∗ is linearly 
transversely unstable.

Dimension breaking bifurcations. Our main result is a criterion for transverse linear instability of nonlinear waves (for 
instance periodic or solitary waves). A related issue is the one of bifurcations induced by this transverse linear instability 
(also called dimension-breaking bifurcations). In fact, the formulation of the equation (1) as a dynamical system is motivated 
by this issue. This bifurcation problem is concerned with solutions to the steady nonlinear equation

u y = F (u), (8)

which are close to the y-independent solution u∗ . If u∗ is transversely linearly unstable, in the sense of Theorem 2.1, we 
expect bifurcations of periodic solutions for the system (8), due to the presence of a pair of purely imaginary eigenvalues 
in the spectrum of the linear operator L = dF (u∗). This spectral assumption, alone, is too weak to allow the study of such 
bifurcations, but under additional assumptions, they may be investigated with the help, for instance, of a center manifold 
reduction or the Lyapunov center theorem. We refer to [3,5,6,8] for results on dimension breaking bifurcations obtained in 
this way.
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