Functional analysis

## KK-theory of A-valued semi-circular systems

# KK-théorie des systèmes semi-circulaires A-valués 

Emmanuel Germain ${ }^{\text {a }}$, Pierre Umber ${ }^{\text {b }}$<br>${ }^{\text {a }}$ LMNO UMR 6139, Université de Caen et CNRS, France<br>${ }^{\mathrm{b}}$ ENS Lyon, France

## A R TICLE INFO

## Article history:

Received 10 July 2015
Accepted after revision 21 October 2015
Available online 7 December 2015
Presented by Alain Connes

## A B S TRACT

We compute in this article the KK-theory of A-valued semi-circular systems thanks to tools developed by Pimsner (see [1]) to study generalized Toeplitz algebras.
© 2015 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

## R É S U M É

On calcule dans cet article la KK-théorie de systèmes semi-circulaires A-valués à l'aide d’outils développés par Pimsner (voir [1]) pour étudier les algèbres de Toeplitz généralisées. © 2015 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

To begin with, we will need a result in Hilbert module theory.
Proposition 0.1. Let $A, C$ be $C^{*}$-algebras, $B$ a sub-C*-algebra of $C, E$ a Hilbert module over $A$, and $\phi: A \rightarrow B a^{*}$-morphism. Let $j: B \rightarrow C$ be the inclusion, $\psi \stackrel{\text { def }}{=} j \circ \phi$ and $E_{0} \stackrel{\text { def }}{=} \overline{\left.\sum x_{i} \otimes b_{i}, x_{i} \in E, b_{i} \in B\right\}} \subset E \otimes_{\psi} C$. Then $E_{0}$ is naturally endowed with a structure of Hilbert module over $B$ and $E_{0} \simeq E \otimes_{\phi} B$.

Indeed, let $x_{i}, x_{k}^{\prime} \in E, b_{i}, b_{k}^{\prime} \in B$. We have:

$$
<\sum x_{i} \otimes b_{i}, \sum x_{k}^{\prime} \otimes b_{k}^{\prime}>=\sum_{i, k} b_{i}^{*} \phi\left(<x_{i}, x_{k}^{\prime}>\right) b_{k}^{\prime} \in B
$$

As $B$ is closed in $C$, we have: $\forall x, y \in E_{0},<x, y>\in B$. As a result, $E_{0}$ is naturally endowed with a structure of pre-Hilbert module over $B$, which is complete because $E_{0}$ is a closed subspace of the Hilbert module $E \otimes_{\psi} C$.

For the second part of the proposition, let $\pi:(x, b) \in E \times B \mapsto x \otimes b \in E_{0}$. If $a \in E$, then $\pi(x \cdot a, b)=x \cdot a \otimes b=x \otimes j \circ$ $\phi(a) b=x \otimes \phi(a) b=\pi(x, a \cdot b)$. Then $\pi$ induces $\tilde{\pi}: E \otimes_{a l g} B \rightarrow E_{0}$. We clearly have:

$$
<\tilde{\pi}\left(\sum x_{i} \otimes b_{i}\right), \tilde{\pi}\left(\sum x_{i} \otimes b_{i}\right)>=<\sum x_{i} \otimes b_{i}, \sum x_{i} \otimes b_{i}>
$$

[^0]so $\tilde{\pi}$ is an isometry. As $E_{0}$ is complete, $\tilde{\pi}$ extends to an isometry $\widehat{\pi}$ on $E \otimes_{\phi} B$. As $\widehat{\pi}$ is an isometry, $\operatorname{Im}(\widehat{\pi})$ is closed in $E_{0}$, but $\operatorname{Im}(\widehat{\pi})$ contains a dense subspace of $E_{0}$, so $\widehat{\pi}$ is an isomorphism and $E_{0} \simeq E \otimes_{\phi} B$.

Let's turn now to our main result. Let $A$ be a $C^{*}$-algebra with unit, and $E$ be a Hilbert module over $A$ with an isometric *-morphism $\phi: A \rightarrow L_{A}(E)$ which endowed $E$ with a left action. The algebra $A$ is supposed to be separable and $E$ countably generated. We will denote by $\mathcal{F}(E)$ the Fock space associated to $E$, which is $\mathcal{F}(E)=\bigoplus_{n \geq 0} E^{\otimes n}$ (where $E^{\otimes 0}=A$ ). Each $E^{\otimes n}$ is a left $A$-module, thus $\mathcal{F}(E)$ is endowed with a diagonal left action over $A$.

Let $\xi \in E$ and $T_{\xi}$ be the left creation operator $\eta \mapsto \xi \otimes \eta$. Then $T_{\xi} \in L_{A}(\mathcal{F}(E))$ and the annihilation operator is given by $T_{\xi}^{*}\left(\eta_{1} \otimes \ldots \otimes \eta_{n}\right)=<\xi, \eta_{1}>\eta_{2} \otimes \ldots \otimes \eta_{n}$.

We denote by $\mathcal{T}_{E}$ the associated Toeplitz algebra, which is the $C^{*}$-algebra generated by $A$ and the operators $T_{\xi}$.
If $E$ is also endowed with an anti-linear involution $\xi \mapsto \xi^{*}$ then there is a natural ${ }^{*}$-subalgebra of $\mathcal{T}_{E}$, that we denote by $\mathcal{S}_{E}$, and is generated by $A$ and elements $T_{\xi}+T_{\xi^{*}}^{*}$. This algebra is mainly studied in a Von Neumann algebra context (see for example [2] and [3]). We will here compute its KK-theory as a particular case of the following theorem.

Theorem 0.2. Let $S$ be any sub-C*-algebra of $\mathcal{T}_{E}$ which contains $A$ and is generated by linear combinations of creation and annihilation operators. Then $S$ is $K K$-equivalent to $A$

According to Pimsner (see Proposition 3.3 in [1]), Toeplitz algebras satisfy the following universal property:
Proposition 0.3. Let B be a $C^{*}$-algebra and $\sigma: A \rightarrow B a^{*}$-morphism. We suppose that there is a family $\left(t_{\xi}\right)_{\xi \in E}$ in $B$ such that:

1) $\xi \mapsto t_{\xi}$ is $\mathbb{C}$-linear
2) $t_{\xi} \sigma(a)=t_{\xi a}$ and $\sigma(a) t_{\xi}=t_{\phi(a) \xi}$
3) $t_{\xi}^{*} t_{\zeta}=\sigma(<\xi, \zeta>)$

Then $\sigma$ extends to a unique morphism on $\mathcal{T}_{E}$ such that $\sigma\left(T_{\xi}\right)=t_{\xi}$.
We denote by $i_{A}$ the inclusion of $A$ in $S, i_{S}$ the inclusion of $S$ in $\mathcal{T}_{E}$ and $j \stackrel{\text { def }}{=} i_{S} \circ i_{A}$. Let $P$ be the projection in $\mathcal{F}(E)$ onto $E^{\otimes 0}=A$ and $Q \stackrel{\text { def }}{=} 1-P$. Let $\pi_{0}: A \rightarrow L_{A}(\mathcal{F}(E))$ given by the diagonal left action of $\mathcal{F}(E)$, and $\tilde{\pi}_{1} \stackrel{\text { def }}{=} Q \pi_{0}=\pi_{0} Q$. We also define $\tilde{T}_{\xi} \stackrel{\text { def }}{=} Q T_{\xi} Q$. Then $\left(\tilde{\pi}_{1}, \tilde{T}_{\xi}\right)$ satisfies conditions in Proposition 0.3 , so $\tilde{\pi}_{1}$ extends to a representation $\pi_{1}$ of $\mathcal{T}_{E}$.

Let $\beta \stackrel{\text { def }}{=}\left(\mathcal{F}(E) \oplus \mathcal{F}(E),\left(\pi_{0}, \pi_{1}\right), F\right)$ where $F: \mathcal{F}(E) \oplus \mathcal{F}(E) \rightarrow \mathcal{F}(E) \oplus \mathcal{F}(E)$ is defined by $F(\xi \oplus \zeta)=\zeta \oplus \xi$. Then $\beta$ is an element of $K K\left(\mathcal{T}_{E}, A\right)$ (see Lemma 4.2 and Definition 4.3 in [1]).

We have the relations $j \otimes_{\mathcal{T}_{E}} \beta=1_{A}$ and $\beta \otimes_{A} j=1 \mathcal{T}_{E}$, where $1_{C}$, for every $C^{*}$-algebra $C$, is the multiplicative unit in the ring $K K(C, C)$ (see Theorem 4.4 in [1]). We consider $\alpha \stackrel{\text { def }}{=} i_{S} \otimes_{\mathcal{T}_{E}} \beta \in K K(S, A)$.

Proposition 0.4. We have the relations $i_{A} \otimes_{S} \alpha=1_{A}$ and $\alpha \otimes_{A} i_{A}=1_{S}$.
Indeed, for the first one we have $i_{A} \otimes_{S} \alpha=i_{A} \otimes_{S} i_{S} \otimes_{\mathcal{T}_{E}} \beta=j \otimes \mathcal{T}_{E} \beta=1_{A}$.
For the second one, we first recall all the tools which are introduced in Pimsner's article in the proof of Theorem 4.4. Let $\tau_{1}: \mathcal{T}_{E} \rightarrow L \mathcal{T}_{E}\left(\mathcal{F}(E) \otimes_{j} \mathcal{T}_{E}\right)$ be the operator such that, for $T \in \mathcal{T}_{E}, \tau_{1}(T)$ acts on $A \otimes_{j} \mathcal{T}_{E} \simeq \mathcal{T}_{E}$ by $\tau_{1}(T)(S) \xlongequal{\text { def }} T S$ and is equal to zero on $\bigoplus_{n \geq 1} E^{\otimes n} \otimes_{j} \mathcal{T}_{E}$ (note that $\tau_{1}$ is a ${ }^{*}$-morphism). Let $\tau_{0}: \mathcal{T}_{E} \rightarrow L \mathcal{T}_{E}\left(\mathcal{F}(E) \otimes_{j} \mathcal{T}_{E}\right)$ be the operator such that, for $T_{\xi} \in \mathcal{T}_{E}, \tau_{0}\left(T_{\xi}\right)$ acts on $A \otimes_{j} \mathcal{T}_{E} \backsim \mathcal{T}_{E}$ by $\tau_{1}\left(T_{\xi}\right)(S) \stackrel{\text { def }}{=} \xi \otimes S$ and is equal to zero on $\bigoplus_{n \geq 1} E^{\otimes n} \otimes_{j} \mathcal{T}_{E}$. Note that $\left(\tau_{0}\left(T_{\xi}\right)\right)^{*}(\eta \otimes S)=<\xi, \eta>S$ on $E \otimes_{j} \mathcal{T}_{E}$ and is equal to zero on $A \otimes_{j} \mathcal{T}_{E}$ and $\bigoplus_{n \geq 2} E^{\otimes n} \otimes_{j} \mathcal{T}_{E}$.

Lemma 0.5. Consider $T_{\xi} \in \mathcal{T}_{E}$ and $t \in[0,1]$. We define

$$
\tilde{T}_{\xi, t} \stackrel{\text { def }}{=} \cos \left(\frac{\pi}{2} t\right) \tau_{0}\left(T_{\xi}\right)+\sin \left(\frac{\pi}{2} t\right) \tau_{1}\left(T_{\xi}\right)+\pi_{1}\left(T_{\xi}\right) \otimes 1_{\mathcal{T}_{E}} .
$$

The couple ( $\pi_{0} \otimes 1_{\mathcal{T}_{E}}, \tilde{T}_{\xi, t}$ ) satisfies the conditions in Proposition 0.3 , and thus $\pi_{0} \otimes 1_{\mathcal{T}_{E}}$ extends to a representation $\pi_{t}: \mathcal{T}_{E} \rightarrow$ $L_{\mathcal{T}_{E}}\left(\mathcal{F}(E) \otimes_{j} \mathcal{T}_{E}\right)$.

Conditions 1) and 2) are easy to check.
As regards condition 3 ), we have: $\tilde{T}_{\xi, t}^{*} \tilde{T}_{\zeta, t}=I+J+K$ where

$$
\begin{aligned}
I=\cos ^{2}\left(\frac{\pi}{2} t\right)\left(\tau_{0}\left(T_{\xi}\right)\right)^{*} \tau_{0}\left(T_{\zeta}\right)+ & \sin \left(\frac{\pi}{2} t\right) \cos \left(\frac{\pi}{2} t\right)\left(\tau_{0}\left(T_{\xi}\right)\right)^{*} \tau_{1}\left(T_{\zeta}\right) \\
& +\cos \left(\frac{\pi}{2} t\right)\left(\tau_{0}\left(T_{\xi}\right)\right)^{*} \pi_{1}\left(T_{\zeta}\right) \otimes 1_{\mathcal{T}_{E}}, \\
J=\cos \left(\frac{\pi}{2} t\right) \sin \left(\frac{\pi}{2} t\right)\left(\tau_{1}\left(T_{\xi}\right)\right)^{*} \tau_{0}\left(T_{\zeta}\right) & +\sin ^{2}\left(\frac{\pi}{2} t\right)\left(\tau_{1}\left(T_{\xi}\right)\right)^{*} \tau_{1}\left(T_{\zeta}\right) \\
& +\sin \left(\frac{\pi}{2} t\right)\left(\tau_{1}\left(T_{\xi}\right)\right)^{*} \pi_{1}\left(T_{\zeta}\right) \otimes 1_{\mathcal{T}_{E}}, \\
K=\cos \left(\frac{\pi}{2} t\right)\left(\left(\pi_{1}\left(T_{\xi}\right)\right)^{*} \otimes 1_{\mathcal{T}_{E}}\right) \tau_{0}\left(T_{\zeta}\right) & +\sin \left(\frac{\pi}{2} t\right)\left(\left(\pi_{1}\left(T_{\xi}\right)\right)^{*} \otimes 1_{\mathcal{T}_{E}}\right) \tau_{1}\left(T_{\zeta}\right) \\
& \left.+\left(\left(\pi_{1}\left(T_{\xi}\right)\right)^{*} \pi_{1}\left(T_{\zeta}\right)\right) \otimes 1_{\mathcal{T}_{E}}\right) .
\end{aligned}
$$

Then we compute each term on the subspace where it doesn't vanish. Remark that the subspaces $E^{\otimes n} \otimes_{j} \mathcal{T}_{E}$ of $\mathcal{F}(E) \otimes_{j} \mathcal{T}_{E}$ are stable for $\pi_{1} \otimes \mathcal{T}_{E}$. Let $T \in A \otimes_{j} \mathcal{T}_{E} \simeq \mathcal{T}_{E}, \eta \in E$. We have:

$$
\begin{aligned}
& \left(\tau_{0}\left(T_{\xi}\right)\right)^{*} \tau_{0}\left(T_{\zeta}\right)(T)=\left(\tau_{0}\left(T_{\xi}\right)\right)^{*}(\zeta \otimes T)=<\xi, \zeta>T ; \\
& \left(\tau_{0}\left(T_{\xi}\right)\right)^{*} \tau_{1}\left(T_{\zeta}\right)(T)=0 ; \\
& \left(\tau_{0}\left(T_{\xi}\right)\right)^{*}\left(\pi_{1}\left(T_{\zeta}\right) \otimes 1_{\mathcal{T}_{E}}\right)(\eta \otimes T)=\left(\tau_{0}\left(T_{\xi}\right)\right)^{*}\left(Q T_{\zeta} Q \eta \otimes T\right)=0 ; \\
& \left(\tau_{1}\left(T_{\xi}\right)\right)^{*} \tau_{0}\left(T_{\zeta}\right)(T)=0 ; \\
& \left(\tau_{1}\left(T_{\xi}\right)\right)^{*} \tau_{1}\left(T_{\zeta}\right)(T)=T_{\xi}^{*} T_{\zeta} T=<\xi, \zeta>T ; \\
& \left(\tau_{1}\left(T_{\xi}\right)\right)^{*}\left(\pi_{1}\left(T_{\zeta}\right) \otimes 1 \mathcal{T}_{E}\right)=0 ; \\
& \left(\left(\pi_{1}\left(T_{\xi}\right)\right)^{*} \otimes 1_{\mathcal{T}_{E}}\right) \tau_{0}\left(T_{\zeta}\right)(T)=\left(\pi_{1}\left(T_{\xi}^{*}\right) \zeta\right) \otimes T=0 ; \\
& \left(\left(\pi_{1}\left(T_{\xi}\right)\right)^{*} \otimes 1_{\mathcal{T}_{E}}\right) \tau_{1}\left(T_{\zeta}\right)(T)=\left(\pi_{1}\left(T_{\xi}^{*}\right) 1\right) \otimes T_{\zeta} T=0 .
\end{aligned}
$$

For the last two statements, we use the fact that $\pi_{1}\left(T_{\xi}^{*}\right)$ vanishes on the subspaces $A=E^{\otimes 0}$ and $E=E^{\otimes 1}$ of $\mathcal{F}(E)$. As regards the last term, let $\eta \in \mathcal{F}(E)$. We have: $\left(\pi_{1}\left(T_{\xi}^{*}\right) \pi_{1}\left(T_{\zeta}\right)\right) \eta \otimes T=<\xi, \eta>(Q \eta) \otimes T$. Finally:

$$
\begin{aligned}
\tilde{T}_{\xi, t}^{*} \tilde{T}_{\zeta, t}(\eta \otimes T) & =\left(\cos ^{2}\left(\frac{\pi}{2} t\right)+\sin ^{2}\left(\frac{\pi}{2} t\right)\right)<\xi, \eta>(P \eta) \otimes T+<\xi, \eta>(Q \eta) \otimes T \\
& =<\xi, \zeta>\eta \otimes T
\end{aligned}
$$

so $\tilde{T}_{\xi, t}^{*} \tilde{T}_{\zeta, t}=\left(\pi_{0} \otimes 1 \mathcal{T}_{E}\right)(<\xi, \zeta>)$.
We now focus on $\alpha \otimes_{A} i_{A}$. Likewise, we can define $\tau_{1}^{S}: S \rightarrow L_{S}\left(\mathcal{F}(E) \otimes_{i_{A}} S\right)$ and $\tau_{0}^{S}: S \rightarrow L_{S}\left(\mathcal{F}(E) \otimes_{i_{A}} S\right)$.
The element $\alpha \otimes_{A} i_{A}$ is given by the Kasparov module

$$
\left(\mathcal{F}(E) \otimes_{i_{A}} S \oplus \mathcal{F}(E) \otimes_{i_{A}} S,\left(\pi_{0} \otimes 1_{S} \circ i_{S}\right) \oplus\left(\pi_{1} \otimes 1_{S} \circ i_{S}\right), F \otimes 1_{S}\right)
$$

Then the element $\alpha \otimes_{A} i_{A}-1_{B}$ can be represented by the Kasparov module $\gamma \stackrel{\text { def }}{=}\left(\left(\mathcal{F}(E) \otimes_{i_{A}} S\right) \oplus\left(\mathcal{F}(E) \otimes_{i_{A}} S\right), \pi_{0}^{S} \oplus \pi_{1}^{S}\right.$, $F \otimes 1_{S}$ ) where $\pi_{1}^{S}=\tau_{1}^{S} \oplus\left(\pi_{1} \otimes 1_{S} \circ i_{S}\right)$ and $\pi_{0}^{S}=\pi_{0} \otimes 1_{S} \circ i_{S}$.

We also have $\pi_{0} \otimes 1 \circ i_{S}=\tau_{0}^{S} \oplus\left(\pi_{1} \otimes 1 \circ i_{S}\right)$.
Lemma 0.6. Consider the $\mathbb{C}$-subspace $\mathcal{F}(E) \otimes_{i_{S}} S$ of $\mathcal{F}(E) \otimes_{j} \mathcal{T}_{E}$ (see Proposition 0.1) and let $t \in[0,1]$. Then the representation $\pi_{t}$ in Lemma 0.5 induces a representation $\pi_{t}^{S}: S \rightarrow L_{S}\left(\mathcal{F}(E) \otimes_{i_{A}} S\right)$.

Indeed, let $g \stackrel{\text { def }}{=} \sum_{i=1}^{n} \lambda_{i} T_{\xi_{i}}+\sum_{i=1}^{m} \mu_{i} T_{\zeta_{i}}^{*}$ be a generator of the $C^{*}$-algebra $S$. We first show that $\pi_{t}(g)$ stabilizes $\mathcal{F}(E) \otimes_{i_{A}} S$.
Let $E_{0} \stackrel{\text { def }}{=}\left\{\sum \xi_{i} \otimes b_{i}, x_{i} \in \mathcal{F}(E), b_{i} \in S\right\} \subset \mathcal{F}(E) \otimes_{i_{A}} S$.
We have $\pi_{t}(g)=L+M+N$ where

$$
\begin{gathered}
L=\sum_{i=1}^{n} \lambda_{i} \tau_{1}\left(T_{\xi_{i}}\right)+\sum_{i=1}^{m} \mu_{i}\left(\tau_{1}\left(T_{\zeta_{i}}\right)\right)^{*} \\
M=\sum_{i=1}^{n} \lambda_{i} \tau_{0}\left(T_{\xi_{i}}\right)+\sum_{i=1}^{m} \mu_{i}\left(\tau_{0}\left(T_{\zeta_{i}}\right)\right)^{*} \\
\left.N=\sum_{i=1}^{n} \lambda_{i}\left(\pi_{0}\left(T_{\xi_{i}}\right)\right) \otimes 1_{\mathcal{T}_{E}}+\sum_{i=1}^{m} \mu_{i}\left(\pi_{0}\left(T_{\xi_{i}}\right)\right)^{*}\right) \otimes 1_{\mathcal{T}_{E}}
\end{gathered}
$$

As in the proof of Lemma 0.5 we only pay attention on the subspaces where terms do not vanish. Let $b \in A \otimes_{i_{A}} S \backsim S$, $\eta \in E$. Then we have:

$$
\begin{aligned}
& \left(\sum_{i=1}^{n} \lambda_{i} \tau_{1}\left(T_{\xi_{i}}\right)+\sum_{i=1}^{m} \mu_{i}\left(\tau_{1}\left(T_{\zeta_{i}}\right)\right)^{*}\right) b=\left(\sum_{i=1}^{n} \lambda_{i} T_{\xi_{i}}+\sum_{i=1}^{m} \mu_{i} T_{\zeta_{i}}^{*}\right) b \in A \otimes_{i_{A}} S \simeq S ; \\
& \left(\sum_{i=1}^{n} \lambda_{i} \tau_{0}\left(T_{\xi_{i}}\right)+\sum_{i=1}^{m} \mu_{i}\left(\tau_{0}\left(T_{\xi_{i}}\right)\right)^{*}\right) b=\left(\sum_{i=1}^{n} \lambda_{i} \xi_{i}\right) \otimes b \in E \otimes S ; \\
& \left(\sum_{i=1}^{n} \lambda_{i} \tau_{0}\left(T_{\xi_{i}}\right)+\sum_{i=1}^{m} \mu_{i}\left(\tau_{0}\left(T_{\zeta_{i}}\right)\right)^{*}\right) \eta \otimes b=<\sum_{i=1}^{m} \mu_{i} \zeta_{i}, \eta>b \in A \otimes_{i_{A}} S \simeq S .
\end{aligned}
$$

The last term clearly stabilizes $E_{0}$. By linearity, $\pi_{t}(g)$ stabilizes $E_{0}$. As $\pi_{t}(g)$ is continuous on $E_{0}$ and $\left(\pi_{t}(g)\right)^{*}=\pi_{t}\left(g^{*}\right), \pi_{t}$ induces a ${ }^{*}$-morphism $\pi_{t}^{S}$ on the involutive algebra generated by $g$ valued in $L_{S}\left(\mathcal{F}(E) \otimes_{i_{A}} S\right)$. We now have to extend $\pi_{t}^{S}$ to a morphism on $S$. We note that $\left\|\pi_{t}^{S}(g)\right\| \leq\left\|\pi_{t}(g)\right\| \leq\|g\|$ because $\pi_{t}$ is a ${ }^{*}$-morphism between $C^{*}$-algebras. Then $\pi_{t}^{S}$ is continuous and extends to a (unique) morphism on $S$, still denoted by $\pi_{t}^{S}$. For $t=0$ or $t=1$, we find the same $\pi_{0}^{S}$ and $\pi_{1}^{S}$ introduced before.

To end the proof, we will show that the family $\pi_{t}^{S}$ is a homotopy, and thus $\gamma=0$. First we have to show that, for fixed $b \in S, t \rightarrow \pi_{t}^{S}$ is continuous. For that, as $\left\|\pi_{t}^{S}(s)\right\| \leq\|s\|$, we only have to see it on generators $g \in S$, which is obvious.

Besides, we need to show that, for $b \in S$ and $t \in[0,1]$ fixed, we have:

$$
\pi_{t}^{S}(b)-\pi_{0}^{S}(b) \in \mathcal{K}_{S}\left(\mathcal{F}(E) \otimes_{i_{A}} S\right) .
$$

We only need to check it for $g \in S$ generator with $g \stackrel{\text { def }}{=} \sum_{i=1}^{n} \lambda_{i} T_{\xi_{i}}+\sum_{i=1}^{m} \mu_{i} T_{\xi_{i}}^{*}$. The projection $P$, introduced at the beginning, is clearly a compact operator of $\mathcal{F}(E)$, so $P \otimes 1_{S}$ is a compact operator of $\mathcal{F}(E) \otimes_{i_{A}} S$. We can see that $\pi_{t}^{S}(g)-\pi_{0}^{S}(g)=$ $U+V \in \mathcal{K}_{S}\left(\mathcal{F}(E) \otimes_{i_{A}} S\right)$ where

$$
\begin{aligned}
U & =\sum_{i=1}^{n} \lambda_{i}\left(\pi_{t}^{S}\left(T_{\xi_{i}}\right)-\pi_{0}^{S}\left(T_{\xi_{i}}\right)\right)\left(P \otimes 1_{S}\right) \\
V & =\sum_{i=1}^{m} \mu_{i}\left(P \otimes 1_{S}\right)\left(\pi_{t}^{S}\left(T_{\zeta_{i}}^{*}\right)-\pi_{0}^{S}\left(T_{\zeta_{i}}^{*}\right)\right) .
\end{aligned}
$$

Thus we have the relation $\alpha \otimes_{A} i_{A}=1{ }_{S}$.
Corollary 0.7. We have $K_{0}(S)=K_{0}(A)$. Particularly, we have:

$$
K_{0}\left(\mathcal{S}_{E}\right)=K_{0}(A)
$$

And thus a different proof of the result of [4]:
Corollary 0.8. Let $\varphi$ : $f \in \mathcal{C}([0,1]) \mapsto \int_{0}^{1} f(t) \mathrm{d}$. $\varphi$ is a state of the $C^{*}$-algebra $\mathcal{C}([0,1])$.
We have $K_{0}\left((\mathcal{C}([0,1]), \varphi) *_{r}(\mathcal{C}([0,1]), \varphi)=K_{0}(\mathbb{C})\right.$.
Indeed, for $A=\mathbb{C}$ and $E=\mathbb{C}^{2}$, if $S_{1}$ and $S_{2}$ are the creation operators associated with the vectors $(1,0)$ and $(0,1)$, we consider $C^{*}\left(1, S_{1}+S_{1}^{*}, S_{2}+S_{2}^{*}\right)$. It is well known that $C^{*}\left(1, S_{1}+S_{1}^{*}, S_{2}+S_{2}^{*}\right) \simeq(\mathcal{C}([-2,2]), \psi) *_{r}(\mathcal{C}([-2,2]), \psi)$, where $\psi: f \in \mathcal{C}([-2,2]) \mapsto \frac{1}{2 \pi} \int_{-2}^{2} f(t) \sqrt{4-t^{2}} \mathrm{dt}$ (see [5]), and that there is an homeomorphism on [-2,2] onto [0,1] that sends the semi-circular measure to the Lebesgue one. That gives rise to an ${ }^{*}$-isomorphism:

$$
(\mathcal{C}([0,1]), \varphi) *_{r}(\mathcal{C}([0,1]), \varphi) \simeq(\mathcal{C}([-2,2]), \psi) *_{r}(\mathcal{C}([-2,2]), \psi)
$$

so $K_{0}\left((\mathcal{C}([0,1]), \varphi) *_{r}(\mathcal{C}([0,1]), \varphi)=K_{0}\left(C^{*}\left(1, S_{1}+S_{1}^{*}, S_{2}+S_{2}^{*}\right)\right)=K_{0}(\mathbb{C})\right.$.

## References

[1] M.V. Pimsner, A class of $C^{*}$-algebras generalizing both Cuntz-Krieger algebras and crossed products by $\mathbb{Z}$, in: Free Probability Theory, Waterloo, ON, 1995, in: Fields Inst. Commun., vol. 12, American Mathematical Society, Providence, RI, 1997, pp. 189-212.
[2] D. Shlyakhtenko, Free quasi-free states, Pac. J. Math. 177 (1997) 329-368.
[3] D. Shlyakhtenko, A-valued semicircular systems, J. Funct. Anal. 166 (1999).
[4] D. Voiculescu, The K-groups of the C*-algebra of a semicircular family, K-Theory 7 (1993) 5-7.
[5] D. Voiculescu, K. Dykema, A. Nica, Free Random Variables, CRM Monograph Ser., vol. 1, American Mathematical Society, Providence, RI, USA, 1992.


[^0]:    E-mail addresses: emmanuel.germain@unicaen.fr (E. Germain), pierre.umber@ens-lyon.fr (P. Umber).
    http://dx.doi.org/10.1016/j.crma.2015.10.013
    1631-073X/© 2015 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

