Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Functional analysis

KK-theory of A-valued semi-circular systems

KK-théorie des systèmes semi-circulaires A-valués

Emmanuel Germain^a, Pierre Umber^b

^a LMNO UMR 6139, Université de Caen et CNRS, France ^b ENS Lyon, France

ARTICLE INFO

Article history: Received 10 July 2015 Accepted after revision 21 October 2015 Available online 7 December 2015

Presented by Alain Connes

ABSTRACT

We compute in this article the KK-theory of A-valued semi-circular systems thanks to tools developed by Pimsner (see [1]) to study generalized Toeplitz algebras. © 2015 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). R É S U M É

On calcule dans cet article la KK-théorie de systèmes semi-circulaires A-valués à l'aide d'outils développés par Pimsner (voir [1]) pour étudier les algèbres de Toeplitz généralisées. © 2015 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND licenses (http://creativecommons.org/licenses/by-nc-nd/4.0/).

To begin with, we will need a result in Hilbert module theory.

Proposition 0.1. Let A, C be C*-algebras, B a sub-C*-algebra of C, E a Hilbert module over A, and $\phi : A \to B$ a *-morphism. Let $j: B \to C$ be the inclusion, $\psi \stackrel{\text{def}}{=} j \circ \phi$ and $E_0 \stackrel{\text{def}}{=} \{\sum x_i \otimes b_i, x_i \in E, b_i \in B\} \subset E \otimes_{\psi} C$. Then E_0 is naturally endowed with a structure of Hilbert module over B and $E_0 \simeq E \otimes_{\phi} B$.

Indeed, let $x_i, x'_k \in E$, $b_i, b'_k \in B$. We have:

$$<\sum x_i\otimes b_i, \sum x'_k\otimes b'_k>=\sum_{i,k}b_i^*\phi(< x_i, x'_k>)b'_k\in B.$$

As *B* is closed in *C*, we have: $\forall x, y \in E_0, \langle x, y \rangle \in B$. As a result, E_0 is naturally endowed with a structure of pre-Hilbert module over *B*, which is complete because E_0 is a closed subspace of the Hilbert module $E \otimes_{\psi} C$.

For the second part of the proposition, let $\pi : (x, b) \in E \times B \mapsto x \otimes b \in E_0$. If $a \in E$, then $\pi (x \cdot a, b) = x \cdot a \otimes b = x \otimes j \circ \phi(a)b = x \otimes \phi(a)b = \pi (x, a \cdot b)$. Then π induces $\tilde{\pi} : E \otimes_{alg} B \to E_0$. We clearly have:

$$< \tilde{\pi} (\sum x_i \otimes b_i), \tilde{\pi} (\sum x_i \otimes b_i) > = < \sum x_i \otimes b_i, \sum x_i \otimes b_i >,$$

E-mail addresses: emmanuel.germain@unicaen.fr (E. Germain), pierre.umber@ens-lyon.fr (P. Umber).

http://dx.doi.org/10.1016/j.crma.2015.10.013

¹⁶³¹⁻⁰⁷³X/© 2015 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

so $\tilde{\pi}$ is an isometry. As E_0 is complete, $\tilde{\pi}$ extends to an isometry $\hat{\pi}$ on $E \otimes_{\phi} B$. As $\hat{\pi}$ is an isometry, $Im(\hat{\pi})$ is closed in E_0 , but $Im(\widehat{\pi})$ contains a dense subspace of E_0 , so $\widehat{\pi}$ is an isomorphism and $E_0 \simeq E \otimes_{\phi} B$.

Let's turn now to our main result. Let A be a C^* -algebra with unit, and E be a Hilbert module over A with an isometric *-morphism $\phi: A \to L_A(E)$ which endowed E with a left action. The algebra A is supposed to be separable and E countably generated. We will denote by $\mathcal{F}(E)$ the Fock space associated to *E*, which is $\mathcal{F}(E) = \bigoplus E^{\otimes n}$ (where $E^{\otimes 0} = A$). Each $E^{\otimes n}$ is n > 0

a left A-module, thus $\mathcal{F}(E)$ is endowed with a diagonal left action over A.

Let $\xi \in E$ and T_{ξ} be the left creation operator $\eta \mapsto \xi \otimes \eta$. Then $T_{\xi} \in L_A(\mathcal{F}(E))$ and the annihilation operator is given by $T^*_{\varepsilon}(\eta_1 \otimes \ldots \otimes \eta_n) = \langle \xi, \eta_1 \rangle \eta_2 \otimes \ldots \otimes \eta_n.$

We denote by \mathcal{T}_E the associated Toeplitz algebra, which is the C^* -algebra generated by A and the operators T_{ε} .

If *E* is also endowed with an anti-linear involution $\xi \mapsto \xi^*$ then there is a natural *-subalgebra of \mathcal{T}_E , that we denote by S_E , and is generated by A and elements $T_{\xi} + T_{\xi^*}^*$. This algebra is mainly studied in a Von Neumann algebra context (see for example [2] and [3]). We will here compute its KK-theory as a particular case of the following theorem.

Theorem 0.2. Let S be any sub-C*-algebra of \mathcal{T}_E which contains A and is generated by linear combinations of creation and annihilation operators. Then S is KK-equivalent to A

According to Pimsner (see Proposition 3.3 in [1]), Toeplitz algebras satisfy the following universal property:

Proposition 0.3. Let B be a C^{*}-algebra and σ : $A \rightarrow B$ a *-morphism. We suppose that there is a family $(t_{\varepsilon})_{\varepsilon \in E}$ in B such that:

1) $\xi \mapsto t_{\xi}$ is \mathbb{C} -linear 2) $t_{\xi}\sigma(a) = t_{\xi a}$ and $\sigma(a)t_{\xi} = t_{\phi(a)\xi}$ 3) $t_{\xi}^{*}t_{\zeta} = \sigma(\langle \xi, \zeta \rangle)$

Then σ extends to a unique morphism on \mathcal{T}_E such that $\sigma(T_{\xi}) = t_{\xi}$.

We denote by i_A the inclusion of A in S, i_S the inclusion of S in \mathcal{T}_E and $j \stackrel{\text{def}}{=} i_S \circ i_A$. Let P be the projection in $\mathcal{F}(E)$ onto $E^{\otimes 0} = A$ and $Q \stackrel{\text{def}}{=} 1 - P$. Let $\pi_0 : A \to L_A(\mathcal{F}(E))$ given by the diagonal left action of $\mathcal{F}(E)$, and $\tilde{\pi}_1 \stackrel{\text{def}}{=} Q \pi_0 = \pi_0 Q$. We also define $\tilde{T}_{\xi} \stackrel{\text{def}}{=} Q T_{\xi} Q$. Then $(\tilde{\pi}_1, \tilde{T}_{\xi})$ satisfies conditions in Proposition 0.3, so $\tilde{\pi}_1$ extends to a representation π_1 of \mathcal{T}_E .

Let $\beta \stackrel{\text{def}}{=} (\mathcal{F}(E) \oplus \mathcal{F}(E), (\pi_0, \pi_1), F)$ where $F : \mathcal{F}(E) \oplus \mathcal{F}(E) \to \mathcal{F}(E) \oplus \mathcal{F}(E)$ is defined by $F(\xi \oplus \zeta) = \zeta \oplus \xi$. Then β is an element of $KK(\mathcal{T}_E, A)$ (see Lemma 4.2 and Definition 4.3 in [1]).

We have the relations $j \otimes_{\mathcal{T}_E} \beta = 1_A$ and $\beta \otimes_A j = 1_{\mathcal{T}_E}$, where 1_C , for every C^* -algebra C, is the multiplicative unit in the ring KK(C, C) (see Theorem 4.4 in [1]). We consider $\alpha \stackrel{\text{def}}{=} i_S \otimes_{\mathcal{T}_E} \beta \in KK(S, A)$.

Proposition 0.4. We have the relations $i_A \otimes_S \alpha = 1_A$ and $\alpha \otimes_A i_A = 1_S$.

Indeed, for the first one we have $i_A \otimes_S \alpha = i_A \otimes_S i_S \otimes_{\mathcal{T}_E} \beta = j \otimes_{\mathcal{T}_E} \beta = 1_A$. For the second one, we first recall all the tools which are introduced in Pimsner's article in the proof of Theorem 4.4. Let $\tau_1 : \mathcal{T}_E \to L_{\mathcal{T}_E}(\mathcal{F}(E) \otimes_j \mathcal{T}_E)$ be the operator such that, for $T \in \mathcal{T}_E$, $\tau_1(T)$ acts on $A \otimes_j \mathcal{T}_E \simeq \mathcal{T}_E$ by $\tau_1(T)(S) \stackrel{\text{def}}{=} TS$ and is equal to zero on $\bigoplus E^{\otimes n} \otimes_j \mathcal{T}_E$ (note that τ_1 is a *-morphism). Let $\tau_0 : \mathcal{T}_E \to L_{\mathcal{T}_E}(\mathcal{F}(E) \otimes_j \mathcal{T}_E)$ be the operator such

that, for $T_{\xi} \in \mathcal{T}_E$, $\tau_0(T_{\xi})$ acts on $A \otimes_j \mathcal{T}_E \simeq \mathcal{T}_E$ by $\tau_1(T_{\xi})(S) \stackrel{\text{def}}{=} \xi \otimes S$ and is equal to zero on $\bigoplus E^{\otimes n} \otimes_j \mathcal{T}_E$. Note that $(\tau_0(T_{\xi}))^*(\eta \otimes S) = \langle \xi, \eta \rangle S \text{ on } E \otimes_j \mathcal{T}_E \text{ and is equal to zero on } A \otimes_j \mathcal{T}_E \text{ and } \bigoplus E^{\otimes n} \otimes_j \mathcal{T}_E.$

Lemma 0.5. Consider $T_{\xi} \in \mathcal{T}_E$ and $t \in [0, 1]$. We define

$$\tilde{T}_{\xi,t} \stackrel{\text{def}}{=} \cos(\frac{\pi}{2}t)\tau_0(T_{\xi}) + \sin(\frac{\pi}{2}t)\tau_1(T_{\xi}) + \pi_1(T_{\xi}) \otimes 1_{\mathcal{T}_E}.$$

The couple $(\pi_0 \otimes 1_{\mathcal{T}_F}, \tilde{T}_{\xi,t})$ satisfies the conditions in Proposition 0.3, and thus $\pi_0 \otimes 1_{\mathcal{T}_F}$ extends to a representation $\pi_t : \mathcal{T}_E \to 1$ $L_{\mathcal{T}_E}(\mathcal{F}(E) \otimes_j \mathcal{T}_E).$

Conditions 1) and 2) are easy to check.

As regards condition 3), we have: $\tilde{T}_{\xi,t}^* \tilde{T}_{\zeta,t} = I + J + K$ where

$$\begin{split} I &= \cos^2(\frac{\pi}{2}t)(\tau_0(T_{\xi}))^*\tau_0(T_{\zeta}) + \sin(\frac{\pi}{2}t)\cos(\frac{\pi}{2}t)(\tau_0(T_{\xi}))^*\tau_1(T_{\zeta}) \\ &+ \cos(\frac{\pi}{2}t)(\tau_0(T_{\xi}))^*\pi_1(T_{\zeta}) \otimes \mathbf{1}_{\mathcal{T}_E}, \end{split} \\ J &= \cos(\frac{\pi}{2}t)\sin(\frac{\pi}{2}t)(\tau_1(T_{\xi}))^*\tau_0(T_{\zeta}) + \sin^2(\frac{\pi}{2}t)(\tau_1(T_{\xi}))^*\tau_1(T_{\zeta}) \\ &+ \sin(\frac{\pi}{2}t)(\tau_1(T_{\xi}))^*\pi_1(T_{\zeta}) \otimes \mathbf{1}_{\mathcal{T}_E}, \end{split} \\ K &= \cos(\frac{\pi}{2}t)((\pi_1(T_{\xi}))^* \otimes \mathbf{1}_{\mathcal{T}_E})\tau_0(T_{\zeta}) + \sin(\frac{\pi}{2}t)((\pi_1(T_{\xi}))^* \otimes \mathbf{1}_{\mathcal{T}_E})\tau_1(T_{\zeta}) \\ &+ ((\pi_1(T_{\xi}))^*\pi_1(T_{\zeta})) \otimes \mathbf{1}_{\mathcal{T}_E}). \end{split}$$

Then we compute each term on the subspace where it doesn't vanish. Remark that the subspaces $E^{\otimes n} \otimes_i \mathcal{T}_E$ of $\mathcal{F}(E) \otimes_i \mathcal{T}_E$ are stable for $\pi_1 \otimes 1_{\mathcal{T}_E}$. Let $T \in A \otimes_j \mathcal{T}_E \simeq \mathcal{T}_E$, $\eta \in E$. We have:

 $(\tau_0(T_{\xi}))^* \tau_0(T_{\zeta})(T) = (\tau_0(T_{\xi}))^* (\zeta \otimes T) = \langle \xi, \zeta \rangle T;$ $(\tau_0(T_{\xi}))^* \tau_1(T_{\zeta})(T) = 0;$ $(\tau_0(T_{\xi}))^*(\pi_1(T_{\zeta}) \otimes 1_{\mathcal{T}_F})(\eta \otimes T) = (\tau_0(T_{\xi}))^*(Q T_{\zeta} Q \eta \otimes T) = 0;$ $(\tau_1(T_{\xi}))^* \tau_0(T_{\zeta})(T) = 0;$ $\begin{aligned} (\tau_1(T_{\xi}))^* \tau_1(T_{\zeta})(T) &= T_{\xi}^* T_{\zeta} T = <\xi, \zeta > T; \\ (\tau_1(T_{\xi}))^* (\pi_1(T_{\zeta}) \otimes 1_{\mathcal{T}_E}) &= 0; \end{aligned}$ $((\pi_1(T_{\xi}))^* \otimes 1_{\mathcal{T}_E})\tau_0(T_{\zeta})(T) = (\pi_1(T_{\xi}^*)\zeta) \otimes T = \mathbf{0};$ $((\pi_1(T_{\xi}))^* \otimes 1_{\mathcal{T}_F})\tau_1(T_{\zeta})(T) = (\pi_1(T_{\xi}^*)1) \otimes T_{\zeta}T = 0.$

For the last two statements, we use the fact that $\pi_1(T_{\epsilon}^*)$ vanishes on the subspaces $A = E^{\otimes 0}$ and $E = E^{\otimes 1}$ of $\mathcal{F}(E)$. As regards the last term, let $\eta \in \mathcal{F}(E)$. We have: $(\pi_1(T_{\xi}^*)\pi_1(T_{\zeta}))\eta \otimes T = \langle \xi, \eta \rangle (Q\eta) \otimes T$. Finally:

$$\tilde{T}^*_{\xi,t}\tilde{T}_{\zeta,t}(\eta\otimes T) = (\cos^2(\frac{\pi}{2}t) + \sin^2(\frac{\pi}{2}t)) < \xi, \eta > (P\eta) \otimes T + <\xi, \eta > (Q\eta) \otimes T$$
$$= <\xi, \zeta > \eta \otimes T$$

so $\tilde{T}^*_{\xi,t}\tilde{T}_{\zeta,t} = (\pi_0 \otimes \mathbf{1}_{\mathcal{T}_E})(\langle \xi, \zeta \rangle).$

We now focus on $\alpha \otimes_A i_A$. Likewise, we can define $\tau_1^S : S \to L_S(\mathcal{F}(E) \otimes_{i_A} S)$ and $\tau_0^S : S \to L_S(\mathcal{F}(E) \otimes_{i_A} S)$. The element $\alpha \otimes_A i_A$ is given by the Kasparov module

$$(\mathcal{F}(E) \otimes_{i_A} S \oplus \mathcal{F}(E) \otimes_{i_A} S, (\pi_0 \otimes 1_S \circ i_S) \oplus (\pi_1 \otimes 1_S \circ i_S), F \otimes 1_S)$$

Then the element $\alpha \otimes_A i_A - 1_B$ can be represented by the Kasparov module $\gamma \stackrel{\text{def}}{=} ((\mathcal{F}(E) \otimes_{i_A} S) \oplus (\mathcal{F}(E) \otimes_{i_A} S), \pi_0^S \oplus \pi_1^S, F \otimes 1_S)$ where $\pi_1^S = \tau_1^S \oplus (\pi_1 \otimes 1_S \circ i_S)$ and $\pi_0^S = \pi_0 \otimes 1_S \circ i_S$. We also have $\pi_0 \otimes 1 \circ i_S = \tau_0^S \oplus (\pi_1 \otimes 1 \circ i_S)$.

Lemma 0.6. Consider the \mathbb{C} -subspace $\mathcal{F}(E) \otimes_{i_s} S$ of $\mathcal{F}(E) \otimes_j \mathcal{T}_E$ (see Proposition 0.1) and let $t \in [0, 1]$. Then the representation π_t in Lemma 0.5 induces a representation $\pi_t^S : S \to L_S(\mathcal{F}(E) \otimes_{i_A} S)$.

Indeed, let $g \stackrel{\text{def}}{=} \sum_{i=1}^{n} \lambda_i T_{\xi_i} + \sum_{i=1}^{m} \mu_i T^*_{\zeta_i}$ be a generator of the *C**-algebra *S*. We first show that $\pi_t(g)$ stabilizes $\mathcal{F}(E) \otimes_{i_A} S$. Let $E_0 \stackrel{\text{def}}{=} \{\sum \xi_i \otimes b_i, x_i \in \mathcal{F}(E), b_i \in S\} \subset \mathcal{F}(E) \otimes_{i_A} S.$ We have $\pi_t(g) = L + M + N$ where

$$L = \sum_{i=1}^{n} \lambda_{i} \tau_{1}(T_{\xi_{i}}) + \sum_{i=1}^{m} \mu_{i}(\tau_{1}(T_{\zeta_{i}}))^{*}$$
$$M = \sum_{i=1}^{n} \lambda_{i} \tau_{0}(T_{\xi_{i}}) + \sum_{i=1}^{m} \mu_{i}(\tau_{0}(T_{\zeta_{i}}))^{*}$$
$$N = \sum_{i=1}^{n} \lambda_{i}(\pi_{0}(T_{\xi_{i}})) \otimes 1_{\mathcal{T}_{E}} + \sum_{i=1}^{m} \mu_{i}(\pi_{0}(T_{\xi_{i}}))^{*}) \otimes 1_{\mathcal{T}_{E}}$$

As in the proof of Lemma 0.5 we only pay attention on the subspaces where terms do not vanish. Let $b \in A \otimes_{i_A} S \simeq S$, $\eta \in E$. Then we have:

$$\begin{split} &(\sum_{i=1}^{n} \lambda_{i} \tau_{1}(T_{\xi_{i}}) + \sum_{i=1}^{m} \mu_{i}(\tau_{1}(T_{\zeta_{i}}))^{*})b = (\sum_{i=1}^{n} \lambda_{i}T_{\xi_{i}} + \sum_{i=1}^{m} \mu_{i}T_{\zeta_{i}}^{*})b \in A \otimes_{i_{A}} S \simeq S; \\ &(\sum_{i=1}^{n} \lambda_{i} \tau_{0}(T_{\xi_{i}}) + \sum_{i=1}^{m} \mu_{i}(\tau_{0}(T_{\zeta_{i}}))^{*})b = (\sum_{i=1}^{n} \lambda_{i}\xi_{i}) \otimes b \in E \otimes S; \\ &(\sum_{i=1}^{n} \lambda_{i} \tau_{0}(T_{\xi_{i}}) + \sum_{i=1}^{m} \mu_{i}(\tau_{0}(T_{\zeta_{i}}))^{*})\eta \otimes b = < \sum_{i=1}^{m} \mu_{i}\zeta_{i}, \eta > b \in A \otimes_{i_{A}} S \simeq S. \end{split}$$

The last term clearly stabilizes E_0 . By linearity, $\pi_t(g)$ stabilizes E_0 . As $\pi_t(g)$ is continuous on E_0 and $(\pi_t(g))^* = \pi_t(g^*)$, π_t induces a *-morphism π_t^S on the involutive algebra generated by g valued in $L_S(\mathcal{F}(E) \otimes_{i_A} S)$. We now have to extend π_t^S to a morphism on S. We note that $\|\pi_t^S(g)\| \le \|\pi_t(g)\| \le \|g\|$ because π_t is a *-morphism between C^* -algebras. Then π_t^S is continuous and extends to a (unique) morphism on S, still denoted by π_t^S . For t = 0 or t = 1, we find the same π_0^S and π_1^S introduced before.

To end the proof, we will show that the family π_t^S is a homotopy, and thus $\gamma = 0$. First we have to show that, for fixed $b \in S$, $t \to \pi_t^S$ is continuous. For that, as $\|\pi_t^S(s)\| \le \|s\|$, we only have to see it on generators $g \in S$, which is obvious. Besides, we need to show that, for $b \in S$ and $t \in [0, 1]$ fixed, we have:

$$\pi_t^{S}(b) - \pi_0^{S}(b) \in \mathcal{K}_S(\mathcal{F}(E) \otimes_{i_A} S)$$

We only need to check it for $g \in S$ generator with $g \stackrel{\text{def}}{=} \sum_{i=1}^{n} \lambda_i T_{\xi_i} + \sum_{i=1}^{m} \mu_i T^*_{\zeta_i}$. The projection *P*, introduced at the beginning,

is clearly a compact operator of $\mathcal{F}(E)$, so $P \otimes 1_S$ is a compact operator of $\mathcal{F}(E) \otimes_{i_A} S$. We can see that $\pi_t^S(g) - \pi_0^S(g) = U + V \in \mathcal{K}_S(\mathcal{F}(E) \otimes_{i_A} S)$ where

$$U = \sum_{i=1}^{n} \lambda_{i} (\pi_{t}^{S}(T_{\xi_{i}}) - \pi_{0}^{S}(T_{\xi_{i}})) (P \otimes 1_{S})$$
$$V = \sum_{i=1}^{m} \mu_{i} (P \otimes 1_{S}) (\pi_{t}^{S}(T_{\xi_{i}}^{*}) - \pi_{0}^{S}(T_{\xi_{i}}^{*})).$$

Thus we have the relation $\alpha \otimes_A i_A = 1_S$.

Corollary 0.7. We have $K_0(S) = K_0(A)$. Particularly, we have:

$$K_0(\mathcal{S}_E) = K_0(A)$$

And thus a different proof of the result of [4]:

Corollary 0.8. Let $\varphi : f \in \mathcal{C}([0, 1]) \mapsto \int_{0}^{1} f(t) dt$. φ is a state of the C*-algebra $\mathcal{C}([0, 1])$. We have $K_0((\mathcal{C}([0, 1]), \varphi) *_r(\mathcal{C}([0, 1]), \varphi) = K_0(\mathbb{C})$.

Indeed, for $A = \mathbb{C}$ and $E = \mathbb{C}^2$, if S_1 and S_2 are the creation operators associated with the vectors (1, 0) and (0, 1), we consider $C^*(1, S_1 + S_1^*, S_2 + S_2^*)$. It is well known that $C^*(1, S_1 + S_1^*, S_2 + S_2^*) \simeq (\mathcal{C}([-2, 2]), \psi) *_r(\mathcal{C}([-2, 2]), \psi)$, where $\sum_{k=1}^{2} (C_k(1, k_1 + S_1^*, S_2 + S_2^*)) \simeq (\mathcal{C}(1, k_1 + S_1^*, S_2 + S_2^*)) \simeq (\mathcal{C}(1, k_1 + S_1^*, S_2 + S_2^*)) = (\mathcal{C}(1, k_1 + S_1^*, S_2 + S_2^*)) = (\mathcal{C}(1, k_1 + S_1^*, S_2 + S_2^*))$

 $\psi: f \in \mathcal{C}([-2,2]) \mapsto \frac{1}{2\pi} \int_{-2}^{-2} f(t)\sqrt{4-t^2} dt$ (see [5]), and that there is an homeomorphism on [-2,2] onto [0,1] that sends

the semi-circular measure to the Lebesgue one. That gives rise to an *-isomorphism:

$$\mathcal{C}([0,1]), \varphi) *_{r}(\mathcal{C}([0,1]), \varphi) \simeq (\mathcal{C}([-2,2]), \psi) *_{r}(\mathcal{C}([-2,2]), \psi)$$

so
$$K_0((\mathcal{C}([0,1]), \varphi) *_r(\mathcal{C}([0,1]), \varphi) = K_0(\mathcal{C}^*(1, S_1 + S_1^*, S_2 + S_2^*)) = K_0(\mathbb{C}).$$

References

(

- [2] D. Shlyakhtenko, Free quasi-free states, Pac. J. Math. 177 (1997) 329-368.
- [3] D. Shlyakhtenko, A-valued semicircular systems, J. Funct. Anal. 166 (1999).
- [4] D. Voiculescu, The K-groups of the C*-algebra of a semicircular family, K-Theory 7 (1993) 5–7.
- [5] D. Voiculescu, K. Dykema, A. Nica, Free Random Variables, CRM Monograph Ser., vol. 1, American Mathematical Society, Providence, RI, USA, 1992.

M.V. Pimsner, A class of C*-algebras generalizing both Cuntz-Krieger algebras and crossed products by Z, in: Free Probability Theory, Waterloo, ON, 1995, in: Fields Inst. Commun., vol. 12, American Mathematical Society, Providence, RI, 1997, pp. 189–212.