
C. R. Acad. Sci. Paris, Ser. I 354 (2016) 87–90
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Functional analysis

KK-theory of A-valued semi-circular systems

KK-théorie des systèmes semi-circulaires A-valués

Emmanuel Germain a, Pierre Umber b

a LMNO UMR 6139, Université de Caen et CNRS, France
b ENS Lyon, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 July 2015
Accepted after revision 21 October 2015
Available online 7 December 2015

Presented by Alain Connes

We compute in this article the KK-theory of A-valued semi-circular systems thanks to tools 
developed by Pimsner (see [1]) to study generalized Toeplitz algebras.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

On calcule dans cet article la KK-théorie de systèmes semi-circulaires A-valués à l’aide 
d’outils développés par Pimsner (voir [1]) pour étudier les algèbres de Toeplitz généralisées.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

To begin with, we will need a result in Hilbert module theory.

Proposition 0.1. Let A, C be C∗-algebras, B a sub-C∗-algebra of C , E a Hilbert module over A, and φ : A → B a *-morphism. Let 
j : B → C be the inclusion, ψ def= j ◦φ and E0

def= {
∑

xi ⊗ bi, xi ∈ E,bi ∈ B} ⊂ E ⊗ψ C. Then E0 is naturally endowed with a structure 
of Hilbert module over B and E0 � E ⊗φ B.

Indeed, let xi, x′
k ∈ E , bi, b′

k ∈ B . We have:

<
∑

xi ⊗ bi,
∑

x′
k ⊗ b′

k >=
∑
i,k

b∗
i φ(< xi, x′

k >)b′
k ∈ B.

As B is closed in C , we have: ∀x, y ∈ E0, < x, y >∈ B . As a result, E0 is naturally endowed with a structure of pre-Hilbert 
module over B , which is complete because E0 is a closed subspace of the Hilbert module E ⊗ψ C .

For the second part of the proposition, let π : (x, b) ∈ E × B 
→ x ⊗ b ∈ E0. If a ∈ E , then π(x · a, b) = x · a ⊗ b = x ⊗ j ◦
φ(a)b = x ⊗ φ(a)b = π(x, a · b). Then π induces π̃ : E ⊗alg B → E0. We clearly have:

< π̃(
∑

xi ⊗ bi), π̃ (
∑

xi ⊗ bi) >=<
∑

xi ⊗ bi,
∑

xi ⊗ bi >,
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so π̃ is an isometry. As E0 is complete, π̃ extends to an isometry π̂ on E ⊗φ B . As π̂ is an isometry, Im(π̂ ) is closed in E0, 
but Im(π̂ ) contains a dense subspace of E0, so π̂ is an isomorphism and E0 � E ⊗φ B .

Let’s turn now to our main result. Let A be a C∗-algebra with unit, and E be a Hilbert module over A with an isometric 
*-morphism φ : A → L A(E) which endowed E with a left action. The algebra A is supposed to be separable and E countably 
generated. We will denote by F(E) the Fock space associated to E , which is F(E) =

⊕
n≥0

E⊗n (where E⊗0 = A). Each E⊗n is 

a left A-module, thus F(E) is endowed with a diagonal left action over A.
Let ξ ∈ E and Tξ be the left creation operator η 
→ ξ ⊗ η. Then Tξ ∈ L A(F(E)) and the annihilation operator is given by 

T ∗
ξ (η1 ⊗ . . . ⊗ ηn) =< ξ, η1 > η2 ⊗ . . . ⊗ ηn .

We denote by TE the associated Toeplitz algebra, which is the C∗-algebra generated by A and the operators Tξ .
If E is also endowed with an anti-linear involution ξ 
→ ξ∗ then there is a natural *-subalgebra of TE , that we denote by 

SE , and is generated by A and elements Tξ + T ∗
ξ∗ . This algebra is mainly studied in a Von Neumann algebra context (see 

for example [2] and [3]). We will here compute its KK-theory as a particular case of the following theorem.

Theorem 0.2. Let S be any sub-C∗-algebra of TE which contains A and is generated by linear combinations of creation and annihilation 
operators. Then S is KK-equivalent to A

According to Pimsner (see Proposition 3.3 in [1]), Toeplitz algebras satisfy the following universal property:

Proposition 0.3. Let B be a C∗-algebra and σ : A → B a *-morphism. We suppose that there is a family (tξ )ξ∈E in B such that:

1) ξ 
→ tξ is C-linear
2) tξ σ (a) = tξa and σ(a)tξ = tφ(a)ξ

3) t∗
ξ tζ = σ(< ξ, ζ >)

Then σ extends to a unique morphism on TE such that σ(Tξ ) = tξ .

We denote by i A the inclusion of A in S , i S the inclusion of S in TE and j def= i S ◦ i A . Let P be the projection in F(E)

onto E⊗0 = A and Q
def= 1 − P . Let π0 : A → L A(F(E)) given by the diagonal left action of F(E), and π̃1

def= Q π0 = π0 Q . We 
also define T̃ξ

def= Q Tξ Q . Then (π̃1, T̃ξ ) satisfies conditions in Proposition 0.3, so π̃1 extends to a representation π1 of TE .

Let β def= (F(E) ⊕F(E), (π0, π1), F ) where F :F(E) ⊕F(E) →F(E) ⊕F(E) is defined by F (ξ ⊕ ζ ) = ζ ⊕ ξ . Then β is an 
element of K K (TE , A) (see Lemma 4.2 and Definition 4.3 in [1]).

We have the relations j ⊗TE β = 1A and β ⊗A j = 1TE , where 1C , for every C∗-algebra C , is the multiplicative unit in the 

ring K K (C, C) (see Theorem 4.4 in [1]). We consider α def= i S ⊗TE β ∈ K K (S, A).

Proposition 0.4. We have the relations i A ⊗S α = 1A and α ⊗A i A = 1S .

Indeed, for the first one we have i A ⊗S α = i A ⊗S iS ⊗TE β = j ⊗TE β = 1A .
For the second one, we first recall all the tools which are introduced in Pimsner’s article in the proof of Theorem 4.4. 

Let τ1 : TE → LTE (F(E) ⊗ j TE) be the operator such that, for T ∈ TE , τ1(T ) acts on A ⊗ j TE � TE by τ1(T )(S) def= T S and 
is equal to zero on 

⊕
n≥1

E⊗n ⊗ j TE (note that τ1 is a *-morphism). Let τ0 : TE → LTE (F(E) ⊗ j TE) be the operator such 

that, for Tξ ∈ TE , τ0(Tξ ) acts on A ⊗ j TE � TE by τ1(Tξ )(S) def= ξ ⊗ S and is equal to zero on 
⊕
n≥1

E⊗n ⊗ j TE . Note that 

(τ0(Tξ ))
∗(η ⊗ S) =< ξ, η > S on E ⊗ j TE and is equal to zero on A ⊗ j TE and 

⊕
n≥2

E⊗n ⊗ j TE .

Lemma 0.5. Consider Tξ ∈ TE and t ∈ [0, 1]. We define

T̃ξ,t
def= cos(

π

2
t)τ0(Tξ ) + sin(

π

2
t)τ1(Tξ ) + π1(Tξ ) ⊗ 1TE .

The couple (π0 ⊗ 1TE , T̃ξ,t) satisfies the conditions in Proposition 0.3, and thus π0 ⊗ 1TE extends to a representation πt : TE →
LTE (F(E) ⊗ j TE ).

Conditions 1) and 2) are easy to check.
As regards condition 3), we have: T̃ ∗ T̃ζ,t = I + J + K where
ξ,t
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I = cos2(
π

2
t)(τ0(Tξ ))

∗τ0(Tζ ) + sin(
π

2
t) cos(

π

2
t)(τ0(Tξ ))

∗τ1(Tζ )

+ cos(
π

2
t)(τ0(Tξ ))

∗π1(Tζ ) ⊗ 1TE ,

J = cos(
π

2
t) sin(

π

2
t)(τ1(Tξ ))

∗τ0(Tζ ) + sin2(
π

2
t)(τ1(Tξ ))

∗τ1(Tζ )

+ sin(
π

2
t)(τ1(Tξ ))

∗π1(Tζ ) ⊗ 1TE ,

K = cos(
π

2
t)((π1(Tξ ))

∗ ⊗ 1TE )τ0(Tζ ) + sin(
π

2
t)((π1(Tξ ))

∗ ⊗ 1TE )τ1(Tζ )

+ ((π1(Tξ ))
∗π1(Tζ )) ⊗ 1TE ).

Then we compute each term on the subspace where it doesn’t vanish. Remark that the subspaces E⊗n ⊗ j TE of F(E) ⊗ j TE
are stable for π1 ⊗ 1TE . Let T ∈ A ⊗ j TE � TE , η ∈ E . We have:

(τ0(Tξ ))
∗τ0(Tζ )(T ) = (τ0(Tξ ))

∗(ζ ⊗ T ) =< ξ, ζ > T ;
(τ0(Tξ ))

∗τ1(Tζ )(T ) = 0;
(τ0(Tξ ))

∗(π1(Tζ ) ⊗ 1TE )(η ⊗ T ) = (τ0(Tξ ))
∗(Q Tζ Q η ⊗ T ) = 0;

(τ1(Tξ ))
∗τ0(Tζ )(T ) = 0;

(τ1(Tξ ))
∗τ1(Tζ )(T ) = T ∗

ξ Tζ T =< ξ, ζ > T ;
(τ1(Tξ ))

∗(π1(Tζ ) ⊗ 1TE ) = 0;
((π1(Tξ ))

∗ ⊗ 1TE )τ0(Tζ )(T ) = (π1(T ∗
ξ )ζ ) ⊗ T = 0;

((π1(Tξ ))
∗ ⊗ 1TE )τ1(Tζ )(T ) = (π1(T ∗

ξ )1) ⊗ Tζ T = 0.

For the last two statements, we use the fact that π1(T ∗
ξ ) vanishes on the subspaces A = E⊗0 and E = E⊗1 of F(E). As 

regards the last term, let η ∈F(E). We have: (π1(T ∗
ξ )π1(Tζ ))η ⊗ T =< ξ, η > (Q η) ⊗ T . Finally:

T̃ ∗
ξ,t T̃ζ,t(η ⊗ T ) = (cos2(

π

2
t) + sin2(

π

2
t)) < ξ,η > (Pη) ⊗ T + < ξ,η > (Q η) ⊗ T

=< ξ, ζ > η ⊗ T

so T̃ ∗
ξ,t T̃ζ,t = (π0 ⊗ 1TE )(< ξ, ζ >).

We now focus on α ⊗A i A . Likewise, we can define τ S
1 : S → L S(F(E) ⊗i A S) and τ S

0 : S → L S(F(E) ⊗i A S).
The element α ⊗A i A is given by the Kasparov module

(F(E) ⊗i A S ⊕F(E) ⊗i A S, (π0 ⊗ 1S ◦ i S) ⊕ (π1 ⊗ 1S ◦ i S), F ⊗ 1S).

Then the element α ⊗A i A − 1B can be represented by the Kasparov module γ def= ((F(E) ⊗i A S) ⊕ (F(E) ⊗i A S), π S
0 ⊕ π S

1 ,

F ⊗ 1S ) where π S
1 = τ S

1 ⊕ (π1 ⊗ 1S ◦ i S) and π S
0 = π0 ⊗ 1S ◦ i S .

We also have π0 ⊗ 1 ◦ i S = τ S
0 ⊕ (π1 ⊗ 1 ◦ i S).

Lemma 0.6. Consider the C-subspace F(E) ⊗i S S of F(E) ⊗ j TE (see Proposition 0.1) and let t ∈ [0, 1]. Then the representation πt

in Lemma 0.5 induces a representation π S
t : S → L S(F(E) ⊗i A S).

Indeed, let g
def=

n∑
i=1

λi Tξi +
m∑

i=1

μi T
∗
ζi

be a generator of the C∗-algebra S . We first show that πt(g) stabilizes F(E) ⊗i A S .

Let E0
def= {∑ ξi ⊗ bi, xi ∈F(E), bi ∈ S} ⊂F(E) ⊗i A S .

We have πt(g) = L + M + N where

L =
n∑

i=1

λiτ1(Tξi ) +
m∑

i=1

μi(τ1(Tζi ))
∗

M =
n∑

i=1

λiτ0(Tξi ) +
m∑

i=1

μi(τ0(Tζi ))
∗

N =
n∑

i=1

λi(π0(Tξi )) ⊗ 1TE +
m∑

i=1

μi(π0(Tξi ))
∗) ⊗ 1TE

As in the proof of Lemma 0.5 we only pay attention on the subspaces where terms do not vanish. Let b ∈ A ⊗i A S � S , 
η ∈ E . Then we have:
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(

n∑
i=1

λiτ1(Tξi ) +
m∑

i=1

μi(τ1(Tζi ))
∗)b = (

n∑
i=1

λi Tξi +
m∑

i=1

μi T
∗
ζi
)b ∈ A ⊗i A S � S;

(

n∑
i=1

λiτ0(Tξi ) +
m∑

i=1

μi(τ0(Tζi ))
∗)b = (

n∑
i=1

λiξi) ⊗ b ∈ E ⊗ S;

(

n∑
i=1

λiτ0(Tξi ) +
m∑

i=1

μi(τ0(Tζi ))
∗)η ⊗ b =<

m∑
i=1

μiζi, η > b ∈ A ⊗i A S � S.

The last term clearly stabilizes E0. By linearity, πt(g) stabilizes E0. As πt(g) is continuous on E0 and (πt(g))∗ = πt(g∗), πt
induces a *-morphism π S

t on the involutive algebra generated by g valued in L S (F(E) ⊗i A S). We now have to extend π S
t

to a morphism on S . We note that ‖π S
t (g)‖ ≤ ‖πt(g)‖ ≤ ‖g‖ because πt is a *-morphism between C∗-algebras. Then π S

t is 
continuous and extends to a (unique) morphism on S , still denoted by π S

t . For t = 0 or t = 1, we find the same π S
0 and π S

1
introduced before.

To end the proof, we will show that the family π S
t is a homotopy, and thus γ = 0. First we have to show that, for fixed 

b ∈ S , t → π S
t is continuous. For that, as ‖π S

t (s)‖ ≤ ‖s‖, we only have to see it on generators g ∈ S , which is obvious.
Besides, we need to show that, for b ∈ S and t ∈ [0, 1] fixed, we have:

π S
t (b) − π S

0 (b) ∈ KS(F(E) ⊗i A S).

We only need to check it for g ∈ S generator with g
def=

n∑
i=1

λi Tξi +
m∑

i=1

μi T
∗
ζi

. The projection P , introduced at the beginning, 

is clearly a compact operator of F(E), so P ⊗ 1S is a compact operator of F(E) ⊗i A S . We can see that π S
t (g) − π S

0 (g) =
U + V ∈KS(F(E) ⊗i A S) where

U =
n∑

i=1

λi(π
S

t (Tξi ) − π S
0 (Tξi ))(P ⊗ 1S)

V =
m∑

i=1

μi(P ⊗ 1S)(π
S

t (T ∗
ζi
) − π S

0 (T ∗
ζi
)).

Thus we have the relation α ⊗A i A = 1S .

Corollary 0.7. We have K0(S) = K0(A). Particularly, we have:

K0(SE) = K0(A)

And thus a different proof of the result of [4]:

Corollary 0.8. Let ϕ : f ∈ C([0, 1]) 
→
1∫

0

f (t) dt. ϕ is a state of the C∗-algebra C([0, 1]).

We have K0((C([0, 1]), ϕ)∗r(C([0, 1]), ϕ) = K0(C).

Indeed, for A = C and E = C
2, if S1 and S2 are the creation operators associated with the vectors (1, 0) and (0, 1), 

we consider C∗(1, S1 + S∗
1, S2 + S∗

2). It is well known that C∗(1, S1 + S∗
1, S2 + S∗

2) � (C([−2, 2]), ψ)∗r(C([−2, 2]), ψ), where 

ψ : f ∈ C([−2, 2]) 
→ 1

2π

2∫
−2

f (t)
√

4 − t2 dt (see [5]), and that there is an homeomorphism on [−2, 2] onto [0, 1] that sends 

the semi-circular measure to the Lebesgue one. That gives rise to an *-isomorphism:

(C([0,1]),ϕ)∗r(C([0,1]),ϕ) � (C([−2,2]),ψ)∗r(C([−2,2]),ψ)

so K0((C([0, 1]), ϕ)∗r(C([0, 1]), ϕ) = K0(C∗(1, S1 + S∗
1, S2 + S∗

2)) = K0(C).
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