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This paper deals with non-parametric density estimation for spatial data. We study the 
asymptotic properties of a new recursive version of the Parzen–Rozenblatt estimator. The 
mean square error and an almost sure convergence result with rate of such estimator are 
derived.
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r é s u m é

Ce papier traite de l’estimation de la densité spatiale dans le cas récursif. Nous étudions les 
propiétés asymptotiques d’une nouvelle version de l’estimateur de Parzen–Rozenblatt. Nous 
établissons les convergences en moyenne quadratique et presque sûre de cet estimateur ; 
des vitesses de convergence sont données.

© 2015 Published by Elsevier Masson SAS on behalf of Académie des sciences. This is an 
open access article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

We consider recursive kernel density estimation for spatially dependent data. Spatial density estimation is an interesting 
and crucial problem in statistical inference for a number of applications, where the considered variables have spatial depen-
dence. Spatial data are modeled as finite realizations of random fields collected from different spatial locations on the earth 
and they are widely used in a variety of fields, including soil science, geology, oceanography, econometrics, epidemiology, 
environmental science, forestry, and many others, see Cressie [9], Chiles and Delfiner [7]. Although potential applications 
of nonparametric spatial models are abundant, little theoretical work has been devoted to nonparametric space modeling 
compared to the parametric case.

This work concerns a nonparametric estimation of the probability density function from dependent spatial data, using 
a recursive kernel approach. For an overview on results and applications considering independent or dependent spatial 
data for density estimation by classical kernel method, we highlight the works by Biau and Cadre [3], Carbon et al. [5], 
Dabo-Niang and Yao [10], Tran [19]. The method and the results obtained here generalize the previous works in the recursive 
framework.
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With the advances in hardware technology and the sophistication of modern computing and data acquisition techniques, 
voluminous spatial data are collected in various applied areas. New challenges arise since in many applications the volume of 
the data is so large that it may be impossible to store them on desk and their modeling requires many time. Nonparametric 
estimators such as the kernel density estimator of Parzen–Rozenblatt can be used to estimate the density function. However, 
they suffer from a serious computational drawback in big data context. In fact, if the density is estimated by a non-recursive 
estimator, this last must be completely recalculated when new data items are received.

In situations where data items arrive sequentially and a large amount of data can be generated at a rapid rate, a re-
cursive updating algorithms provide great help for the difficulties arising from the large volume of data. Then they are 
much preferred over non-recursive ones, since recursive estimators can be updated from their immediate past and the new 
observation. Therefore, the update can be computed instantly and does not require extensive storage of data. This arrange-
ment is particular to recursive methods and is called the online or real-time updating property. This recursive property is 
particularly interesting when the sample data are continually captured over time.

Recursive kernel approaches were introduced and abundantly studied in the non-spatial case. We refer, for instance, to 
the pioneer works by Wolverton and Wagner [20], Deheuvels [12], Wegman and Davies [11], who have paid attention to 
nonparametric recursive density estimation for time processes. There are some recent contributions on asymptotic properties 
of recursive kernel density for dependent data. Amiri [1] generalized all the above-cited versions to a general family of 
recursive estimators, using different values of a parameter � ∈ [0, 1] associated with each estimator. For the fixed values 
� = 1/2 and � = 1, the asymptotic normality under negative association was previously treated by Liang and Baek [2], 
while the mean-square convergence and the asymptotic normality were studied by Masry [14] under α-mixing condition. 
Mezhoud et al. [15] have extended the results obtained by Amiri [1] to η-dependent time process.

We extend the feature of time-varying sample recursive density estimate to the spatial case. Namely, we present a 
recursive version of the classical spatial kernel density estimator and establish some asymptotic results of such estimator. 
As far as we know, the investigation of recursive kernel methods for spatial data remain an open problem.

The rest of the paper is organized as follows. In section 2, we present the spatial recursive density estimator, while 
Section 3 gives general assumptions. In section 4, we establish asymptotic convergence, namely mean square error and 
almost-sure convergence with the rate of our estimator. Finally Section 5 is devoted to some indications to prove the 
theoretical results presented in this note.

2. The recursive spatial kernel density estimate

Let (Xi)i∈NN , N ≥ 1 be a measurable strictly stationary spatial process defined on a probability space (�, A, P) and 
valued in Rd , where d ≥ 1. We assume that the Xi ’s have the same distribution as a random variable X , with unknown 
probability density function p. Suppose that we observe the process on a spatial set of sites In of cardinal n, which is a 
finite subset of a potentially observable region D ⊂ R

N , where RN is endowed with the uniform metric. For convenience, 
we treat the observations sites as an array that is In = {

s j, j = 1, . . . ,n
} ⊂ N

N . The estimator of the probability density 
function based on (Xi, i ∈ In) to be studied in the present work is of the form:

p�
n(x0) := 1

Sn,�

∑
i∈In

1

hd�
i

K

(
Xi − x0

hi

)
, x0 ∈ R

d (� ∈ [0,1]), (1)

where Sn,� := ∑
i∈In

hd(1−�)

i , hi is a bandwidth corresponding to the observation Xi . By enumerating the sites, one may rewrite 

p�
n(x0) as

p�
n(x0) := 1

Sn,�

n∑
j=1

1

hd�
s j

K

(
Xs j − x0

hs j

)
, x0 ∈R

d (� ∈ [0,1]), (2)

where Sn,� :=
n∑

j=1
hd(1−�)

s j
. This representation of the estimator presents a great interest from the computational point of view. 

In fact, if Xsn+1 is a new observation of the process at a site sn+1 added to In , the estimator can be updated recursively by 
the following formula:

p�
n+1(x0) = Sn,�

Sn+1,�

p�
n(x0) + K �

n+1

(
Xsn+1 − x0

)
with K �

i (.) := 1

hd�
si

Si,�
K

(
.

hsi

)
. (3)

In (3), p�
n+1(x0) is the density estimator based on the domain In ∪{sn+1}. This recursive formula is useful when the number 

of the spatial sites increases sequentially on space.
To simplify the presentation, the parameter � is throughout supposed to be equal to 0 and the corresponding estimator 

will be later noted pn .
Basically, two asymptotic methods occur in the spatial literature: increasing domain and infill asymptotics, see [9], p. 480. 

The growth of the sample in increasing domain asymptotics is a consequence of an unbounded expansion of the sample 
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region In , whereas under infill asymptotics the sample region is fixed and the growth of the sample size is due to sampling 
that is dense in the region D. In what follows we consider the increasing domain asymptotics and for simplicity the bivariate 
regular lattice (N = 2), described in the following assumption.

H 2.1. D is a regular lattice and In = {i = (i1, i2), 1 ≤ i j ≤ n j, j = 1, 2} is rectangular. In this case, n = n1 ×n2 goes to infinity means 
that minn j j=1,2 goes to infinity. Therefore, we use the lexicographic order and renumber the observations as a triangular array in the 
following way. The observation site (i, j) can be indexed by t = n2(i − 1) + j in the triangular array setting, see [17]. In this case, the 
new observation site is (n1 + 1, 1), which is indexed by n + 1 in the array setting.

Notice that to obtain our asymptotic results in the irregular lattice context, one can consider additional assumptions on 
the number of spatial unit on a closed ball of D with the following:

H 2.2. The potential observable region D is an irregular lattice and infinite countable. All elements of D are located at distances of at 
least δ > 1 from each other.

In this case (as in [8]), we consider a sequence of finite closed, convex regions {Ru} of increasing area as u → +∞ and let the 
sample set consists of the intersection of one of the convex regions and D: In = D ⊂ Ru. We do not specify here any order and any 
other assumption on the configuration and growth of sample size except the assumption of a uniformly increasing area of {Ru} in at 
least two non-opposing directions to increase the sample size n (as u → +∞), see [8]. Thus, a new observation corresponds to any new 
site sn+1 of D not already included in In.

3. General assumptions

In order to establish the asymptotic results, the following assumptions will be considered. Let us consider the represen-
tation of the recursive density estimator given in (2), with � = 0.

H 3.1. (a) hsn ↓ 0 and nhd+2
sn

→ ∞ as n → ∞; (b) For r ∈ ]−∞, 2 + d], Bn,r := 1

n

n∑
i=1

(
hsi

hsn

)r

→ Br > 0.

H 3.2. K is a bounded symmetric density such that 
∫
Rd

uK (u)du = 0 and

∫
Rd

‖u‖2 K (u)du < ∞.

H 3.3. The density p is bounded and twice continuously differentiable on Rd.

H 3.4. For any i, j ∈ {1, . . . , n} such that si �= s j , the random vector (Xsi , Xs j ) has a density f si ,s j such that:

sup
si �=s j

∥∥gsi ,s j

∥∥∞ < ∞, where gsi ,s j = f si ,s j − p ⊗ p, i, j = 1, . . . ,n.

H 3.5.

(i) The field (Xsi )1≤i≤n is α-mixing: there exists a function φ : R+ → R
+ with φ(t) ↘ 0 as t → ∞, such that whenever E, E ′ ⊂ R

2

with finite cardinals Card(E), Card(E ′)

α
(
σ (E) ,σ

(
E ′)) := sup

A∈σ (E), B∈σ (E ′)
|P(A ∩ B) − P (A)P (B)| ≤ ψ

(
Card(E),Card(E ′)

)
φ
(
dist(E, E ′)

)
,

where σ (E) = {Xi, i ∈ E} and σ
(

E ′)= {
Xi, i ∈ E ′}, dist(E, E ′) is the Euclidean distance between E and E ′ and ψ(·) is a positive 

symmetric function nondecreasing in each variable.
The functions φ and ψ are such that φ (i) ≤ Ci−θ and ψ(n, m) ≤ C min(n, m).

(ii) For ε > 0, let un =∏N
i=1(log ni)(log log ni)

1+ε and assume that

n log n
θ−2N
4N−θ h

dθ
θ−4N
n u

2N
4N−θ
n → ∞, where θ > max

{
4N,

Nd + 2

2

}
.

The first condition of H 3.1 is usual in nonparametric recursive estimation, while the second one is crucial in our calculus. 
This last is particularly used in the recursive kernel estimation, for instance by Masry [14], Wegman and Davies [11], 
Yamato [21], Samanta and Mugisha [16] and Isogai [13]. If hsn = Ann−q where An ↓ A > 0, 0 < q < 1, then the assumption 

H 3.1 is satisfied for all q such that rq < 1 and Br = 1

1 − rq
. Also the choice hsn = An

(
ln n

n

)q

, 0 < q <
1

2 + d
satisfies 

assumption H 3.1. Assumptions H 3.2 and H 3.3 are classical in nonparametric estimation and easily verified by many 
kernels such as Epanechnikov, Gaussian kernels.
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About the assumption H 3.5(i), basically, in the spatial literature it is supposed that φ (i) tends to zero with polynomial 
rate, or φ (i) ≤ C exp(−si), for some C, s > 0, i.e. φ (i) tends to zero with exponential rate. Our results can be proved under 
the above condition. Finally let us mention that the definition of un in H 3.5 leads to 

∑
n∈NN

1
n̂un

< ∞ (recall that n̂ = n).

4. Consistency results

Theorem 1 below establishes the asymptotic mean square error of the estimator pn via its variance and bias.

Theorem 1. Under the assumptions H 2.2 and H 3.1–3.5, we have:

nhd
sn

Var(pn(x0)) → p(x0)B−1
d

∫
Rd

K 2(u)du (4)

and

h−2
sn

(E(pn(x0)) − p(x0)) → B−1
d Bd+2

∫
Rd

K (u)

2

d∑
j1, j2=1

u j1 u j2

∂2 p(x0)

∂x j1∂x j2

du (5)

as n → ∞, for all x0 such that p(x0) > 0. In particular, if hsn = n
−1

4+d , we have the asymptotic behavior according to the mean square 
error:

n
4

4+d E(pn(x0) − p(x0))
2 →

⎛⎜⎝ ∫
Rd

K (u)

d∑
j1, j2=1

u j1 u j2

∂2 p(x0)

∂x j1∂x j2

du

⎞⎟⎠
2

+ 4

4 + d
p(x0)

∫
Rd

K 2(u)du (6)

as n → ∞ for all x0 such that p(x0) > 0.

Theorem 1 is an extension of the previous results obtained in the temporal case by Amiri [1] with α-mixing condition. 
Also, a similar result were proved by Mezhoud et al. [15] for temporal η-dependence process. Now, we state the following 
theorem that establishes the almost convergence of pn .

Theorem 2. Under the assumptions H 2.1, H 3.1–3.5, we have:

|pn(x0) − p(x0)| = O

(√
log n

nhd
n

)
, a.s. (7)

5. Brief outline of proofs

5.1. Theorem 1

For x0 ∈ R
d , let I1 = 1

B2
n,dn2h2d

sn

n∑
i=1

Var
(

Zsi

)
and I2 = 1

B2
n,dn2h2d

sn

∑
si �=s j

Cov
(

Zsi , Zs j

)
, with Zsi = K

(
Xsi − x0

hsi

)
.

On the one hand, under H 3.2 with the help of the Toeplitz Lemma (see [18]), we readily have

nhd
sn

|I1| → p(x0)B−1
d

∫
Rd

K 2(u)du as n → ∞.

On the other hand, for x0 ∈R
d , let us split: I2 = J1 + J2, where

J1 = 1

B2
n,dn2h2d

sn

∑
∥∥si−s j

∥∥≤cn

Cov(Zsi , Zs j ) and J2 = 1

B2
n,dn2h2d

sn

∑
cn<

∥∥si−s j
∥∥Cov(Zsi , Zs j ),

cn being a sequence tending to infinity as n tends to infinity. If d ≥ 3, then 2d > d + 2. In this case, we consider ζ ∈ R such 

that 
N

θ − 1
< ζ ≤ 2

d
, and using the decrease of (hsn )n , one may write:

∣∣Cov(Zsi , Zs j )
∣∣≤ hd

sih
d
s j

sup
si �=s j

∥∥gsi ,s j

∥∥∞ ≤
h2d

si
+ h2d

s j

2
sup
si �=s j

∥∥gsi ,s j

∥∥∞ ≤ hd(ζ+1)
si

hd(1−ζ )
s1 + hd(ζ+1)

s j
hd(1−ζ )

s1

2
sup
si �=s j

∥∥gsi ,s j

∥∥∞ .
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If 1 ≤ d ≤ 3, take ζ = 1 and make as previously. As In is a regular design (see for instance [19])

Card
{
(u,v) ∈ I2

n : ‖u − v‖ ≤ cn

}
= O

(
ncN

n

)
.

It follows that nhd
sn

| J1| ≤ Bn,d(ζ+1)

B2
n,d

hd(1−ζ )
s1 hdζ

sn cN
n sup

si �=s j

∥∥gsi ,s j

∥∥∞ = O  
(

hdζ
sn cN

n

)
.

Turning to J2, by the Billingsley inequality (see [4]), we have 
∣∣Cov(Zsi , Zs j )

∣∣≤ 4φ(
∥∥si − s j

∥∥) ‖K‖2∞ . Consequently, we get

nhd
sn

| J2| ≤ 4‖K‖2∞
B2

n,dhd
sn (θ − 1)

c1−θ
n = O

(
c1−θ

n

hd
sn

)
.

The choice of cn =
⌊

h
− d(ζ+1)

N+θ−1
sn

⌋
leads to nhd

sn
|I2| = O  

⎛⎜⎝h

d(ζ(θ − 1) − N)

N + θ − 1
sn

⎞⎟⎠ → 0 as n → ∞, as well as ζ >
N

θ − 1
, and the 

result (4) follows. About the bias term, we apply the Taylor formula and the dominated convergence, which together with 
Toeplitz’ lemma, leads to the result (5). �
5.2. Theorem 2

Let us set Gn(x0) = pn(x0) − Epn(x0) =
n∑

i=1

�i with �i = 1

Sn,0

(
Zsi −EZsi

)
. Next, let a = an be an integer and split the 

random variables �i into blocks as follows:

U (1,n, j, x0) =
(2 jk+1)an∑

ik=2 jkan+1
k=1,...,N

�i; U (2,n, j, x0) =
(2 jk+1)an∑

ik=2 jkan+1
k=1,...,N−1

2( jN+1)an∑
iN =(2 jN +1)an+1

�i;

U (3,n, j, x0) =
(2 jk+1)an∑

ik=2 jkan+1
k=1,...,N−2

2( jN−1+1)an∑
iN−1=(2 jN−1+1)an+1

(2 jN +1)an∑
iN =2 jN an+1

�i;

U (4,n, j, x0) =
(2 jk+1)an∑

ik=2 jkan+1
k=1,...,N−2

2( jN−1+1)an∑
iN−1=(2 jN−1+1)an+1

2( jN+1)an∑
iN =(2 jN +1)an+1

�i, (8)

and so on. Finally note that U (2N−1, n, j, x0) =
(2 jk+1)an∑

ik=2 jkan+1
k=1,...,N−1

2( jN +1)an∑
iN =2 jN an+1

�i; U (2N , n, j, x0) =
(2 jk+1)an∑

ik=2 jkan+1
k=1,...,N

�i .

For each integer 1 ≤ i ≤ 2N , define E(n, i, x0) =
rk−1∑
jk=0

k=1,...,N

U (i, n, j, x0), then one may write Gn(x0) =∑2N+1

i=1 E(n, i, x0). Without 

loss of generality, we will show the result for i = 1.

Because K is bounded, we get U (1, n, j, x0) ≤ aN
n ‖K‖∞

Bn,d

1
nhd

n
. Consider the sequences λn =

⌊(
nhd

n log n
)1/2

⌋
, and ri =

ni/(2an), i = 1, . . . , N . We deduce that, for n large enough,

λn |U (1,n, j, x0)| = O

⎛⎜⎝ logn√
nhd

n

⎞⎟⎠ . (9)

Enumerate the random variables U (1, n, j, x) in E(n, 1, x) in an arbitrary manner and refer to them as Û1, . . . , Û M , M =
r1...rN . By Markov’s inequality and Lemma 4.5 of [6], there exist r.v.’s Ũ1, . . . , Ũ M independent of Û1, . . . , Û M and such that 
Û i = Û i(x0) has the same distribution as Ũ i = Ũ i(x0) and:

P

(∣∣∣Û i − Ũ i

∣∣∣> ε
)

≤ 18

⎛⎜⎝
∥∥∥Û i

∥∥∥∞
ε

⎞⎟⎠ψ(n,aN
n )φ(an). (10)
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Let εn = η

√
log n

nhd
n

, where η is a positive number. Obviously

P(|E(n,1, x0)| > εn) ≤ P

⎛⎝ M∑
j=1

∣∣∣Ũ i

∣∣∣> εn

2

⎞⎠+ P

⎛⎝ M∑
j=1

∣∣∣Û i − Ũ i

∣∣∣> εn

2

⎞⎠ . (11)

Using the independence of the Ũ i ’s and applying Bernstein inequality, we get

P

⎛⎝ M∑
j=1

∣∣∣Ũ i

∣∣∣> εn

2

⎞⎠≤ 2 exp

(
−λnεn

2
+ λ2

n

4

M∑
i=1

E

(
Û 2

i (x0)
))

≤ 2 exp

(
−η log n

2
+ λ2

n

4

M∑
i=1

E

(
Û 2

i (x0)
))

.

Clearly, 
λ2

n

4

M∑
i=1

E 
(

Û 2
i (x0)

)
≤ λ2

n

4
Var(pn(x0)) ≤ log(n)

4
nhd

nVar(pn(x0)).

From (4), we deduce that for n large enough, nhd
nVar(pn(x0)) ≤ p(x0)B−1

d

∫
Rd

K 2(u)du. It follows that

λ2
n

4

M∑
i=1

E

(
Û 2

i (x0)
)

≤ log(n)p(x0)
B−1

d

4

∫
Rd

K 2(u)du.

Hence P 

⎛⎝ M∑
j=1

∣∣∣Ũ i

∣∣∣> εn

2

⎞⎠≤ n−δ , where δ > 1, for η large enough. Concerning the second term in the right-hand-side of (11), 

from (10) one has 
∥∥∥Û i(x0)

∥∥∥∞ ≤
(

aN
n ‖K‖∞

nhd
n

)
. We get, by Markov’s inequality:

P

(
M∑

i=1

∣∣∣Û i − Ũ i

∣∣∣> εn

2

)
≤ C M

(
aN

n ‖K‖∞
nhd

n

)
ε−1

n ψ(n,aN
n )φ(an),

then P 

(
M∑

i=1

∣∣∣Û i − Ũ i

∣∣∣> εn

2

)
≤ C

(
1

hd
n

)
ε−1

n ψ(n, aN
n ) (φ(an)) ≤ C

(
1

hd
n

)
ε−1

n aN
n a−θ

n .

Let an =
(

log n
nhd

n

)−1/(2N)

, then P 

(
M∑

i=1

∣∣∣Û i − Ũ i

∣∣∣> εn

2

)
≤ Cn

2N−θ
2N log n

θ−2N
2N h

−dθ
2N

n = Cβn .

By hypothesis, we have nunβn =
(

n log n
θ−2N
4N−θ h

dθ
θ−4N
n u

2N
4N−θ
n

) 4N−θ
2N → 0, then Theorem 2 follows by the Borel–Cantelli 

lemma. �
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