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Localized potentials in the Dirac equation for the electron dynamics in a zigzag graphene 
ribbon are constructed to support trapped modes while the corresponding eigenvalues are 
embedded into the continuous spectrum.
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r é s u m é

On construit des potentiels localisés pour les équations de Dirac décrivant le comportement 
des électrons dans une bande de graphène en zigzag, pour lesquels des modes piégés 
existent, tels que les valeurs propres correspondantes sont plongées dans le spectre 
continu.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Statement of the problem

In the strip � = {(x, y) : x ∈ (0, d), y ∈R} of width d > 0, reduced to 1 by rescaling, we consider the Dirac equation

D(∇)

(
u
v

)
=

( −i∂x v + ∂y v
−i∂xu − ∂yu

)
= ω

(
u
v

)
− δP

(
u
v

)
in � (1)

perturbed by a compactly supported real-valued, continuous for simplicity, potential P and supplied with the boundary 
conditions:

u(0, y) = 0, v(1, y) = 0 for y ∈R = (−∞,+∞). (2)
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In (1), δ > 0 is a small parameter. This boundary-value problem describes the electron dynamics within one of two valleys 
of the zigzag graphene ribbon �, see [2], while the other valley requires only the complex conjugation of the equations. 
The problem (1), (2) is associated with a self-adjoint operator Aδ in the Lebesgue space L2(�)2 having the domain D(Aδ) =
{w = (u, v) ∈ L2(�)2 : D(∇)w ∈ L2(�)2, (2) is valid}, independent of δ. The spectrum σ(Aδ) is continuous and covers the 
intact real axis R ⊂C. Our goal is to construct specific potentials

P (x, y) := Pτ (x, y) = P0(x, y) + τ1 P1(x, y) + · · · + τ2(2N−1) P2(2N−1)(x, y), τ = (τ1, . . . , τ2(2N−1)) (3)

that provide a non-empty point spectrum of Aδ for a small δ. In other words, we detect eigenvalues of Aδ and the corre-
sponding eigenfunctions w ∈ D(Aδ) to the problem (1), (2) with the exponential decay as y → ±∞.

Since eigenvalues of Aδ are embedded into the continuous spectrum, they possess the natural instability, namely a small 
perturbation of the potential may lead them out of the spectrum and turn into points of complex resonance, cf. [1,7]. This 
means that the appropriate structure (3) of the potential in (1) requires for “fine tuning” the free parameters τ1, . . . , τ2(2N−1) . 
Moreover, the absence of “profitable” symmetries in the Dirac operator does not allow us to employ any conventional trick, 
cf. [4] and [7], which by imposing artificial boundary conditions on the centerlines of the strip � could simplify our task. 
We apply the approach [6], which is based on a criterion [5] for the existence of trapped modes, resorts to the notion [7,8]
of enforced stability of embedded eigenvalues, and constructs an asymptotics of an artificial algebraic object, the augmented 
scattering matrix [5] involved in the criterion. Owing to the symmetry loss, the necessary technicalities become much more 
complicated than in acoustics, water waves, and quantum waveguides. Moreover, the whole boundary-value problem (1), 
(2) cannot be transformed into an elliptic one and arguments sustaining the obtained results diverge from the ones used 
previously in [3,6–8].

2. Incoming and outgoing waves and wave packets

We search for waves, that is bounded solutions of the unperturbed (δ = 0) problem (1), (2), in the form

w(x, y) = e−iλy W (x), W = (U , V ) (4)

with λ ∈R. Assuming ω > 1, we obtain

U (x) = a sin(κx), V (x) = ϕai sin(κ(x − 1)) (5)

where ϕ = sign(sinκ) stands for sign of sinκ , the values κ > 0 and λ are determined through the formulas

K (κ) := κ−2 sin2 κ = ω−2, λ = κ cotκ ⇒ ω = ϕ κ secκ, (λ − 1)∂κ K (κ) ≥ 0 (6)

and, in view of the normalization factor a = ω−1/2|λ − 1|−1/2, the condition ∓∂κ K (κ) > 0 assures that

qR(w, w) :=
1∫

0

(
v(x, R)u(x, R) − u(x, R)v(x, R)

)
dx = ±i. (7)

The Green formula for the Dirac operator shows that the symplectic (sesquilinear and anti-Hermitian) form qR (w, W) is 
independent of R for any wave (4). Furthermore, −iq(w, w) is proportional to the projection on the y-axis of the Poynting 
vector so that, according to the Mandelstam radiation principle, the sign ± in (7) indicates that the wave w(x, y) propagates 
from ∓∞ to ±∞.

Let κn ∈ (πn, πn + π) with n ∈ {1, 2, . . . } be maximum points of the function K , see Fig. 1. Since ∂κ K (κn) = 0, we have 
λn = 1, ωn = |K (κn)|−1/2 and ϕn = (−1)n . At the threshold ω = ωn , in addition to the oscillatory wave w0

n(x, y), see (4)–(6), 
the problem (1), (2) at δ = 0 gains the linear growing wave

w1
n(x, y) = yw0

n(x, y) + w ′
n(x, y) = eiy

(
yW 0

n (x) + W ′
n(x)

)
,

W ′
n(x, y) = anκ

−1
n

( i

6
κ−2

n W 0
n (x, y) − (i x cos(κx),ϕn(1 − x) cos(κ(x − 1)))

)
. (8)

Setting an = ω
1/2
0 and w±(x, y) = w1

n(x, y) ± i w0
n(x, y) yields the relation (7) for these functions, too.

We fix some N ∈ {1, 2, . . . } and put

ωε
N = (ω−1

N + ε)−1 ⇒ ωε
N = ωN(1 − εωN + O (ε2)), (9)

where ε > 0 is small. Let κε−
0 < κε+

1 < κε−
1 < · · · < κε+

N−1 < κε−
N−1 be all positive roots of the equation K (κ) =

(ωε
N )−2, cf. (6) and the dotted line in Fig. 1. The superscript ψ = ± in κεψ

n and the corresponding oscillating waves 
wε−

0 , wε+
1 , wε−

1 , . . . , wε+
N−1, w

ε−
N−1, composing the row wε

† of length 2N − 1, coincide with the sign on the right of (7)

and simultaneously features out that the point (κεψ
n , K (κ

εψ
n )) lays on the descending (ψ = −) or ascending (ψ = +) curve 

of the graph in Fig. 1.
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Fig. 1.

Building the rows of outgoing and incoming waves

wεout
† = (

χ+wε−
0 ,χ−wε+

1 ,χ+wε−
1 , . . . ,χ−wε+

N−1,χ+wε−
N−1

)
, (10)

wεin
† = (

χ−wε+
0 ,χ+wε−

1 ,χ−wε+
1 , . . . ,χ+wε−

N−1,χ−wε+
N−1

)
, (11)

we localize them onto the waveguide branches �± = {(x, y) ∈ � : ±y > �} by means of the smooth cut-off functions χ± , 
while χ±(y) = 1 for ±y > 2�, χ±(y) = 0 for ±y < � and � > 0 is fixed to ensure supp P ⊂ [0, 1] × [−�, �]. In view of the 
sign on the right of (7), all waves in (10) travel to infinity in �, but those in (11) do from infinity. A direct calculation 
furnishes the orthogonality and normalization conditions

Q
(

wεout
† , wεout

†

)
= i I†, Q

(
wεin

† , wεin
†

)
= −i I†, Q

(
wεout

† , wεin
†

)
= O†, Q

(
wεin

† , wεout
†

)
= O†, (12)

where I† and O† stand for the unit and null matrices of size (2N − 1) × (2N − 1) and the form Q = qR − q−R takes both 
branches �± of the waveguide � into account. It should be emphasized that the problem (1), (2) has N outgoing and N − 1
incoming waves in the outlet �+ . In �− these numbers becomes N − 1 and N , respectively, so that both the rows (10)
and (11) get the same length 2N − 1. For elliptic problems, the numbers of outgoing and incoming waves coincide in each 
cylindrical outlet to infinity.

The above definition also covers the threshold case ε = 0 after elongating the rows w0out
† and w0in

† with the couples 
w0out

� = (χ+w−
N , χ−w+

N ) and w0in
� = (χ−w−

N , χ+w+
N ) of the linear waves.

In the next section we will define special packets wεout
2N and wεin

2N of exponential (Imλ �= 0) waves (4) at the frequency 
(9) and get the rows wεout = (wεout

† , wεout
N ) and wεin = (wεin

† , wεin
N ) of length 2N such that the relations (12) are verified 

with the subscript † omitted and the matrices I, O of size 2N × 2N .

3. Scattering matrices

Considering the perturbed (δ �= 0) problem (1), (2) at the frequency (9), one observes that any incoming wave wεin
k in (11)

scatters around the potential δP and gives rise to a solution ζ δ,ε
k of the diffraction problem with the Mandelstam (energy) 

radiation conditions. The row ζ δ,ε
† of these solutions with k = 1, . . . , 2N − 1, admits the asymptotic form ζ δ,ε

† = wεin
† +

wεout
† sδ,ε

†† + ζ̃
δ,ε

† where the remainder ζ̃ δ,ε
† (x, y) gains the exponential decay as y → ±∞, namely eβ|y|̃ζ δ,ε

† ∈ D(Aδ)2N−1

with a small exponent β > 0. The transmission and refection coefficients sδ,ε
mn assemble the scattering matrix sδ,ε

†† of size 
(2N − 1) × (2N − 1) which, thanks to the bi-orthogonality conditions (12), is unitary.

At the threshold ωN , we also can define a unitary scattering matrix sδ,0 of size (2N + 1) × (2N + 1) but we will not need 
it here. Instead, following [5], cf. [7,8], we spread the standard scattering matrix sδ,ε

†† . Namely, since the problem (1), (2)

with δ = ε = 0 has just two polynomial in y solutions w±(x, y), for a small ε > 0, there exist exactly two waves (4) with 
the frequency ωε

N in (9), the complex exponents λε
N± = 1 + O (ε1/2), and a slow exponential growth at infinity. According to 

[9, Chap. 9], asymptotics of their ingredients have the form

λε
N± = 1 ± iε1/2θN + O (ε), W ε

N± = αε
N

(
W 0

N(x) ± ε1/2θN W ′
N(x) + O (ε)

)
(13)

where W 0
N , W ′

N are taken from (8) and θN = κN (2 ωN )1/2. Moreover, λε
N+ = λε

N− and the waves wε
N± given by formula 

(4) with the attributes (13) and a proper normalization factor αε
N = ε−1/4(2θN )−1/2 + O (ε1/4) compile the exponential 

wave packets wεout
N = χ+(wε

N+ + i wε
N−), wεin

N = χ+(wε
N+ − i wε

N−) and complete the rows wεout = (wεout
† , wεout

N ), wεin =
(wεin

† , wεin
N ), see the end of Section 2. The relations (12) now without the subscript † provide the solution row

Z δ,ε = wεin + wεout Sδ,ε + Z̃ δ,ε (14)

with a remainder of the exponential decay and a unitary 2N × 2N-matrix Sδ,ε called the augmented scattering ma-
trix. Notice that the exponential packets have been introduced in the waveguide branch �+ only and, therefore, in 
the left branch �− , the solutions (14) possess the slowly decaying term χ−wε

N+K δ,ε with the coefficient row K δ,ε =(
K δ,ε

, K δ,ε
, K δ,ε

, . . . , K δ,ε
, K δ,ε ) ∈C

2N .
0+ 1− 1+ N−1− N−1+
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4. The existence and uniqueness of trapped modes

The following assertion explains the very reason to introduce the augmented scattering matrix.

Theorem 1. The problem (1), (2) with the frequency (9) has a trapped mode wδ,ε ∈D(Aδ) if and only if the right bottom entry Sδ,ε
2N,2N

of the matrix Sδ,ε in (14) equals −1.

This criterion and the next assertion can be verified in the same way as in [5,8] and [6], respectively, with certain 
modifications caused by the ellipticity lost.

Theorem 2. Let p = max |P (x, y)|. For any N and ρ > 0, there exist δN(ρ) > 0 such that in the case δ < p−1δN (ρ) the segment 
(ωN−2 + ρ, ωN−1) contains at most one eigenvalue of the problem (1), (2) while the segment [ωN−1, ωN − ρ) is always free of its 
point spectrum.

5. Constructing asymptotics

Applying the method of matched asymptotic expansions, cf. [10], in the interpretation [6,8], we will construct an em-
bedded eigenvalue in the form

ωε
N = ωN − ω2

Nδ2 (� − τ0(δ)) , � > 0, |τ0(δ)| ≤ cNδ (15)

by choosing proper ingredients Pk , τk = τk(δ) of the potential (3) and setting ε = δ2� + O (δ3) in (9). Although the justi-
fication scheme is different due to the ellipticity loss, the asymptotic formalism remains the same as in [6,7]. For the last 
solution in the row (14), we accept the following inner expansion in a finite part of the strip �:

Z δ,ε
2N (x, y) = δ−1/2

(
Z 0,0

2N (x, y) + δ1/2 Z ′
2N(x, y) + . . .

)
, |y| 
 ∞,

where ellipses substitute for higher-order terms. This expansion must be matched with two outer expansions in the waveg-
uide branches �± , which, according to the decomposition (14), turn into

Z δ,ε
2N (x, y) = wεin

N (x, y) + wεout
N (x, y)Sδ,ε

2N.2N +
[

wεin
† (x, y)Sδ,ε

†.2N

]
+ + . . . , y � �,

Z δ,ε
2N (x, y) = K δ,ε wε

N+(x, y) +
[

wεin
† (x, y)Sδ,ε

†.2N

]
− + . . . , −y � �,

where the operation [. . .]± extracts a linear combination of waves which are supplied with the sigh ± in the row (10). 
Furthermore, accepting the asymptotic ansätze

Sδ,ε
2N,2N = S0,0

2N,2N + δ S̃ δ,ε
2N,2N , Sδ,ε

†,2N = δ
(

S0,0
†,2N + δ S̃ δ,ε

†,2N

)
, |̃S δ,ε

2N,2N | + |̃S δ,ε
†,2N | ≤ Cδ (16)

for the fragments (a scalar and a column in C2N−1) of the last column in the matrix Sδ,ε , we use the representation 
formulas (13) and perform the matching procedure at the level δ−1 to conclude that

Z 0,0
2N (x, y) = K 0,0 w0

N(x, y), K 0,0 = 1 − i + (1 + i)S0,0
2N,2N .

At the same time, the correction term Z ′
2N satisfies the inhomogeneous Dirac equations

D(∇)Z ′
2N(x, y) − ωN Z ′

2N(x, y) = −P (τ ; x, y)Z 0,0
2N (x, y), (x, y) ∈ �,

with the homogeneous boundary conditions of type (2). The general solution Z ′
2N = w0

† c† + w0
N c0 + w1

N c1 + Z•
2N of this 

problem gets a linear growth at infinity; here, c† ∈ C
2N−1 and c0, c1 are arbitrary and a particular solution can be chosen 

such that

Z•
2N = iK 0,0 w0out

† Jτ (w0
N , w0out

† ) + 2K 0,0 w1
N Jτ (w0

N , w0
N) − 2K 0,0 w0

N Jτ (w0
N , w1

N) + Z̃•
2N , (17)

Jτ (w0
N ,W) =

∫
�

Pτ (x, y)w0
N(x, y)W(x, y)dx dy. (18)

Formulas for coefficients in (17) are derived by means of the symplectic form Q . Applying the matching procedure again 
and comparing the coefficients of the waves w1

N and w0
† , we finally obtain the relations

S0,0
2N,2N = (1 + B2

τ )−2(2Bτ + i(B2
τ − 1)), S0,0

†,2N = 2B2
τ (1 + B2

τ )−2(Bτ + 1 + i(1 − Bτ )) Jτ (w0
N , w0

† ),

Bτ = 1 − 2�−1/2θ−1 Jτ (w0 , w0 ). (19)
N N N
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Note that S0,0
2N,2N = −1 for Bτ = −1 and thus we have computed the main correction term in (15):

� = θ−2
N Jτ (w0

N , w0
N)2 provided J0(w0

N , w0
N) > 0. (20)

6. Detecting embedded eigenvalues and the corresponding trapped modes

Following the scheme in [6,8] we impose the following conditions on the ingredients of the potential (3):

J0(w0
N , w0

N) > 0, J0(w0
N , w0

† ) = 0 ∈C
2N−1,

∫
�

P j(x, y)zk(x, y)dx dy = δ j,k (21)

where J0 is defined by (18) with τ = 0, δ j,k is the Kronecker symbol, j, k = 1, . . . , 4N − 2, and the functions zk compose 
the row 

(
Re

(
w0

N w0
†

)
, Im

(
w0

N w0
†

))
of length 4N − 2. These conditions can be satisfied by choosing P1, . . . , P4N−2 because 

the functions z1, . . . , z4N−2 are linear independent. Then we insert representations (16), (19) and (21) into the equations 
Im Sδ,ε

2N,2N = 0 and Sδ,ε
†,2N = 0 ∈ C

2N−1, which are obviously equivalent to the criterion in Theorem 1 and convert them into 
the abstract equation

(τ0, τ ) = δT δ,ε
N (τ0, τ ) in R

4N−1 (22)

with the contraction operator in the ball BrN ⊂ R
4N−1 of a small radius rN > 0. Solving the equation (22) by means of the 

Banach contraction principle yields the main conclusion in this note.

Theorem 3. Let us fix N ∈ {1, 2, . . . } and let P0, P1 . . . .P4N−2 fulfill the conditions (21). There exists δN(P ) > 0 such that, for any 
δ ∈ (0, δN (P )), we find out the coefficient column τ = τ (δ) in (3), |τ (δ)| ≤ rNδ and simultaneously the eigenvalue (15), (20) of the 
problem (1), (2) with the potential δPτ .

Owing to Theorem 2, Theorem 3 describes all eigenvalues around the threshold ωN .
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