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In this paper, we report on the main results concerning the solvability analysis of two 
new mixed variational formulations for the stationary Boussinesq problem. More precisely, 
we introduce mixed-primal and fully-mixed approaches, both of them suitably augmented 
with Galerkin-type equations, and show that the resulting schemes can be rewritten, 
equivalently, as fixed-point operator equations. Then, classical arguments from linear and 
nonlinear functional analysis are employed to conclude that they are well-posed.
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r é s u m é

Dans cet article, on présente les principaux résultats concernant l’analyse de résolution 
de deux nouvelles formulations variationnelles mixtes pour le problème stationnaire de 
Boussinesq. Plus précisément, on introduit des approches mixtes-primal et entièrement 
mixtes, toute les deux convenablement augmentées avec des équations de type Galerkin, et 
l’on montre que les régimes qui en résultent peuvent être réécrits, de maniére équivalente, 
comme équations d’opérateur de point fixe. Ainsi, les arguments classiques de l’analyse 
fonctionnelle linéaires et non linéaires sont utilisés pour conclure qu’elles sont bien posées.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We first let � ⊆ Rn , n ∈ {2, 3}, be a given bounded domain with polyhedral boundary �, denote by ν the outward 
unit normal vector on �, and consider a fluid occupying �. Throughout this work, a standard notation will be adopted for 
Lebesgue spaces Lp(�) and Sobolev spaces Hs(�) with norm ‖ · ‖s,� and seminorm | · |s,� . By M and M we will denote 
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the corresponding vectorial and tensorial counterparts of the generic scalar functional space M. Then, given a fluid viscosity 
μ > 0, an external force per unit mass g ∈ L∞(�), a boundary velocity uD ∈ H1/2(�), a boundary temperature ϕD ∈ H1/2(�), 
and a uniformly positive definite tensor K ∈ L

∞(�) describing the thermal conductivity, the stationary Boussinesq problem 
reads: find the velocity u, the pressure p, and the temperature ϕ of the fluid such that

−μ�u + (∇u) u + ∇p − g ϕ = 0 and div u = 0 in �,

−div(K∇ϕ) + u · ∇ϕ = 0 in �,

u = uD and ϕ = ϕD on � . (1)

Note that uD must satisfy the compatibility condition 
∫
�

uD · ν = 0, which comes from the incompressibility condition of 
the fluid. In turn, we also notice that the uniqueness of a pressure solution to (1) (see, e.g., [8]), is ensured in the space 

L2
0(�) =

⎧⎨
⎩q ∈ L2(�) :

∫
�

q = 0

⎫⎬
⎭. Next, introducing the auxiliary tensor unknown σ := μ ∇u − (u ⊗ u) − p I in �, 

where I is the identity matrix of Rn×n , using the incompressibility condition to eliminate the pressure unknown by means 

of the formula p = −1

n
tr( σ + u ⊗ u ) in �, and denoting the deviatoric of a tensor τ by τd := τ − 1

n
tr(τ ) I, we arrive at 

the following system of equations with unknowns u , σ , and ϕ

μ∇u − (u ⊗ u)d = σ d and − divσ − g ϕ = 0 in �,

−div(K∇ϕ) + u · ∇ϕ = 0 in �,

u = uD and ϕ = ϕD on � ,∫
�

tr(σ + u ⊗ u) = 0 . (2)

In the following sections we propose and analyze two new augmented mixed variational formulations for (2). For other 
approaches concerning this and related problems, we refer to [1,5,7,8], and the references therein.

2. The augmented mixed-primal formulation

In this section we consider an augmented mixed approach for the equations modeling u and σ , whereas a primal 
formulation is employed to deal with the main equation modeling the temperature ϕ .

2.1. The continuous formulation

In what follows we make use of the decomposition (see e.g. [2,6]) H(div; �) = H0(div; �) ⊕ R I, where

H(div;�) :=
{
ζ ∈ L

2(�) : div ζ ∈ L2(�)
}

, and H0(div;�) :=
⎧⎨
⎩ ζ ∈ H(div;�) :

∫
�

tr(ζ ) = 0

⎫⎬
⎭ .

In particular, σ in (2) can be decomposed as σ = σ 0 + c I, where σ 0 ∈ H0(div; �), and, thanks to the last equation in (2), 

c is given explicitly in terms of u as c = − 1

n |�|
∫
�

tr(u ⊗ u). Then, renaming σ 0 as σ ∈H0(div; �), noting that the first and 

second equations of (2) remain unchanged, multiplying all the equations of (2), except the last one, by suitable test functions, 
integrating by parts whenever it is necessary, incorporating the Dirichlet condition for u (which is a natural boundary 
condition in this case), introducing λ := − K ∇ϕ · ν ∈ H−1/2(�) as a new unknown, imposing the Dirichlet condition for ϕ
weakly, and denoting by 〈 · , · 〉� the duality pairing between H−1/2(�) (resp. H−1/2(�)) and H1/2(�) (resp. H1/2(�)), we first 
obtain the following set of equations:∫

�

σ d : τd + μ

∫
�

u · divτ +
∫
�

(u ⊗ u)d : τd = μ 〈τν , uD 〉� ∀τ ∈ H0(div;�) ,

−μ

∫
�

v · divσ − μ

∫
�

ϕ g · v = 0 ∀ v ∈ L2(�) ,

∫
�

K∇ϕ · ∇ψ + 〈λ,ψ 〉� +
∫
�

( u · ∇ϕ )ψ = 0 ∀ψ ∈ H1(�) ,

〈 ξ,ϕ 〉� = 〈 ξ,ϕD 〉� ∀ ξ ∈ H−1/2(�) . (3)
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However, since the trilinear terms in the first and third equations of (3) require the unknown u to live in a smaller space 
than L2(�) (which can be seen by applying Cauchy–Schwarz and Hölder inequalities, and the continuous injection i of 
H1(�) into L4(�)), we propose here to augment the foregoing formulation with the following redundant Galerkin equations

κ1

∫
�

(
μ∇u − (u ⊗ u)d − σ d

)
: ∇v = 0 ∀ v ∈ H1(�) ,

κ2

∫
�

divσ · divτ + κ2

∫
�

ϕ g · divτ = 0 ∀τ ∈ H0(div;�) ,

κ3

∫
�

u · v = κ3

∫
�

uD · v ∀ v ∈ H1(�) , (4)

where κ1, κ2, κ3 > 0 are parameters to be specified later. Consequently, we arrive at the following augmented mixed-primal 
formulation: find ( σ , u, ϕ, λ ) ∈ H0(div; �) × H1(�) × H1(�) × H−1/2(�) such that

A( (σ , u) , (τ , v) ) + Bu( (σ , u) , (τ , v) ) = (
Fϕ + F D

)
(τ , v) ∀ (τ , v) ∈H0(div;�) × H1(�) ,

a(ϕ, ψ) + b(ψ ,λ) = Fu,ϕ(ψ) ∀ψ ∈ H1(�) ,

b(ϕ , ξ) = G(ξ) ∀ ξ ∈ H−1/2(�) , (5)

where the forms A, Bw , a, and b are defined, respectively, as

A((σ , u), (τ , v)) :=
∫
�

σ d : (τd − κ1 ∇v ) +
∫
�

(μ u + κ2 divσ ) · divτ

− μ

∫
�

v · divσ + μκ1

∫
�

∇u : ∇v + κ3

∫
�

u · v , (6)

Bw ( (σ , u) , (τ , v) ) := −
∫
�

(u ⊗ w)d : (κ1 ∇v − τd
)
, (7)

a(ϕ,ψ) :=
∫
�

K∇ϕ · ∇ψ , and b(ψ , ξ) := 〈 ξ,ψ 〉� , (8)

and the functionals are given by

Fϕ(τ , v) :=
∫
�

ϕ g · (μ v − κ2 divτ
)
, F D(τ , v)) := κ3

∫
�

uD · v + μ 〈τν, uD〉� , (9)

Fu,ϕ(ψ) := −
∫
�

( u · ∇ϕ )ψ , and G(ξ) := 〈 ξ,ϕD 〉� ∀ ξ ∈ H−1/2(�) , (10)

for all (σ , u), (τ , v) ∈ H0(div; �) × H1(�), for all w ∈ H1(�), for all ϕ, ψ ∈ H1(�), and for all ξ ∈ H−1/2(�). Note that 
when the Dirichlet datum uD vanishes, the third equation in (4) is not needed, since in this case the unknown u and the 
associated test function v live in H1

0(�).

2.2. The fixed point approach

We begin by denoting H := H1(�) × H1(�) and defining the operator S : H −→ H0(div; �) × H1(�) by

S(w, φ) := (S1(w, φ),S2(w, φ)) = (σ , u) ∀ (w, φ) ∈ H , (11)

where (σ , u) is the unique solution to the problem: find (σ , u) ∈ H0(div; �) × H1(�) such that

A( (σ , u) , (τ , v) ) + Bw ( (σ , u) , (τ , v) ) = (
Fφ + F D

)
(τ , v) , (12)

for all (τ , v) ∈ H0(div; �) × H1(�). The following lemma guarantees that the operator S is well-defined.

Lemma 2.1. Assume that κ1 ∈ (0, 2 δ) with δ ∈ (0, 2 μ), and κ2, κ3 > 0. Then, there exists r0 > 0 such that for each r ∈ (0, r0), the 
problem (12) has a unique solution (σ , u) := S(w, φ) ∈ H0(div; �) × H1(�) for each (w, φ) ∈ H such that ‖w‖1,� ≤ r. Moreover, 
there exists a constant cS > 0, independent of (w, φ), such that there holds

‖S(w, φ)‖ = ‖(σ , u)‖ ≤ cS

{
‖g‖∞,� ‖φ‖0,� + ‖uD‖1/2,�

}
. (13)
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Proof. See [4, Lemma 3.3]. �
Next, we introduce the operator ̃S : H −→ H1(�) defined as ̃S(w, φ) := ϕ ∀ (w, φ) ∈ H, where ϕ ∈ H1(�) is part of the 

unique solution to the problem: find (ϕ, λ) ∈ H1(�) × H−1/2(�) such that

a(ϕ, ψ) + b(ψ, λ) = F w,φ(ψ) ∀ψ ∈ H1(�) , b(ϕ , ξ) = G(ξ) ∀ ξ ∈ H−1/2(�) . (14)

In this case, a straightforward application of the Babuška–Brezzi theory (cf. [6, Chapter II]) provides the well-posedness 
of (14).

Lemma 2.2. For each (w, φ) ∈ H := H1(�) ×H1(�), there exists a unique pair (ϕ, λ) ∈ H1(�) × H−1/2(�) solution to problem (14), 
and there holds

‖̃S(w, φ)‖ ≤ ‖(ϕ,λ)‖ ≤ c̃S

{
‖w‖1,� |φ|1,� + ‖ϕD‖1/2,�

}
, (15)

where c̃S is a positive constant independent of (w, φ).

Proof. See [4, Lemma 3.4]. �
Having established that the operators S and ̃S are well-defined, we now introduce T : H −→ H as

T(w, φ) := (S2(w, φ), S̃(S2(w, φ),φ)) ∀ (w, φ) ∈ H ,

and realize that (5) can be rewritten as the fixed-point problem: find (u, ϕ) ∈ H such that

T(u,ϕ) = (u,ϕ) . (16)

2.3. Solvability analysis

In this section we establish the existence of a unique fixed point of T. We begin with the following lemma.

Lemma 2.3. Let r ∈ (
0, r0

)
, and let Wr :=

{
(w, φ) ∈ H : ‖(w, φ)‖ ≤ r

}
. Assume that the data satisfy c(r) 

{
‖g‖∞,� +

‖uD‖1/2,�

}
+ c̃S ‖ϕD‖1/2,� ≤ r, where c(r) := max

{
r, 1

} (
1 + c̃Sr

)
cS , with cS and c̃S as in (13) and (15), respectively. Then 

there holds T(Wr) ⊆ Wr .

Proof. It follows from the estimates provided by Lemmas 2.1 and 2.2. We refer to [4, Lemma 3.5] for details. �
Next, applying again the ellipticity of A + Bw and the Babuška–Brezzi theory, one can show that S and ̃S are Lipschitz-

continuous with constants CS and C S̃ , respectively (cf. [4, Lemmas 3.6 and 3.7]). As a consequence of the corresponding 
estimates, one can prove the following result.

Lemma 2.4. Let r ∈ (
0, r0

)
, and let Wr :=

{
(w, φ) ∈ H : ‖(w, φ)‖ ≤ r

}
. Then, there exists CT > 0, depending on r and the con-

stants cS , CS , and C S̃ , such that

‖T(w, φ) − T(w̃, φ̃)‖ ≤ CT

{
‖g‖∞,� + ‖uD‖1/2,�

}
‖(w, φ) − (w̃, φ̃)‖ ∀ (w, φ), (w̃, φ̃) ∈ Wr .

Proof. See [4, Lemma 3.8]. �
Hence, our main result concerning the solvability of (5) (equivalently (16)) is established as follows.

Theorem 2.5. Let κ1 ∈ (0, 2 δ), with δ ∈ (0, 2 μ), and κ2, κ3 > 0, and given r ∈ (0, r0), define the ball Wr :=
{
(w, φ) ∈ H :

‖(w, φ)‖ ≤ r
}

. Assume that the data satisfy c(r) 
{
‖g‖∞,� + ‖uD‖1/2,�

}
+ c̃S ‖ϕD‖1/2,� ≤ r and CT

{
‖g‖∞,� + ‖uD‖1/2,�

}
< 1. 

Then, problem (5) has a unique solution (σ , u, ϕ, λ) ∈ H0(div; �) × H1(�) × H1(�) × H1/2(�), with (u, ϕ) ∈ Wr . Moreover, 
there hold

‖(σ , u)‖ ≤ cS

{
r ‖g‖∞,� + ‖uD‖1/2,�

}
and ‖(ϕ,λ)‖ ≤ c̃S

{
r ‖u‖1,� + ‖ϕD‖1/2,�

}
.

Proof. It follows from Lemmas 2.3 and 2.4, and from a straightforward application of the Banach fixed-point Theorem. �
For further details on the present augmented mixed-primal formulation of the Boussinesq problem, including Galerkin 

approximations, a priori error analysis, and corresponding numerical experiments, we refer the reader to [4].



E. Colmenares et al. / C. R. Acad. Sci. Paris, Ser. I 354 (2016) 57–62 61
3. The augmented fully-mixed formulation

In this section, we apply an augmented mixed approach, not only to the equations modeling u and σ , but also to those 
modeling the temperature ϕ .

3.1. The continuous formulation

The use of a mixed formulation for the heat equation means that we now introduce the auxiliary unknown p := K ∇ϕ −
ϕ u in �, so that, thanks to the incompressibility condition, and integrating by parts the equation K−1 p −∇ϕ +K

−1 ϕ u = 0
in �, we arrive now at the following system of equations

μ∇u − (u ⊗ u)d = σ d and − divσ − g ϕ = 0 in �,

K
−1 p − ∇ϕ + K

−1 ϕ u = 0 and div p = 0 in �,

u = uD and ϕ = ϕD on � ,∫
�

tr(σ + u ⊗ u) = 0 . (17)

It is important to remark here that, similarly as for u in Section 2.1, and as it is usual for mixed variational formulations, 
the Dirichlet boundary condition for ϕ on � becomes also natural in this case, and hence there is no need for introducing 
the Lagrange multiplier given by the boundary unknown λ ∈ H−1/2(�), as we did in that section. Furthermore, and because 
of similar reasons to those mentioned there, we additionally need to augment the formulation that arises from (17) with 
the following redundant Galerkin equations

κ4

∫
�

(
K

−1 p − ∇ϕ + K
−1ϕ u

)
· ∇ψ = 0 ∀ψ ∈ H1(�) ,

κ5

∫
�

div p div q = 0 ∀q ∈ H(div;�) ,

κ6

∫
�

ϕ ψ = κ6

∫
�

ϕD ψ ∀ψ ∈ H1(�) , (18)

where κ4, κ5, κ6 > 0 are parameters to be specified later. In this way, we obtain the following augmented fully-mixed 
formulation for the stationary Boussinesq problem: find (σ , u, p, ϕ) ∈ H0(div; �) × H1(�) × H(div; �) × H1(�) such that

A((σ , u), (τ , v)) + Bu((σ , u), (τ , v)) = (
Fϕ + F D

)
(τ , v) ∀ (τ , v) ∈ H0(div;�) × H1(�) ,

Â((p,ϕ), (q,ψ)) + B̂u((p,ϕ), (q,ψ) ) = F̂ D(q,ψ) ∀(q,ψ) ∈ H(div;�) × H1(�) , (19)

where A, Bw , Fϕ , and F D are given by (6), (7), and (9), respectively, and Â, B̂w , and F̂ D are defined as

Â((p,ϕ), (q,ψ)) :=
∫
�

K
−1 p · (q − κ4 ∇ψ) +

∫
�

(ϕ + κ5 div p)div q −
∫
�

ψ div p + κ4

∫
�

∇ϕ · ∇ψ + κ6

∫
�

ϕ ψ ,

B̂w ((p,ϕ), (q,ψ)) :=
∫
�

K
−1 ϕ w · (q − κ4∇ψ) and F̂ D(q,ψ) := κ6

∫
�

ϕD ψ + 〈q · ν ,ϕD 〉,

for all (p, ϕ), (q, ψ) ∈ H(div, �) × H1(�), and for all w ∈ H1(�). Analogously as observed in Section 2.1, we notice that 
when the Dirichlet datum ϕD vanishes, the third equation in (18) is not needed, since in this case the unknown ϕ and the 
associated test function ψ live in H1

0(�).

3.2. The fixed-point approach

We now proceed analogously to Section 2.2, and apply a fixed-point strategy to analyze the solvability of (19). Indeed, 
since the first equations of (5) and (19) are exactly the same, we recall that H := H1(�) × H1(�), and consider again the 
operator S : H −→ H0(div, �) × H1(�) defined by (11). Similarly, we introduce the operator Ŝ : H1(�) −→ H(div; �) ×
H1(�) defined as Ŝ(w) := (̂S1(w), ̂S2(w)) = (p, ϕ) ∀ w ∈ H1(�), where (p, ϕ) is the unique solution to the problem: find 
(p, ϕ) ∈ H(div; �) × H1(�) such that

Â( (p,ϕ) , (q,ψ) ) + B̂w( (p,ϕ) , (q,ψ) ) = F̂ D(q,ψ) ∀ (q,ψ) ∈ H(div;�) × H1(�) . (20)

In this way, we realize that (19) can be rewritten, equivalently, as: find (u, ϕ) ∈ H such that

T̂(u,ϕ) = (u,ϕ) , (21)

where ̂T : H −→ H is the operator defined by ̂T(w, φ) := (
S2(w, φ), ̂S2(S2(w, φ))

) ∀ (w, φ) ∈ H.
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The fact that S is well-defined is already established by Lemma 2.1. Similarly, applying again the Lax–Milgram Lemma, 
one can show that ̂S is also well-defined. For this purpose, we now let κ0 be a positive constant such that K−1x ·x ≥ κ0 |x|2
∀ x ∈ Rn . Then, we have the following result.

Lemma 3.1. Assume that κ4 ∈
(

0, 
2κ0 δ̂

‖K−1‖∞,�

)
with δ̂ ∈

(
0, 

2

‖K−1‖∞,�

)
, and κ5, κ6 > 0. Then, there exists ̂r0 > 0 such that 

for each r ∈ (0, ̂r0), the problem (20) has a unique solution (p, q) := Ŝ(w) ∈ H(div; �) × H1(�) for each w ∈ H1(�) such that 
‖w‖1,� ≤ r. Moreover, there exists ĉS > 0, independent of w , such that

‖̂S(w)‖ = ‖(p,ϕ)‖ ≤ ĉS ‖ϕD‖1/2,� . (22)

Proof. See [3, Lemma 3.3]. �
3.3. Solvability analysis

We begin with the following result showing that T maps a ball into itself.

Lemma 3.2. Let r be such that 0 < r ≤ min{ r0, ̂r0 }, and let Wr :=
{
(w, φ) ∈ H : ‖(w, φ)‖ ≤ r

}
. In addition, assume that the data g , 

uD , and ϕD satisfy

r ‖g‖∞,� + ‖uD‖1/2,� ≤ r

2 cS
and ‖ϕD‖1/2,� ≤ r

2 ĉS
,

where cS and ĉS are given by (13) and (22), respectively. Then T(Wr) ⊆ Wr .

Next, applying now the ellipticity of Â + B̂w , one can show that Ŝ is Lipschitz-continuous with constant C Ŝ
(cf. [3, Lemma 3.7]), which together with the Lipschitz-continuity of S (cf. [4, Lemma 3.6]), imply that our fixed point 
operator ̂T is Lipschitz-continuous as well, with a constant C T̂ (cf. [3, Lemma 3.8]). Consequently, we are able to provide the 
following main result concerning the solvability of (19) (equivalently (21)).

Theorem 3.3. Let κ1 ∈ (0, 2 δ), with δ ∈ (0, 2 μ), κ4 ∈
(

0, 
2 k0 δ̂

‖K−1‖∞,�

)
, with ̂δ ∈

(
0, 

2

‖K−1‖∞,�

)
, and κ2 , κ3 , κ5 , κ6 > 0, and 

given 0 < r ≤ min{r0, ̂r0}, let Wr :=
{
(w, φ) ∈ H : ‖(w, φ)‖ ≤ r

}
. Assume that g , uD , and ϕD satisfy

r ‖g‖∞,� + ‖uD‖1/2,� ≤ r

2 cS
, ‖ϕD‖1/2,� ≤ r

2 ĉS
, and C T̂

{
‖g‖∞,� + r

2

}
< 1 .

Then, the problem (5) has a unique solution (σ , u, p, ϕ) ∈ H0(div; �) × H1(�) × H(div; �) × H1(�), with (u, ϕ) ∈ Wr . Moreover, 
there hold ‖(σ , u)‖ ≤ cS

{
r ‖g‖∞,� + ‖uD‖1/2,�

}
and ‖(p, ϕ)‖ ≤ ĉS ‖ϕD‖1/2,� .

Proof. It follows from the previous estimates and a direct application of the Banach fixed point Theorem. We refer to 
[3, Theorem 3.9] for further details. �

Similarly to the case of the mixed-primal approach, we now end the paper by mentioning that further details on the 
present augmented fully-mixed formulation of the Boussinesq problem, including Galerkin approximations, a priori error 
analysis, and several numerical experiments, are available in [3].
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