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In this paper, we study the invariance of the support of solutions for a sixth-order 
nonlinear parabolic equation, which arises in the industrial application of the isolation 
oxidation of silicium. Based on the suitable integral inequalities, we establish the invariance 
of the support of solutions.
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r é s u m é

Dans cet article, on étudie l’invariance des solutions d’une équation parabolique du sixième 
ordre issue d’une application industrielle, l’isolement de l’oxydation du silicium. À partir 
d’inégalités intégrales, on établit l’invariance du support des solutions.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In this paper, we consider the sixth-order thin film equation

∂u

∂t
= div

[
m(u)(k∇�2u + ∇(|u|p−1u))

]
, in Q T , p > 2, (1.1)

where Q T = � × (0, T ), � is a bounded domain in R2 with smooth boundary and m(u) = |u|n , n > 0, k > 0 are constants.
On the basis of physical consideration, as usual the equation (1.1) is supplemented with the natural boundary-value 

conditions

∂u

∂n

∣∣∣
∂�

= ∂�u

∂n

∣∣∣
∂�

= ∂�2u

∂n

∣∣∣
∂�

= 0, t > 0, (1.2)
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and the initial value condition

u(x,0) = u0(x). (1.3)

The equation (1.1) arises in the industrial application of the isolation oxidation of silicon [4–6]. The pure sixth-order thin 
film equation (without the lower-order term) also arises when considering the motion of a thin film of viscous fluid driven 
by an overlying elastic plate [7,9]. The values of n can be motivated by, inter alia, applications to power-law fluids spreading 
over horizontal substrates, with n > 3 corresponding to shear-thickening fluids and n < 3 to shear-thinning ones. Liu [11]
considered the problem (1.1)–(1.3). He proved the existence, the nonnegativity and the expansion of the support of weak 
solutions for one dimension. By the combination of the energy techniques with some methods based on the framework of 
Campanato spaces, Liu [12] proved the existence and the nonnegativity for two space dimensions.

We also refer to the following relevant equation

∂u

∂t
= − ∂

∂x

(
un ∂3u

∂x3

)
, (1.4)

which has been extensively studied. F. Bernis and A. Friedman [3] proved that if n ≥ 2 the support of the solutions u(·, t)
is nondecreasing with respect to t for the initial boundary value problems (see also [1]). Yin and Gao [14] proved that 
the u(·, t) has compact support for 0 < n < 1. F. Bernis [2] proved the similar result for 0 < n < 2. Hulshof and Shishkov 
[8] established an estimate for the finite speed of propagation of the support of compactly supported nonnegative solutions 
with 2 ≤ n < 3. Liu [10] studied the finite speed of propagation of perturbations of solutions for the convective Cahn–Hilliard 
equation with 0 < n < 1. Liu and Qu [13] considered the equation

∂u

∂t
+ ∂

∂x

(
un

(
∂3u

∂x3
− α

∂u

∂x
+ β

))
= 0.

They proved that if 4
3 ≤ n < 2, this equation has the finite speed of propagation property for the nonnegative strong solu-

tions. The upper bound for the speed of the support of this solution is obtained.
Because of the degeneracy, the problem (1.1)–(1.3) does not admit classical solutions in general. So, we introduce the 

weak solutions in the following sense

Definition. A function u is said to be a weak solution to (1.1)–(1.3) if the following conditions are satisfied:

(1) u ∈ C1/2(Q T ), u ∈ L∞(0, T ; H2(�)), |u|n/2∇�2u ∈ L2(P ).
(2) For ϕ ∈ C1(Q T ) and Q T = � × (0, T ),

−
ˆ

�

u(x, T )ϕ(x, T )dx +
ˆ

�

u0(x)ϕ(x,0)dx +
¨

Q T

u
∂ϕ

∂t
dx dt

=
¨

P

|u|n(k∇�2u + ∇(|u|p−1u))∇ϕ dx dt,

where P = Q T \({u(x, t) = 0} ∪ {t = 0}).

2. Invariance of the support of solutions

We consider the weak solution u constructed in Theorem 4.3 of [12], then u = lim
δ→0

uδ , where uδ is the classical positive 

solution to (1.1), (1.2) with initial data uδ(x, 0) = u0(x) + δ, δ > 0. We have

Theorem 2.1. Suppose that 0 ≤ u0(x) ∈ H2(�) and n ≥ 4. Then the support of the weak solution u is non-decreasing with respect to t.

Proof. To prove the theorem, it suffices to verify that for any x0 ∈ � with u0(x0) > 0, and we have u(x0, t) > 0 for all t > 0. 
Let ε > 0 be fixed, such that u0(x) > 0 holds in � ∩ Bε(x0), where Bε(x0) is the ball center at x0 and radius ε. Choose a 
nonnegative smooth function ξ(x), such that

∂ξ

∂n

∣∣∣
∂�

= 0, ξ(x) = 1, in Bε(x0), (2.1)
ˆ

ξ(x)u2−n
0 (x)dx ≤ C < ∞. (2.2)
�
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Let

G0(s) = s2−n

(n − 2)(n − 1)
+ sA1−n

n − 1
− A2−n

n − 2
.

Multiplying both sides of the equation (1.1), by ξG ′
0(uδ), and then integrating over Q t , we obtainˆ

�

ξG0(uδ)dx −
ˆ

�

ξG0(u0δ)dx

= −
¨

Q t

(k∇�2uδ + ∇(|uδ |p−1uδ))∇uδξ dx ds −
¨

Q t

(k∇�2uδ + ∇(|uδ|p−1uδ)) j(uδ)∇ξ dx ds

≡ I1 + I2, (2.3)

where

j(uδ) = −un
δ

Aˆ

uδ

ds

sn
= 1

n − 1
A1−nun

δ − 1

n − 1
uδ.

For I1, we have

I1 =
¨

Q t

(k�2uδ + |uδ|p−1uδ))(�uδξ + ∇ξ∇uδ)dx ds

= −k

¨

Q t

|∇�uδ|2ξ dx ds +
¨

Q t

|uδ|p−1uδ�uδξ dx ds −
¨

Q t

|uδ|p−1uδ∇ξ∇uδ dx ds.

For I2, we obtain

I2 =
¨

Q t

(k�2uδ + |uδ|p−1uδ))( j′(uδ)∇uδ∇ξ + j�ξ)dx ds

= −k

¨

Q t

∇�uδ( j′′|∇uδ|2∇ξ + j′�uδ∇ξ + 2 j′∇uδ�ξ + j(uδ)∇�ξ)dx ds

+
¨

Q t

(|uδ|p−1uδ)( j′(uδ)∇uδ∇ξ + j�ξ)dx ds.

By [12], we know thatˆ

�

(�uδ)
2 dx ≤ C, sup

Q T

|uδ| ≤ C .

Hence, we have∣∣∣∣∣∣∣
¨

Q t

|uδ|p−1uδ�uδξ dx ds

∣∣∣∣∣∣∣
≤ C,

and ∣∣∣∣∣∣∣
−
¨

Q t

|uδ|p−1uδ∇ξ ∇uδ dx ds

∣∣∣∣∣∣∣
≤ C .

We now choose ξ to have the form ξ = ζ r , where ζ is a smooth nonnegative function and r ≥ 6, then∣∣∣∣∣∣∣
−k

¨

Q t

∇�uδ( j′′|∇uδ |2∇ξ + j′�uδ∇ξ + 2 j′∇uδ�ξ + j(uδ)∇�ξ)dx ds

∣∣∣∣∣∣∣
≤ C

¨
|∇�uδ||∇uδ|ζ r−1 dx dt + C

¨
|∇�uδ||�uδ|ζ r−1 dx dt
Q t Q t
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+ C

¨

Q t

|∇�uδ||∇uδ |ζ r−2 dx dt + C

¨

Q t

|∇�uδ|ζ r−3 dx dt

≤ k

2

¨

Q t

|∇�uδ|2ξ dx ds + C

¨

Q t

ζ r−6 dx dt + C

≤ k

2

¨

Q t

|∇�uδ|2ξ dx ds + C,

and ∣∣∣∣∣∣∣
¨

Q t

(|uδ|p−1uδ)( j′(uδ)∇uδ∇ξ + j�ξ)dx ds

∣∣∣∣∣∣∣
≤ C .

Hence, it follows from (2.3), thatˆ

�

ξu2−n
δ (x, t)dx ≤

ˆ

�

ξu2−n
0 (x)dx + C ≤ C .

Let Eε = � ∩ Bε(x0), then we haveˆ

Eε

u2−n
δ (x, t)dx ≤ C .

Letting δ → 0, we getˆ

Eε

u2−n(x, t)dx ≤ C .

Since u(x, t) ∈ C1/2,1/12, n ≥ 4, the similar argument as in Theorem 4.2 of [12] shows that u(x, t) > 0 for any x ∈ Eε, t > 0. 
Therefore, supp u0 ⊂ supp u(·, t). The proof is complete. �
Theorem 2.2. If n ≥ 4, then any nonnegative solution u of the problem (1.1)–(1.3) satisfies

supp u(·, t) ⊂ supp u0, for t > 0. (2.4)

Proof. Arguing by contradiction we may suppose that there exist a time t > 0, a constant δ > 0 and a smooth positive 
function ϕ with support in � such that

u(x, t) > δ > 0, for x ∈ supp ϕ,

supp ϕ ∩ supp u0 = ∅.

Let σ > 0 be constant. It follows from a standard approximation procedure that we may take ψ = ϕ
u+σ as a test function, 

and henceˆ

�

ϕ(x) ln(u(x, t) + σ)dx −
ˆ

�

ϕ(x) ln(u0(x) + σ)dx

=
¨

P

∇�2u
∇ϕun

u + σ
dx dt −

¨

P

∇�2u
ϕ∇uun

(u + σ)2
dx dt

+
¨

P

∇(|u|p−1u)
∇ϕun

u + σ
dx dt −

¨

P

∇(|u|p−1u)
ϕ∇uun

(u + σ)2
dx dt. (2.5)

By the choice of ϕ ,ˆ

�

ϕ(x) ln(u(x, t) + σ)dx −
ˆ

�

ϕ(x) ln(u0(x) + σ)dx → +∞, as σ → 0. (2.6)

On the other hand, since n ≥ 4, u
n
2 ∇�2u ∈ L2(P ∩ Q t), ∇u ∈ L2(Q t) and u being bounded in Q t , Höder’s inequality implies 

that the last two terms in (2.5) are uniformly bounded: we have that
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∣∣∣∣∣∣
¨

P

∇�2u
∇ϕun

u + σ
dx dt

∣∣∣∣∣∣ ≤
⎛
⎝¨

P

un|∇�2u|2 dx dt

⎞
⎠

1/2 ⎛
⎝¨

P

un−2
( |∇ϕ|un

u + σ

)2

dx dt

⎞
⎠

1/2

≤ K1,

and ∣∣∣∣∣∣
¨

P

∇�2u
ϕuxun

(u + σ)2
dx dt

∣∣∣∣∣∣ ≤
⎛
⎝¨

P

un|∇�2u|2 dx dt

⎞
⎠

1/2 ⎛
⎝¨

P

un−4 ϕ2|∇u|2u4

(u + σ)4
dx dt

⎞
⎠

1/2

≤ K2.

Similarly, we have∣∣∣∣∣∣
¨

P

∇(|u|p−1u)
∇ϕun

u + σ
dx dt

∣∣∣∣∣∣ ≤ C

¨

P

up−1|∇u| |∇ϕ|un

u + σ
dx dt ≤ K3,

and ∣∣∣∣∣∣
¨

P

∇(|u|p−1u)
ϕ∇uun

(u + σ)2
dx dt

∣∣∣∣∣∣ ≤ C

¨

P

up−1|∇u|2un−2 ϕu2

(u + σ)2
dx dt ≤ K4,

where Ki, i = 1, 2, 3, 4 are constants independent of σ . Combined with (2.5) and (2.6) this leads to a contradiction. �
Theorem 2.3. If n ≥ 4, then any nonnegative solution u of the problem (1.1)–(1.3) satisfies

supp u(·, t) = supp u0, for t > 0. (2.7)

Proof. It follows at once from Theorem 2.1 and Theorem 2.2 that the support of u does not depend on t . �
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