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In this note, we find the asymptotic main term of the variance of the number of roots 
of Kostlan–Shub–Smale random polynomials and prove a central limit theorem for this 
number of roots as the degree goes to infinity.
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r é s u m é

Dans cette note, nous calculons un equivalent de la variance asymptotique du nombre de 
racines réelles des polynômes aléatoires de Kostlan–Shub–Smale et nous démontrons un 
théorème de la limite centrale pour ce même nombre quand le degré tend vers l’infini.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Consider the Kostlan–Shub–Smale (KSS for short) ensemble of random polynomials

Xd(x) :=
d∑

n=0

a(d)
n xn; x ∈R,

where d is the degree of the polynomial and the coefficients (a(d)
n ) are independent centred Gaussian random variables such 

that var(a(d)
n ) = (d

n

)
.

Denote by Nd the number of real roots of Xd , that is

Nd := #{x ∈ R : Xd(x) = 0}.
It is well known that E(Nd) =

√
d [8,15]. The aim of this note is to prove the following result.
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Theorem 1.1. The variance of the number of real roots Nd of KSS random polynomials verifies

lim
d→∞

var(Nd)√
d

= σ 2,

with 0 < σ 2 < ∞ given in Proposition 3.1 (σ 2 ≈ 0.57 . . . ). Furthermore,

Nd − √
d

d1/4

converges in distribution towards the centred normal distribution with variance σ 2, N(0, σ 2).

The number of roots of random polynomials has been under the attention of physicists and mathematicians for a long 
time. The first results for particular choices of the coefficients are due to Bloch and Pólya [5] in 1932. After many successive 
improvements and generalisations, in 1974 Maslova [12] stated the CLT for the number of zeros for polynomials with i.i.d. 
centred coefficients with finite variance. For related results, see the review by Bharucha–Reid and Sambandham [4] or the 
introduction in [3] and references therein.

The study of Kostlan–Shub–Smale (m ×m systems) of polynomials started in the early nineties by Kostlan [8], Bogomolny, 
Bohigas and Lobœuf [6] and Shub and Smale [15]. The mean number of roots [8,15], some asymptotics as m → ∞ for the 
variance [16] and for the probability of not having any zeros on given intervals (for m = 1) [14] are known. See also the 
review by Kostlan [9] and references therein.

We restrict our attention to the case m = 1. The mean number of real roots is 
√

d [8,15]. This fact shows a remark-
able difference with the polynomials with i.i.d. centred coefficients for which the asymptotic mean number of roots is 
2 log(d)/π [4].

Our tools are the Rice formulas for the (factorial) moments of the number of roots [2,7]; Kratz–León’s version of the 
chaotic expansion [10]; Kratz–León’s method for CLTs [11] and the Fourth Moment Theorem [13]. This method has been 
applied to the case of classical random trigonometric polynomials by Azaïs, Dalmao and León [3].

A key point in our analysis is that the covariance function of Xd , after a convenient rewriting, has a scaling limit. The 
limit covariance defines a centred stationary Gaussian process X on [0, ∞). The asymptotic behaviour, as d → ∞, of the 
number of real roots of Xd is intimately related to that of X on increasing intervals that eventually cover [0, ∞). Similar 
situations occur in [1] and in [3]. The fact that in the present case the covariance of X and its spectral density are Gaussian 
is remarkable.

The note is organised as follows. Section 2 contains some preliminaries and sets the problem in a more convenient 
way. Section 3 presents the asymptotic behaviour of the variance of Nd . Section 4 contains the asymptotic normality of the 
standardised Nd and the proof of Theorem 1.1.

2. Preliminaries

We start writing Xd in a more convenient way. Consider the polynomials

Yd(t) :=
d∑

n=0

an cosn(t) sind−n(t), t ∈R.

The polynomial Yd is obtained from Xd after homogenising it as in [2]; restricting the domain to the unit circle S1 and 
identifying a point in S1 with a pair (sin(t), cos(t)). Note that x is a real root of Xd if and only if t = ± arctan(x) are roots 
of Yd . Hence, Nd coincides almost surely with the number of roots of Yd on, say, [0, π ].

It is convenient to use the unit speed parameterisation. Let

Zd(t) := Yd

(
t√
d

)
.

Denote by N Zd ([0, 
√

dπ ]) the number of roots of Zd on [0, 
√

dπ ]. Clearly,

Nd = N Zd

([
0,

√
dπ

])
almost surely.

Direct computations show that Zd is a centred stationary Gaussian process and that its covariance function rd is given by

rd(t) = cosd
(

t√
d

)
. (1)

Note that for t ∈ [0, 
√

dπ/2] we have rd(
√

dπ − t) = (−1)drd(t). This fact implies that it suffices to deal with rd restricted 
to [0, 

√
dπ/2] as we will see in the sequel.
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3. Asymptotic variance of the number of zeros

We need the following asymptotics and bounds.

Lemma 3.1. For each fixed t ∈ R, we have

cosd
(

t√
d

)
−→
d→∞

e−t2/2.

This convergence is uniform in t, for t being in a compact. Furthermore, for 0 < a < 1 we have the following upper bounds

cosd
(

t√
d

)
≤

{
e−αt2/2; if 0 ≤ t < a

√
d,

cosd(a); if a
√

d ≤ t ≤ π
√

d/2,

with α = 1 − a2/3 ∈ (2/3, 1).

The proof of this lemma follows from Taylor–Lagrange expansion, to get the uniform convergence and the bounds it is 
necessary that cosines’ argument be less than 1.

Proposition 3.1 (Limit variance for Nd). As d → ∞ we have

var(Nd)√
d

→
d→∞

σ 2 := 2

π

∞∫
0

(
g(t)

[√
1 − ρ2(t) + ρ(t)arctan

(
ρ(t)√

1 − ρ2(t)

)]
− 1

)
dt + 1,

where g and ρ are given by

g(t) = 1 − (1 + t2)e−t2

(1 − e−t2
)3/2

, ρ(t) = e−t2/2 1 − t2 − e−t2

1 − e−t2 − t2 e−t2 .

Corollary 3.2. The asymptotic variance σ 2 is strictly positive.

Remark 1. The numerical approximation of this integral yields σ 2 ≈ 0.57 . . . . Simulations are coherent with this value.

Sketch of the proof of Proposition 3.1. Recall that var(Nd) = E(Nd(Nd − 1)) − (E(N))2 + E(N). From [7, Eq. 10.7.5], the 
second factorial moment of Nd verifies:

E(Nd(Nd − 1))√
d

= 2

π

√
dπ/2∫
0

gd(t)
√

1 − ρ2
d (t)dt + 2

π

√
dπ/2∫
0

gd(t)ρd(t)arctan

⎛
⎜⎝ ρd(t)√

1 − ρ2
d (t)

⎞
⎟⎠ dt, (2)

where

gd(t) =
1 − cos2d

(
t√
d

)
− d cos2d−2

(
t√
d

)
sin2

(
t√
d

)
(

1 − cos2d
(

t√
d

))3/2
,

ρd(t) = cosd−2
(

t√
d

) 1 − d sin2
(

t√
d

)
− cos2d

(
t√
d

)
1 − cos2d

(
t√
d

)
− d cos2d−2

(
t√
d

)
sin2

(
t√
d

) .

Now, from Lemma 3.1 is clear that, for fixed t we have gd(t) →d g(t) and ρd(t) →d ρ(t).
In order to pass to the limit under the integral sign, we can obtain the domination by a careful analysis of Taylor–

Lagrange expansions in a neighbourhood of 0. For the rest of the domain of integration, we use Lemma 3.1 to bound the 
integrand separately in the regions 0 ≤ t < a

√
d and a

√
d ≤ t ≤ √

d π/2. It follows that the contribution to the variance of 
the latter is negligible. Besides, note that the first integral in the r.h.s. of Equation (2) is only convergent after subtracting 
(E(Nd))

2/
√

d = √
d = (2/π) 

∫ √
dπ/2

0 dt .
The result follows. �
For the ease of presentation, the proof of Corollary 3.2 is postponed.
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4. CLT for the number of roots

Proposition 4.1 (CLT). As d tends to infinity,

Nd −E(Nd)

d1/4

converges in distribution towards the centred normal distribution with variance σ 2, N(0, σ 2).

The sketch of the proof is as follows: we start with the chaotic expansion (3)–(4). Then, by the Kratz–León method [11], 
the finiteness of the variance of Nd/d1/4 allows us to truncate the expansion and to derive its asymptotic normality from 
that of the sum of the first, say Q , terms. Finally, the Fourth Moment Theorem [13] gives a criterion to prove the asymptotic 
normality of the finite partial sums of the expansion.

Proof. We apply Kratz–León’s chaotic expansion [10] to the number of roots of Zd on [0, 
√

dπ ]. Hence,

Nd −E(Nd)

d1/4
=

∞∑
q=2

I Zd
q,d, (3)

where

I Zd
q,d = 1

d1/4

√
dπ∫

0

fq(Zd(t), Z ′
d(t))dt, fq(x, y) =

[q/2]∑
�=0

bq−2�a2�Hq−2�(x)H2�(y), (4)

with a2� = 2(−1)�+1/(
√

2π2��!(2� − 1)), bk = 1
k!ϕ(0)Hk(0) and Hk is the k-th Hermite polynomial. Note that we can delete 

the term corresponding to q = 1 since H1(0) = 0.
We express I Zd

q,d as multiple stochastic integrals w.r.t. a standard linear Brownian motion B . In the first place, we can 
write Zd(t) =

∫
R

hd(t, λ) dB(λ) with

hd(t, λ) =
d∑

n=0

√(
d

n

)
cosn

(
t√
d

)
sind−n

(
t√
d

)
1[n,n+1](λ). (5)

Then, from Equation (5), using the properties of the chaos and the stochastic Fubini theorem, see [3, Remark 2], we have 
I Zd
q,d = I B

q (gq(λq)) with

gq(λq) = 1

d1/4

√
dπ∫

0

	q/2
∑
j=0

bq−2 ja2 j(h
⊗q−2 j
d (s,λq−2 j) ⊗ h′ ⊗2 j

d (s,λ2 j))ds;

where λk ∈R
k and ⊗ stands for the tensorial product.

By the properties of stochastic integrals, we have I B
q (gq(λq)) = I B

q (g̃q(λq)) being g̃ the symmetrisation of g , that is, 
g̃q(λq) = 1

q!
∑

σ∈Sq
gq(λσ ), where Sq the group of all permutations of the set {1, . . . , q} and λσ = (λσ(1), . . . , λσ(q)).

Now, to get the asymptotic normality of the standardised zeros, by the Kratz–León method and the Fourth Moment 
Theorem, it suffices to prove that the contractions g̃q ⊗k g̃q(λ2q−2k) tend to 0 in L2 as d → ∞ for q ≥ 2 and k = 1, · · · , q − 1
and λ2q−2k ∈ R

2q−2k . Let zk = (z1, . . . , zk) and λ2q−2k = λq−k ⊗ λ′
q−k . The contractions are defined [13] as

g̃q ⊗k g̃q(λ2q−2k) =
∫
Rk

g̃q(zk,λq−k)g̃q(zk,λ
′
q−k)dzk.

The basic fact to compute the contractions is that the isometric property of stochastic integrals implies that h⊗p
d (s) ⊗k

h⊗p
d (t) = rk

d(t − s)h⊗p−k
d (s) ⊗ h⊗p−k

d (t). Similarly, when the identified variable in the contraction involves the derivatives of 
h the result involves the derivatives of rd . Taking this into account, it follows that

‖g̃q ⊗k g̃q‖2
2 = 1

d

∫∫∫∫
[0,

√
dπ ]4

∑
0≤ j≤[q/2]

c j
1

q!
∑
σ∈Sq

2∏
i=0

(r(i)
d (t − s))αi (r(i)

d (t′ − s′))βi (r(i)
d (s − s′))γi (r(i)

d (t − t′))δi ds dt ds′ dt′;

where j = ( j1, j2, j3, j4); vector inequalities are understood component-wise; c j = ∏4
i=1 a2 ji bq−2 ji ; αi = αi(σ , j), βi =

βi(σ , j), γi = γi(σ , j) and δi = δi(σ , j); 
∑4

i=1 αi = ∑4
i=1 βi = k and 

∑4
i=1 γi = ∑4

i=1 δi = q − k. Actually, there are further 
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constrains for α, β, γ , δ with respect to j (namely α1 ≤ (q − 2 j1) ∧ (q − 2 j2), α2 ≤ (q − 2 j1) ∧ 2 j2 + (q − 2 j2) ∧ 2 j1, etc.), 
but they are irrelevant for our purposes.

We bound the covariances by their absolute value. Since var(Zd(t)) = var(Z ′
d(t)) = 1, by the Cauchy–Schwarz inequality, 

each factor |r(i)
d (·)| ≤ 1. Furthermore, since k ≥ 1 and q − k ≥ 1, we can bound from above the product of each group of 

factors (i.e.: with the same argument) by one of them. Hence, for some i1, i2, i3, i4 ∈ {0, 1, 2}, we have

‖g̃q ⊗k g̃q‖2
2 ≤ C

d

∫∫∫∫
[0,

√
dπ ]4

|r(i1)

d (t − s) r(i2)

d (t′ − s′) r(i3)

d (s − s′) r(i4)

d (t − t′)| ds dt ds′ dt′,

where C is a meaningless constant. Now, we make the change of variables: (x, y, u, t′) �→ (t − s, t′ − s′, s − s′, t′) and enlarge 
the domain of integration in order to have a rectangular one. Thus

‖g̃q ⊗k g̃q‖2
2 ≤ C

d

√
dπ∫

0

dt′

√
dπ∫

−√
dπ

|r(i1)

d (x)|dx

√
dπ∫

−√
dπ

|r(i2)

d (y)|dy

√
dπ∫

−√
dπ

|r(i3)

d (u)|du.

Let us look at the three inner integrals. Note that since rd is even, so is the absolute value of its derivatives, so it suffices to 
integrate on [0, 

√
dπ ]. Besides, since for t ∈ [0, 

√
dπ/2], we have rd(

√
dπ − t) = (−1)drd(t), it follows that |r(i)

d (
√

dπ − t)| =
|r(i)

d (t)|, i ∈ {0, 1, 2}. Then, we can further restrict the domain of integration to [0, 
√

dπ/2]. The finiteness of the integral 
then follows from Equation (1), by bounding the covariance by a polynomial (of degree at most 2) times cosd(·/√d) and 
then using Lemma 3.1. Hence, the contractions tend to 0. The result follows. �
Sketch of the proof of Corollary 3.2. We make use of the expansion of the number of zeros given by Equations (3)–(4). By 
the properties of the chaos, we have σ 2 = limd

∑∞
q=2 var(I Zd

q,d) ≥ limd var(I Zd
2,d). We can adapt easily Proposition 3.2 of [1] to 

obtain limd var(I Zd
2,d) = limd var(I X

2,d), where X is the centred stationary Gaussian process with covariance r(t) = e−t2/2 and 
I X
2,d is defined as in Equation (4) with Zd replaced by X . In fact, Lemma 3.1 gives the limit covariance and Proposition 3.1

gives the domination. Actually, we need to restrict the domain of integration as above in order to use Lemma 3.1, we leave 
the details to the reader. Then, we can prove that limd var(I X

2,d) > 0 exactly as in [2, Eqs. 10.42–10.43]. The result follows. �
Proof of Theorem 1.1. Put together Propositions 3.1 and 4.1 and Corollary 3.2. �
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