
C. R. Acad. Sci. Paris, Ser. I 353 (2015) 1007–1009
Contents lists available at ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Differential geometry

Uniqueness of asymptotic cones of complete noncompact 

shrinking gradient Ricci solitons with Ricci curvature decay

Unicité des cônes asymptotiques des solitons gradients de Ricci 
contractants complets non compacts avec courbure de Ricci décroissante

Bennett Chow a, Peng Lu b,1

a Department of Mathematics, University of California San Diego, La Jolla, CA 92093, United States
b Department of Mathematics, University of Oregon, Eugene, OR 97403, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 July 2015
Accepted after revision 14 September 2015
Available online 23 October 2015

Presented by Étienne Ghys

We show that any complete noncompact shrinking gradient Ricci soliton with (1) | Rc | → 0
at infinity or (2) R → 0 at infinity, |Rm| bounded, and κ-noncollapsed has a unique 
asymptotic cone.
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r é s u m é

Nous montrons que tout soliton gradient de Ricci contractant complet non compact 
vérifiant la propriété (1) | Rc | → 0 à l’infini ou (2) R → 0 à l’infini, avec | Rm | bornée 
et κ-non-effrondée, possède un cône asymptotique unique.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Let (Mn, ̄g, f̄ ) be a complete noncompact shrinking gradient Ricci soliton (GRS). The study of its geometry near infinity 
is of crucial importance. A basic question is the volume growth of ḡ . By Cao and Zhou [1], with an observation of Munteanu 
using Chen’s result in [5] that R ≥ 0, the volume growth is at most Euclidean. Moreover, in [1] a strong lower bound for 
the potential function f̄ was obtained. This may be interpreted as generally indicating rigidity for shrinking GRS. Further 
evidence reflecting the aforementioned rigidity are the classification and nonexistence results starting with Hamilton [8,9]
and Perelman [18] and then Cao, Chen and Zhu [2], Ni and Wallach [16], Naber [15], and Petersen and Wylie [19]. The most 
general and recent result in this direction is by Munteanu and Wang [14]. Regarding curvature estimates, notable are the 
works [12] and [13] of Munteanu and Wang.

Invariants reflecting the geometry near infinity of a complete noncompact Riemannian manifold (N n, h) are its asymp-

totic cones, where an asymptotic cone is defined as the pointed Gromov–Hausdorff limit of 
(
N , λ−1

i dh, p
)

for some 
sequence λi → ∞ and p ∈ N (this limit is independent of p). By the compactness theorem of Gromov [7], if Rch ≥ 0, 
then there exists such a metric space limit. This leads to the questions of the uniqueness and regularity of such limits. 
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That is, are the limits independent of the sequence λi → ∞? Is an asymptotic cone necessarily a regular asymptotic cone 
(i.e., the cross section is a smooth (n − 1)-dimensional manifold)? Even in the presence of positive Ricci curvature, the limit 
may be nonunique by the examples of Perelman [17]. For the study of complete noncompact Ricci flat manifolds, there are 
the deep works of Cheeger and Colding (e.g., [3]), Cheeger and Tian [4], and Colding and Minicozzi (e.g., [6]), where in the 
last paper it is proved that if there exists a regular asymptotic cone, then the asymptotic cone is unique.

Regarding the geometry near infinity of GRS, Kotschwar and Wang [11] proved that for a simply-connected complete 
noncompact shrinking GRS (Mn

1, g1, f1), if a topological end is geometrically asymptotic near infinity to a unique regular 
asymptotic cone, then any other simply-connected shrinking GRS (Mn

2, g2, f2) with a topological end geometrically asymp-
totic to the same cone must be isometric to (Mn

1, g1). This holographic principle was based in part on their earlier separate 
works on backward uniqueness of the Ricci flow (see Kotschwar [10]) and the holographic principle for shrinking self-similar 
solutions to the mean curvature flow (see Wang [20]).

Let (Mn, ̄g, f̄ ) be a complete noncompact shrinking GRS with f̄ normalized, so that Rc ḡ +∇2
ḡ f̄ = 1

2 ḡ and R ḡ +|∇ f̄ |2 = f̄ . 
We assume that | Rc ḡ |(x) → 0 as x → ∞. Munteanu and Wang [13] proved that, fixing p ∈M, there exists a constant C < ∞
such that | Rmḡ |(x) ≤ C f̄ (x)−1 ≤ C

(
dḡ(x, p) + 1

)−2
for x ∈M. This implies that asymptotic cones are regular. In this paper, 

based mostly on §2 of [11], we consider the uniqueness issue.

Proposition 1. Let (Mn, g(t), f (t)), t < 1, be the associated time-dependent canonical form of (M, ̄g, f̄ ). Then there exists a compact 
set K ⊂ M such that, as t → 1− , g(t) converges pointwise in C∞ on compact subsets of M − K to a smooth Riemannian metric g1, 
where (M − K , g1) is isometric to the complement of a compact set in a regular cone.

Proof. Firstly, observe that the quadratic curvature decay implies that |∇ f̄ |2 ≥ f̄ − a2

f̄
for some positive constant a. By 

the definition of the canonical form, there exist diffeomorphisms ϕt : M → M, defined by ∂
∂t ϕt (x) = 1

1−t

(
∇ḡ f̄

)
(ϕt (x)), 

ϕ0 = id, such that g(t) = (1 − t)ϕ∗
t ḡ is a solution to the Ricci flow and f (x, t) � f̄ (ϕt (x)) > 0 satisfies Rcg(t) +∇2

g(t) f (t) −
1

2(1−t) g(t) = 0 and ∂ f
∂t (x, t) = 1

1−t |∇ḡ f̄ |2 (ϕt (x)). Hence

∂ f

∂t
(x, t) ≥ 1

1 − t

(
f (x, t) − a2

f (x, t)

)
. (1)

Suppose that x ∈M satisfies f̄ (x) ≥ a√
1−ε2

, ε > 0. By f
f 2−a2

∂ f
∂t ≥ 1

1−t , we have f (x, t)2 − a2 ≥ (1 − t)−2
(

f̄ (x)2 − a2
)

. There-

fore

f (x, t) ≥ (1 − t)−1 ( f̄ (x)2 − a2)1/2 ≥ ε (1 − t)−1 f̄ (x) for t ∈ [0,1). (2)

We have

|Rmg(t) |g(t)(x) = (1 − t)−1
∣∣Rmḡ

∣∣
ḡ (ϕt (x)) ≤ C

(1 − t) f (x, t)
≤ C

√
1 − ε2

aε
.

By this uniform bound for curvature, by 
∫ 1

0

∣∣ ∂
∂t g (x, t)

∣∣
g(x,t) dt ≤ C

√
1−ε2

εa , and by Shi’s local derivative of curvature estimates, 
there exists a smooth metric g1 on { f̄ > a} such that g(t) converges to g1 in C∞ on { f̄ ≥ a + ε}, for every ε > 0.

Now ∂ f
∂t (x, t) ≤ 1

1−t f (x, t) implies that h(x, t) � (1 − t) f (x, t) ≤ f̄ (x). By 0 ≤ R ḡ (ϕt (x)) ≤ C(1−t)
ε f̄ (x)

and

∂h

∂t
(x, t) = − f (x, t) + |∇ḡ f̄ |2 (ϕt (x)) = −R ḡ (ϕt (x)) (3)

for x ∈ { f̄ ≥ a√
1−ε2

} and t ∈ [0, 1), we see that h(t) converges in C0 on { f̄ > a} as t → 1 to a function h1. By 

(1 − t) Rcg(t) +∇2
g(t)h(t) − 1

2 g(t) = 0 and standard elliptic theory, the convergence is in C∞ . Taking the limit of this equa-

tion as t → 1, we obtain ∇2
g1

h1 − 1

2
g1 = 0. Since (1 − t)2 R g(t) + |∇h(t)|2g(t) = h(t), we have |∇h1|2g1

= h1. Moreover, 

ε f̄ (x) ≤ h1(x) ≤ f̄ (x). Since 
∣∣∣ ∂h

∂t

∣∣∣ ≤ C(1−t)
ε f̄

, we have |h(x, t) − h1 (x)| ≤ C(1−t)2

ε f̄ (x)
on { f̄ ≥ a√

1−ε2
} × [0, 1).

Define � = {h1 > a} ⊂ M. Taking ε = 1√
2

, we obtain { f̄ >
√

2a} ⊂ � ⊂ { f̄ > a}. The function ρ1 � 2
√

h1 on � satis-

fies ∇2
g1

(
ρ2

1

) = 2g1, |∇ρ1|2g1
= 1, ∇ g1 (ρ2

1 ) is a vector field generating a 1-parameter family 
{
ϕ1

t

}
t∈[0,∞)

of homotheties of 
(�, g1) into itself, the integral curves to ∇ g1ρ1 are geodesics, and there is a diffeomorphism between � and the product 
of (2

√
a, ∞) and a compact manifold 	n−1 such that g1 = dρ2

1 + ρ2
1 g̃1, where g̃1 is a C∞ metric on 	. This implies that 

(�, g1) extends to a regular asymptotic cone. �
Theorem 2. Any two asymptotic cones of a complete noncompact shrinking gradient Ricci soliton (Mn, ̄g, f̄ ) with | Rc |(x) → 0 as 
x → ∞ are isometric.
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Proof. Let O be a minimum point of f̄ , so that ϕt(O ) = O . Suppose that an Euclidean metric cone C is the pointed 
Gromov–Hausdorff limit of 

(
M, λ−1

i dḡ, O
)

for some sequence λi → ∞. Since g(1 −λ−2
i ) = λ−2

i ϕ∗
1−λ−2

i

ḡ converges pointwise 

in C∞ on compact subsets of � to g1, we have that (ϕ1−λ−2
i

(�), λ−2
i ḡ) converges in the C∞ Cheeger–Gromov sense using 

the diffeomorphisms ϕ1−λ−2
i

. Since

d
λ−2

i ḡ(ϕ1−λ−2
i

(x), O ) = d
(ϕ−1

1−λ
−2
i

)∗ g(1−λ−2
i )

(ϕ1−λ−2
i

(x),ϕ1−λ−2
i

(O ))

= dg(1−λ−2
i )

(x, O ) ≤ Cdḡ(x, O ),

the Cheeger–Gromov convergence matches with the pointed Gromov–Hausdorff convergence. We obtain that (�, g1) is 
isometric to the complement of a compact set in C. So C is independent of the choice of λi . �

Finally, we observe a sufficient condition for a shrinking GRS to satisfy |Rc| → 0.

Proposition 3. If a κ-noncollapsed complete noncompact shrinking GRS (Mn, ̄g, f̄ ) satisfies |Rm| ≤ C and R(x) → 0 as x → ∞, then 
|Rc| (x) → 0 as x → ∞.

Proof. Suppose |Rm| ≤ C and R(x) → 0 as x → ∞, but |Rc| (x) � 0 as x → ∞. Choose a sequence of points xi → ∞ with 
|Rc| (xi) ≥ c > 0. Let (M, g(t), f (t)) be the canonical form of (M, ̄g, f̄ ). Then (M, g(t), xi) will subconverge to a complete 
ancient solution (Mn∞, g∞(t), x∞) with bounded curvature and |Rc| (x∞, 0) ≥ c and R(x∞, 0) = 0. This is a contradiction 
since by the strong maximum principle applied to the equation ∂ R

∂t = 
R + 2| Rc |2, a complete ancient solution to Ricci flow 
with R = 0 at some point must be Ricci flat. �
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