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RESUME

En utilisant les décompositions en valeurs singuliéres généralisées (GSVDs) de couples de
matrices, on établit une condition nécessaire et suffisante de résolubilité d’équations de
Sylvester mixtes et on donne une représentation explicite de la solution générale. On étudie
également la solution de norme minimale d’équations matricielles.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction
The purpose of this work is to study the so-called mixed Sylvester matrix equations

A1X—YB1=Cq, A2Z —YBy =C3, (1)
where A; € C"<" By e C'X4,C; € C™%4, A5 € C"*P By € €% and C, € CM*4,
Egs. (1) can also be equivalently written as (in matlab notation):
blkdiag(A1, Ap)blkdiag(X, Z) — kron(I,, Y)blkdiag(B1, B2) = blkdiag(C1, C3).

There are some valuable works on formulating solutions to the mixed Sylvester matrix Eqs. (1). For example, Liu [5] derived
a solvability condition of (1) by using the ranks of matrices. By applying the equivalence of matrices, Lee and Vu [4] showed
that Egs. (1) are consistent if and only if there exist invertible matrices Ry, Rz and S such that
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Recently, Wang and He [8] provided some necessary and sufficient solvability conditions and the expression of the general
solution of (1) by virtue of the ranks and generalized inverses of matrices.

The strategy adopted here is to use the generalized singular value decompositions (GSVDs) of matrix pairs to decouple
the equations of (1) to obtain some profound results. Beginning in Section 2, we first consider some special cases where
some constraints are imposed on coefficient matrices, then, for the general situation, we formulate the necessary and suffi-
cient conditions for the existence of the solution of (1) directly by means of the generalized singular value decompositions of
the matrix pairs (A1, A2) and (B1, By), and construct the explicit representation of the general solution when it is solvable.
Furthermore, we will provide the minimum-norm solution of (1) by using the expression of the general solution.

Throughout this paper, we denote the complex m x n matrix space by C™*", the set of all unitary matrices in C**" by
UC™ ", AH and A" stand for the conjugate transpose and the Moore-Penrose generalized inverse of a complex matrix A,
respectively. I, represents the identity matrix of size n. We define an inner product: (A, B) = trace(BHA) for all A, B € C"™*",
then C™*" is a Hilbert inner product space and the norm of a matrix generated by this inner product is Frobenius norm. For
A = [®jjlmxn and B = [Bijlmxn, A * B represents the Hadamard product of the matrices A and B, that is, A * B = [;Bijlmxn-

2. The solution to the mixed Sylvester matrix Egs. (1)

The following lemmata are needed in what follows.

Lemma 1. (See [2].) If A € C"k B e ¢ gqnd C € C™", then the equation AXB = C has a solution X € C*<! if and only if
AATCBTB = C. In this case, the general solution of the matrix equation AXB = C can be described as X = ATCBT 4+ (I —ATA)W +
T(I; — BB), where W, T € C*! are arbitrary matrices.

Lemma 2. (See [1].) Let A € C™K B e C'*" and C € C™*". The equation

AX—YB=C 2)

has a solution X € C**" Y € €™ if and only if (I, — AAT)C(I, — B B) = 0. If this is the case, the general solution of (2) has the
form

X=ATC+ATTB+ Uy —ATAW, Y=—Un—AAYCBY+T — (- AAT)TBB,

where W e €& and T € C™*! are arbitrary matrices.

We consider some special cases.
Case 1. If A; is square and nonsingular, then from the first equation of (1), we can get

X=A7'C1+A]'YBy. 3)
By Lemma 2, the second equation of (1) has a solution Z € €CP*?, Y € €™~/ if and only if
(Im — A2A3)C2(Ig — By By) = 0.
If this is the case, the general solution of the matrix equation Ay Z — Y By = C has the form
Z=AJCo+AJTBy+ (Ip — A AW, (4)
Y = —(Im — A2A7)C2By + T — (Im — A2A;)TB2Bj, (5)

where W € CP*4 and T € C™*! are arbitrary matrices. Substituting (5) into (3), we have obtained the following result.

Theorem 1. Suppose that A1 € C"™™ By € %9, Cq € €9, Ay € C"¥P B, e C*4 and C, € C™*4. If Ay is nonsingular, then the
equation of (1) has a solution X € C™*4,Y e C"*!, Z e CP*4 if and only if (I;; — AZA;)CZ(Id - B;Bz) = 0. In this case, the general
solution of (1) can be expressed as

X=A7'C1 — A7 (Im — A2AT)C2BS By + AT 'TB1 — AT (Im — A2A)TB2 B By,
Y =—(m— A2AT)CoBS + T — (Im — A2AT)TB2BY, Z=AJCo+ATTBy+ (Ip — AT AD)W,

where W € CP*? and T e C™*! are arbitrary matrices.
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If A, is square and nonsingular, the approach is similar.
Case 2. If By is square and nonsingular, then from the first equation of (1), we can get

Y =A1XB;! - C1B7".
Substituting (6) into the second equation of (1), we have
AyZ — A1XB;'By = C, — C1B;'B,.

Applying Lemma 1, the equation of (7) with respect to Z has a solution if and only if

AXB=C,
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(6)

(7)

(8)

where A = (I;y — A2A3)A1, B =B "B and C = (Im — A2AJ)(C1B ' B2 — C2). Using Lemma 1 again, the equation of (8) has

a solution X € ! if and only if AATCB+B = C. In this case, the general solution of (8) can be described as

X=AtCBt + (I, — ATA)W + T, — BB"), where W, T € C"! are arbitrary matrices.

Summing up above discussion, we have proved the following result.

Theorem 2. Let A1 € C™", By € ¥/, C; € €™, Ay € C™P By € (¢ and C; € €™, and let A = (Im — A2A)A1, B =B]'B;
and C = (I, — AzA;)(QB]_le — C3). If By is nonsingular, then the equation of (1) has a solution X € C™!| Yy e ¢™*! 7z ¢ cPxd jf

and only if AA*CB* B = C. In this case, the general solution of (1) can be expressed as

X=A*CB* +(,— ATAW + T, — BB™),
Y =A1A*CBY B + A(ln — ATAWB]' + AT, — BBH)BT! — C1B7 !,

Z=AJA1ATCB B+ AJA1(In — ATAYWB + A (C2 — C1By ' B2) + (Ip — AS A2)L,

where W € "L, T € ! and L € CP*4 are arbitrary matrices.

If B, is square and nonsingular, the approach is similar.

Now, assume that A; € C"*" By e €4, A, € C™*P and B, e C'*¢ are arbitrary complex matrices. The GSVD (see, e.g., [3,

6,7]) of the matrix pair (A1, A2) is of the form
A1 =Mz UM, Ay =Mz, vH,

where U e UC™", V € UCP*P and M € C™™ is a nonsingular matrix, and

I 0 0 r—s 0 O 0 r—s
|0 S1 0 S 10 S 0 s
“1=lo 0 o k=r, 2 |0 o0 1| k-r,
0 0 0| m—k 0 O 0 m—k

r-s s n-—r g s k-—r

g=p+r—k—s, r=rank(Ay), k=rank[A1, Az], and S =diag{oq, --,0s}, Sy =diag{B1,---

with1>a1 20> 2a;>0, 0<pr<pp<--<f<1, f +p7=1(=1,-,5).

Likewise, the GSVD of the matrix pair (B1, By) is of the form
By =NQP", By =N2,Q",

where P € UC?*9, Q € UC? and N e € is a nonsingular matrix, and

I 0 0] h—t 0 0 0] h-—t
o D o t B Dy 0 t
=1y 0 0| e—h, 2 =

0 0 I—e
t e—h

0 0 0 I—e

0
0 0 I e—h,
0

h—t t gq-—h u

u=d+h—e—t, h=rank(By), e=rank[B1, B;], and Di=diag{y1, -, ¥}, Dy =diag{s,- -
with 1>y1>29p>>$1>0, 0<8 <& < <& <1,y +8=1(=1,---,0).

. Bs}

, 0t}

(9)
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Lemma 3. Suppose that Eyy, Fyp € C*, S1 = diag{o, -+, as}, So = diag{B1,---,Bs} (@; > 0,8 > 0,i=1,---,s), D1 =
diag {y1,---, ¥t} and Dy =diag{81,--- .8} (yj > 0,8; > 0, j=1,--- ,t). Then there exists a unique Y such that
-1 -1 2 -1 -1 2 .
f= |57 B2+ 571 Y22D1 | + 551 Faz + 551 ¥22D5 | = min (11)
holds, and Y-, can be expressed as

1

iz, sj=1, L (12)
ai28]2-+,3i2)/12

Y23 = —K % (S3F2D3 + S3E23D1), K = [kijlsxt, kij =

Proof. If we write Eyp = [ejjlsxt. F22 = [fijlsxt, Y22 = [Vijlsxt, then the minimization problem of (11) is equivalent to

S5 e o e ] o

i=1 j=1
Clearly, f is a continuously differentiable function of 2st variables of Re(y;;) and Im(y;j),i=1,---,s;j=1,---,t, and the
function of concerning variables y;; in f is

f11+ yU

2
si=1, 8 j=1,-+ L.

‘ﬁl fl] + yu

It is easy to verify that the function f attains the smallest value at
f i) _ 0 af(yij)
dRe(yij) ~ olm(yij)

—o fij8j — Bleijyi

oziZ(S]z- + ,3,-2 J/J2

f(J’l])—‘_eu J’u

=0 =1, .5 =1, L,

which yields y;; =

,i=1,---,8;j=1,---,t. (13)
The expression (12) of the matrix Y,, follows from (13) straightforwardly. O

Theorem 3. Suppose that A; € C™™ By e C1X4,C; € C™9, Ay € C"*P B, € C'*4 and C; € C™*4, and the GSVDs of (A1, A2)
and (B1, By) are given by (9) and (10), respectively. Let M~1C1P = [Eijlax3, M~1cQ = [Fijlax3, where the row partitions of the
matrices M—1C1P and M—1C,Q are, respectively, compatible with those of £1 and £, and the column partitions of the matrices
M~1C1P and M~1C,Q are, respectively, compatible with those of Q1 and 2. Then the mixed Sylvester matrix Eqgs. (1) is consistent if
and only if

E33=0, E43=0, F11=0, F41 =0, EpD;' =FpD; " (14)
In this case, the general solution of (1) can be expressed as
Y11+ En ElZ—F12D2_lDl E13
_ _ _ _ _ _ H
X=U 511521+511Y21 511522+511Y22D1 511523 P™, (15)
X31 X32 X33
Y11 —F12D2_1 —F13 Y1a
Ya1 Y22 Yo3  Yoq | 1
Y=M _ N, 16
_E31 _E32D11 Y33 Y34 ( )
—Eqn —F42D2_] —F43 Yaq
Z1 Z12 Z13
Z=V|S;'Fa1 Sy'Fp2+S5'Y2aDy Sy 'Fas+5S5Ya3 | QM (17)
F31 F3; — E32Df1D2 F33+ Y33

where Y11, Y33, Yis, Y25, X3j, Z1j (i=1,2,3,4; j =1, 2, 3) are all arbitrary matrices.
Proof. By using (9) and (10), Egs. (1) can be equivalently written as

Mz, UHX —YNQ PP =4, (18)
Mz, VHZ —YNQ, QP =C,. (19)
Write. M™'YN = [Yijlaxa, UPXP = [Xijlax3. VFZQ = [Zijl3x3, (20)
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then the equations of (18) and (19) are respectively equivalent to

[ X11—Yn X12 —Y12Dq X13 E11 E12 Egs
S1Xa1 —=Y21 S1X22— VYD1 S1Xa3 | _ | Ez1 Ex2 En
—Y31 —Y33D4 0 E31 E3 Es3
Y4 —Y4Dq 0 Eq1 Egp Egs
and
0 —Y12D; —Y13 F11 Fi2 Fi3
S2Z01 S2Z22—YnDy S2Zy3—Ya3 | _ | Far Fa2 Fa3
Z3 Z33 — Y3305 Z33 — Y33 F31 F32 Fs3
| O —Y42D; —Yy3 Fq1 Fgo Fy3

Thus we have

E33=0, E43=0, F11 =0, F41 =0,
—Y4D1=Es, —Yg2D2=Fg,
X12 —Y12D1=E12, —Y12D2 = Fq2,

S1X22 —Y22D1=E2, S22 —Y2Dy =Fy,

—Y33D1=E3, Z32 —Y32D3=F32,

Y31 =—E31, Y41 =—E41, Y13 =—F13, Ya3=—Fu3,

X13=E13, Z31="F31, S1Xa3=E23, S2Z21=F2,
X11—Y11=E11, Z33—Y33="F33, $51X21 — Y21 =E21, 52223 — Y23 =Fa3.

Using the relations of (20)-(28), we can easily obtain the expressions (14)-(17) O
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Corollary 4. Under the same assumptions as in Theorem 3, if the condition of (14) is satisfied, then a solution (X, Y, Z) of (1) satisfies

| X11? + 11 Z]|? = min if and only if

Y11 =—E11, Yo1=—E21, Y23 =—F23, Y33=—F33, X3j=0, Z1;=0(j=1,2,3).

In this case, such solution can be expressed as

0 Ei—FiD;'Di Ens
H
X=Ul0 S;"Exa+S;'Y2D1 S;'Exz [P
0 0 0
—En —F12D2_] —Fi13 Y1
—Ex Y2 —Fa3 Yoq |, 1
Y=M _ N™",
—E31 —EszD; Y —F33 Y
—Eq —F42D2_] —F43 Yaq
0 0 0

Z=V|Sy'"Fa1 S3'Faa+5;'YeD2 0| QM

F31 F3; — E32Df1D2 0

where  Ya3 = —K % (S3F22D2 + S3E2D1), K = [Kijlsxt, kij =

and Yiq (i=1, 2, 3, 4) are arbitrary matrices.

1

Proof. It follows from (15) and (17) that ||X||? + || Z||?> = min if and only if

Y11 =—E11, Y21 =—E21, Y23 =—Fa3, Y33 =—Fs3,

X3;=0, Z1;=0(j=1,2,3),

and

2 2
571 B2 + 571201 |+ 557 Fao + 55 Y225 | = min.

- =
ai2812-+,3,-2)/j2

(33)
(34)
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Applying Lemma 3, the expression (32) of the matrix Y, follows from (35) straightforwardly. Now, substituting (32), (33)
and (34) into the expressions of X,Y and Z in (15), (16) and (17), we can get the expressions (29), (30) and (31). O

Corollary 5. Under the same assumptions as in Theorem 3, if the condition (14) is satisfied, then a solution (X, Y, Z) of (1) satisfies
X1+ IM~"YN||*> + || Z||> = min if and only if

Yia=0, X3;=0, Z;;=0(i=1,2,3,4 j=1,2,3). (36)
1
Yii=—zEn, (37)
2
1 . .
Yo1=—Lx*En, L=Iljlsxh-t), ij=——,1=12,---,s5j=1,2,--- [h—t, (38)
1+«
1
Y33 = —5F33, (39)
1 . )
Yo3=—W x Fa3, W = [Wijlsx(e-n), Wij= ——,i=12,---,5j=1,2,--- ,e—h, (40)
1+ B;
Y2y = —H # (S{FD3 + S3E2D1), (41)
1
where  H =Thijjlsxt, hij= 55—, i=1--,s5j=1,---,t
as B +oti8j+,3,~ Vi
In this case, the unique solution can be expressed as
TE1 E1z — F12D5 ' Dy E13
_ _ _ _ _ _ H
X=U| ST Ey; — ST (LxEn) S7'Eaa+S7'YoaD1 S7'Eps | P (42)
0 0 0
—1En —FeDy' —Fi3 0
y=m| L*Exn Y22 B _W1* F3 0 NI (43)
—E31 —EznD; —5F33 0
—Egq —1"42[)5l —Fy3 0
0 0 0
Z=V 5£1F21 5;]F22+5{]Y22D2 551F23—551(W*F23) QH, (44)
F3 F3, — E3;D]'D; 1F33

where Y, is given by (41).
Proof. It follows from (15), (16) and (17) that || X||> + |M~'YN||2 + || Z||?> = min if and only if

Yi4=0, X3j=0, Z1;=0(1=1,2,3,4,j=1,2,3), and

Y11+ E11l1> + [ Y11)1? = min, (45)

ST 21+ S71Y21 012 + (1 Y21 12 = min, (46)

Y33 + Fa3]|® + | Y33/ = min, (47)

IS5 Fas + S5 Y2311 + [ Y23/ = min, (48)
-1 -1 2 -1 -1 2 2 .

H51 Exp +S; Y22Dq H + H52 Fn+S, Y22D2H + [Y22[|” = min. (49)

Applying a similar approach as in Lemma 3, we can obtain the expressions (37)-(41) from the minimization problems
(45)-(49). Substituting (36)-(41) into the expressions of X,Y and Z in (15), (16) and (17), we can get the expressions (42),
(43) and (44). O

3. A numerical example

Example 1. Assume that m=n=4,1=5,q=3 and p =d = 3. Given
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[[0.42284  0.46013 0.16048 0.2385 —0.093993
Ay = 0.56442 0.339 0.64263 0.82737 Ay = —0.040158
0.34074 —0.056611  0.79468 0.9827 |’ 0.94621
| 0.88458 1.2214 —0.067213 0.020226 —0.78129
r —0.35425 —-0.3446 —0.23877 0.23712  —0.31609
0.043436 —0.49913 —-0.30311 0.35782 0.28332
By =| 0.062814 —0.34911 -0.20951 |, B, =| 0.089122  0.27873
—0.45534 -0.21019 -0.16401 —0.028823 —0.47285
| —0.088286 —0.32693 —0.2075 —0.84508  0.27845
[9.0075 16.66 12.474 3.2791 —-3.694 3.9634
C,= 18.039 18.224 15.765 Cy= —5.5945 —-3.933 —-6.4169
16.563 16.555 14.424 |’ 44899 —2.6044 6.6608
15.379 24.087 18.169 2.0442  1.6027  2.4247

We can easily see that the condition (14) is satisfied:

0.35871

—0.18154

—1.2639 0.93174

0.40563
0.78852

0.11599
—0.32045
—0.21547

0.31909

0.1393

E33 =5.4498e — 006, E43 =3.9681e — 006, F11 =1.6941e — 005, F41 = 1.4966e — 005,

ExDy'=FgDy ' = —2.0595.

Thus, by Corollary 4 and choosing Yi4 =0,i=1, 2, 3,4, we can get

[2.7946 —1.6182 0.50824 8.8372 13.783 10.22 5.5065 12.291

X = 1.3163 —0.90325 0.45661 Y = 15.196 17.043 11.11 10.866 8.743
3.7457 —1.9494 0.34305 |’ 11.586 14.259 10.404 8.7471 13.705
4.7665 —2.4991 0.46507 16.631 18.127 12.513 12.894 14.328

[ —0.084378 —1.3282  0.9686
7= 1.385 2.3561 3.6709
| —0.91998 —0.63325 -3.3763

Also, we can figure out ||C;1 — (A1 X — YB1)|| =4.1311e — 004,

According to Corollary 5, we can get

[5.7406 4.7506 4.6446 4.0847

X = 4.1062 5.0946 4.3533 Y — 6.3885
55112 1.9198 2.8541 |’ 5.3045
7.1973 2.8184 3.9164 8.2264

[0.17363 —1.4295 0.93668
Z=| 22413 2.185 3.4573
| —1.7328 —0.43177 —3.199

Furthermore, we can figure out

IC1 — (A1X — YB1)| = 5.9548¢ — 004, ||C2 — (A2Z — Y B3)| = 1.9650e — 004.

Acknowledgement

8.9837
7.8982
7.9134
9.6558

6.9075
5.2555
5.8688
6.7268

1.6322
4.2831
3.4672
6.0972

8.1986
4.196

7.2639
7.4948

’

—1.0332
0.05297

’

)

IC2 — (A2Z — YBo)|| = 1.8800e — 004.

’
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