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The works of Liao, Mañé, Franks, Aoki, and Hayashi characterized a lack of hyperbolicity 
for diffeomorphisms by the existence of weak periodic orbits. In this note, we announce a 
result that can be seen as a local version of these works: for C1-generic diffeomorphisms, 
a homoclinic class either is hyperbolic or contains a sequence of periodic orbits that have 
a Lyapunov exponent arbitrarily close to 0.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Des travaux de Liao, Mañé, Franks, Aoki et Hayashi ont caractérisé le manque d’hyperbo-
licité des difféomorphismes par l’existence d’orbites périodiques faibles. Dans cette note, 
nous annonçons un résultat qui peut être considéré comme une version locale de ces 
travaux : pour les difféomorphismes C1-génériques, une classe homocline, ou bien est 
hyperbolique, ou bien contient une suite d’orbites périodiques qui ont un exposant de Lya-
punov arbitrairement proche de 0.

© 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

It is known for a long time that hyperbolic invariant compact sets have many nice properties, like shadowing properties, 
stability properties, the existence of uniform stable and unstable manifolds, etc. So it is important to understand dynamics 
beyond hyperbolicity and to characterize hyperbolicity. The first works in this direction were devoted to the stability con-
jecture, which tells that hyperbolic diffeomorphisms are the only ones that are �-stable. For surface diffeomorphisms, this 
conjecture has been solved independently by Liao and Mañé in [12] and [13]. In their proofs, Liao’s selecting lemma and 
Mañé’s ergodic closing lemma played an important role. For higher dimensions, Mañé solved it in [14]. From [7], it is easy 
to see that a C1 �-stable diffeomorphism f satisfies the star condition: there is a C1-neighborhood U of f , such that any 
g ∈ U has no non-hyperbolic periodic point. Mañé conjectured that if a diffeomorphism satisfied the star condition, then it 
is hyperbolic, that is to say, its chain recurrent set is hyperbolic. This conjecture was proved by Aoki and Hayashi, see [1]
and [10]. Then one would ask the following question naturally, which is a local version of this conjecture. Recall that a 
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homoclinic class H(p) of a hyperbolic periodic point p is the closure of the union of hyperbolic periodic orbits that are 
homoclinically related to orb(p).

Question 1 (Problem 1.8 in [6]). For C1-generic f ∈ Diff1(M), if a homoclinic class H(p) is not hyperbolic, does it contain periodic 
orbits that have a Lyapunov exponent arbitrarily close to 0?

The works of Liao, Mañé imply the existence of weak periodic orbits close to a non-hyperbolic homoclinic class for 
C1-generic diffeomorphisms. The difficulty of Question 1 is to link the weak periodic orbits to the homoclinic class. More 
precisely, if H(p) is not hyperbolic, we can get weak periodic orbits arbitrarily close to it by perturbation with the classical 
arguments, but we do not know whether they are contained in the homoclinic class. In this paper, we can prove that, 
generically, they are in fact contained in the homoclinic class.

2. Precise statements

Let M be a compact connected smooth Riemannian manifold without boundary, of dimension d. Denote by Diff1(M) the 
space of C1-diffeomorphisms from M to M . For a diffeomorphism f ∈ Diff1(M), for any number ε > 0, we call a sequence 
of points {xi}b

i=a an ε-pseudo orbit of f , if d( f (xi), xi+1) < ε for any i = a, a + 1, · · · , b − 1, where −∞ ≤ a < b ≤ ∞. We say 
that y is a chain-attainable form x, denoted by x � y, if for any ε > 0, there is an ε-pseudo orbit {x = x0, x1, · · · , xn = y}
of f . The chain-recurrent set of a diffeomorphism f , denoted by R( f ), is the union of points that are chain attainable from 
itself. We say that two points x, y are chain related, denoted by x ∼ y, if x � y and y � x. The relation ∼ is an equivalent 
relation to R( f ), and every equivalent class of ∼ is called a chain-recurrence class. For a point x ∈ R( f ), denote by C(x, f )
the chain recurrence class that contains x.

Let � be an invariant compact set. We say � is hyperbolic if there is a continuous splitting T�M = Es ⊕ Eu , such that Es

is contracted and Eu is expanded, that is to say, there are two constants C > 0 and λ ∈ (0, 1), such that, for any x ∈ � and 
any integer n ∈ N, we have ‖D f n|E(x)‖ < Cλn and ‖D f −n|F (x)‖ < Cλn . If the orbit of a periodic point p is hyperbolic, then 
we call p a hyperbolic periodic point, and the dimension of Es is called the index of p, denoted by ind(p).

The set � is said to have a dominated splitting if there are a continuous splitting T�M = E ⊕ F , an integer m ∈ N and 
a constant λ ∈ (0, 1), such that ‖D f m|E(x)‖ · ‖D f −m|F ( f mx)‖ < λ for all x ∈ �. Sometimes, we call a dominated splitting 
associated with the two numbers m and λ an (m, λ)-dominated splitting.

For an ergodic measure μ of f , there are d numbers χ1 ≤ χ2 ≤ · · ·χd , such that, for μ-almost every point x ∈ M , and 
for any non-zero vector v ∈ TxM , one has limn→+∞ 1

n log ‖D f n(v)‖ = χi for some i = 1, 2, · · · , d. These numbers are called 
the Lyapunov exponents of the measure μ. Particularly, we call the Lyapunov exponents of the Dirac measure of a periodic 
orbit the Lyapunov exponents of the periodic orbit. Hence, a periodic point p is hyperbolic if and only if all the Lyapunov 
exponents of orb(p) are non-zero.

For any point x ∈ M , any number δ > 0, we define the local stable manifold and local unstable manifold of x of size δ, 
respectively, as follows:

W s
δ(x) = {y : d( f n(x), f n(y)) ≤ δ,∀n ≥ 0; and lim

n→+∞d( f n(x), f n(y)) = 0};
W u

δ (x) = {y : d( f −n(x), f −n(y)) ≤ δ,∀n ≥ 0; and lim
n→+∞d( f −n(x), f −n(y)) = 0},

and the stable manifold and unstable manifold of x respectively as follows:

W s(x) = {y : lim
n→+∞d( f n(x), f n(y)) = 0};

W u(x) = {y : lim
n→+∞d( f −n(x), f −n(y)) = 0}.

By [11], for a hyperbolic invariant compact set � of f , there is a number δ > 0, such that for any x ∈ �, the local stable 
manifold W s

δ(x) of x is an embedding disk with dimension dim(Es) and is tangent to Es at x, where T�M = Es ⊕ Eu is the 
hyperbolic splitting. Moreover, the stable manifold W s(x) of x is an immersing submanifold of M . Symmetrically, we have 
similar statements for W u

δ (x) and W u(x).
Two hyperbolic periodic points p and q of f are called homoclinic related, if their stable and unstable manifolds re-

spectively intersect transversely, that is to say, W u(orb(p)) � W s(orb(q)) �= ∅ and W s(orb(p)) � W u(orb(q)) �= ∅. For a 
hyperbolic periodic point p, the closure of the set of periodic points that are homoclinically related to p is called the homo-
clinic class of p, denoted by H(p). Also, it is well known that H(p) is the closure of all transverse intersections of its stable 
and unstable manifolds, that is to say, H(p) = W u(orb(p)) � W s(orb(p)).

For an invariant compact set � of f , a D f -invariant sub-bundle E ⊂ T�M , an integer m ∈ N, and any number λ ∈
(0, 1), we call x ∈ � an (m, λ)-E-Pliss point, if 

∏n−1
i=0 ‖D f im|E( f im(x))‖ ≤ λn , for any integer n > 0. If � does not contain 

any (m, λ)-E-Pliss point, we call � an (m, λ)-E-weak set. We call two (m, λ)-E-Pliss points ( f n(x), f l(x)) on a single orbit 
consecutive (m, λ)-E-Pliss points, if n < l and for all n < k < l, f k(x) is not an (m, λ)-E-Pliss point. And if there is a dominated 
splitting T�M = E ⊕ F on �, we call x ∈ � an (m, λ)-bi-Pliss point, if it is an (m, λ)-E-Pliss point for f and an (m, λ)-F -Pliss 
point for f −1. If m = 1, we will just write λ-E-Pliss point or λ-E-weak set.
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A subset R of a topological space X is called a residual set, if R contains a dense Gδ set of X . We say that a property is 
a generic property of X , if there is a residual set R ⊂ X , such that each element contained in R satisfies the property.

We now announce an answer to Question 1.

Main Theorem. For C1-generic f ∈ Diff1(M), a homoclinic class H(p) either is hyperbolic, or contains periodic orbits with arbitrarily 
long periods that are homoclinically related to orb(p) and have a Lyapunov exponent arbitrarily close to 0.

We point out that the Main Theorem is not true without the genericity assumption. Refs. [16,4] construct a non-
hyperbolic homoclinic class which is uniformly hyperbolic in the measure sense: all Lyapunov exponents of all invariant 
measures supported on the homoclinic class are uniformly bounded away from 0.

From [9] and Lemma II.3 of [13], we have the fact that for generic f ∈ Diff1(M), if all Lyapunov exponents of periodic 
orbits that are homoclinically related to orb(p) are uniformly away from 0, then H(p) has a dominated splitting T H(p)M =
E ⊕ F , with dim E = ind(p). Our main theorem is thus a consequence of the following theorem.

Theorem A. For C1-generic f ∈ Diff1(M), assume that p is a hyperbolic periodic point of f . If the homoclinic class H(p) has a 
dominated splitting T H(p)M = E ⊕ F , with dim E ≤ ind(p), such that the bundle E is not contracted, then there are periodic orbits in 
H(p) with index dim(E) and with arbitrarily long periods whose maximal Lyapunov exponent along E is arbitrarily close to 0.

Ref. [3] obtains the conclusion of Theorem A under the hypothesis that the bundle F is expanded, but without the 
genericity assumption. By a standard argument, we can control the norm of the product by controlling the product of the 
norm with the perturbations. Thus to prove the main theorem, we only have to prove the following.

Theorem B. For C1-generic f ∈ Diff1(M), assume that p is a hyperbolic periodic point of f and that the homoclinic class H(p) has 
a dominated splitting T H(p)M = E ⊕ F , with dim E ≤ ind(p), such that the bundle E is not contracted. Then there are a constant 
λ0 ∈ (0, 1), and an integer m0 ∈ N, satisfying: for any m ∈ N with m ≥ m0 , any constants λ1, λ2 ∈ (λ0, 1) with λ1 < λ2 , there is a 
sequence of periodic orbits Ok = orb(qk) with period τ (qk) contained in H(P ), such that

λ1
τ (qk) <

∏

0≤i<τ(qk)/m

‖D f m|E( f im(qk))
‖ < λ2

τ (qk).

In the next sections, we give a sketch of the proof of the above theorem.

3. Existence of a bi-Pliss point accumulating backward to an E-weak set

We assume that f is a C1-generic diffeomorphism in Diff1(M) and H(p) is a homoclinic class of f that satisfies the 
hypothesis of Theorem B. We can choose two numbers λ0 ∈ (0, 1) and m0 ∈ N, such that, for any m ≥ m0, the splitting 
E ⊕ F is (m, λ0)-dominated, and for the hyperbolic periodic orbit orb(p),

∏

0≤i<τ(p)/m0

‖D f m0 |E( f im0 (p))‖ < λ
τ(p)/m0
0 ,

where τ (p) is the period of orb(p). In the following, we fix m ≥ m0. In order to simplify the notations, we will assume that 
m = 1 and that p is a fixed point of f , but the general case is identical.

Since the bundle E is not contracted, there is a point b ∈ H(p) such that, for any n ≥ 1, we have 
∏n−1

i=0 ‖D f |E( f i(b))‖ ≥ 1. 
For any number λ ∈ (λ0, 1), by Liao’s selecting lemma (see [12,18]), there is a λ-E-weak set contained in H(p) (otherwise, 
we will get periodic orbits that satisfy the conclusions of Theorem B). Now we fix three numbers λ1 < λ2 < λ3 ∈ (λ0, 1), take 
the closure of the union of all the λ2-E-weak sets and denote it by K̂ . Then there are two cases: either K̂ is a λ2-E-weak 
set or not. With the arguments related to the Pliss lemma [15] and the selecting lemma [12,18], we can get the following 
lemma under the hypothesis of Theorem B.

Lemma 1. There are a λ2-E-weak set K ⊂ H(p), a λ3-bi-Pliss point x ∈ H(p) \ K satisfying: α(x) = K .

4. The perturbation to make W u(p) accumulate to the weak set K

Since the λ2-E-weak set K is contained in H(p), and W u(p) is dense in H(p), with the technics in the proof of Propo-
sition 10 in [5], we can prove that there is a point on W u(p) that accumulates the weak set K for a diffeomorphism g1, 
that is that C1 close to f and coincides with f on K , orb(p) and the backward orbit of x. Moreover, the key point here 
is that, by the generic assumption of f , we can assure that there is a λ3-E-Pliss point close to x that is contained in the 
chain-recurrence class of p for g1; hence K is still chain related with p for g1. More precisely, we have the following 
lemma.
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Lemma 2. There is a residual set R ⊂ Diff1(M), such that, if f ∈R and satisfy the hypothesis of Theorem B, then for any neighborhood 
U of f in Diff1(M), there are a diffeomorphism g1 ∈ U and a point y ∈ M, such that,

1. y ∈ W u(p, f ) and g1 coincides with f on the set K ∪ orb(p) ∪ orb−(y), hence y ∈ W u(p, g1),
2. ω(y, g1) ⊂ K ⊂ C(p, g1).

5. The perturbations to get a heteroclinic connection between p and K

Denote K0 = ω(y, g1) ⊂ K , then for the diffeomorphism g1, K0 is a λ2-E-weak set, and the orbit of y connects the 
hyperbolic fixed point p to K0. By two additional perturbations, we can obtain furthermore an orbit connecting K0 to p. 
First, since K0 ⊂ C(p, g1), with the technics for the connecting of pseudo-orbits in [2,5], we can connect K0 by a true orbit 
to any neighborhood of p by a C1 small perturbation. Then, by the hyperbolicity of p, we use the uniform connecting lemma 
(see [17,19]) to “push” this orbit inside the stable manifold of p. In these two steps, the orbit orb(y) that connects p to K0
is not changed. We point out that the proof here is delicate (in fact the most delicate part of the whole proof) and one has 
to go back in the arguments of [2,5].

Lemma 3. For the diffeomorphism f ∈ R, for any neighborhood U of f in Diff1(M), there are a diffeomorphism g2 ∈ U and two 
points y, y′ ∈ M, such that,

1. y ∈ W u(p, g2) and ω(y, g2) ⊂ K ,
2. y′ ∈ W s(p, g2) and α(y′, g2) ⊂ ω(y, g2),
3. g2 coincides with f on the set ω(y, g2) ∪ orb(p).

6. Last perturbation to get a weak periodic orbit

Now we have obtained heteroclinic connections between the hyperbolic fixed point p and a subset K0 = ω(y, g2) of the 
weak set K . Then using the connecting lemma, we can get a periodic orbit that spends a given proportion of time close to 
orb(p) and K0 by a C1 small perturbation. More precisely, the periodic orbit that we get spends a long time close to the 
weak set K0, and spends another long time (which can be controlled) close to p, hence the average of the product of the 
norm along the bundle E of this periodic orbit is larger than λ1 (controlled by the norm of points close to K0) and smaller 
than λ2 (modified by the norm of points close to p). The key point in the connecting process is that, for the hyperbolic 
fixed point p, and the two points y and y′ , by the λ-Lemma, there are a number l and two small neighborhoods U y and 
U y′ of y and y′ , respectively, such that, for any n ≥ l, there is an orbit segment with length n that connects U y′ to U y , and 
moreover, only the two endpoints of the segment are contained in U y′ ∪ U y , and the other part of the segment is close to 
the point p.

Lemma 4. For the diffeomorphism f ∈R, for any neighborhood U of f in Diff1(M), for any integer L > 0, any neighborhood U p of p, 
there is g ∈ U , such that, g = f |orb(p) and g has a periodic orbit O = orb(q) with period τ > L such that q ∈ U p and

λ1
τ ≤

∏

0≤i≤τ−1

‖Dg|E(gi(q))‖ ≤ λ2
τ .

Finally, by a standard Baire argument (see for example [8]), for the C1-generic diffeomorphism f , there is a sequence of 
periodic orbits that are homoclinically related with each other and accumulates to a subset of H(p), and the product of the 
norms along the bundle E of these periodic orbits satisfies the inequality in Lemma 4. Therefore, these periodic orbits are 
contained in H(p). This finishes the proof of Theorem B.
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